1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
23 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
24 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
25 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * Implementation of the Pareto distribution.
|
---|
29 | *
|
---|
30 | * <p>
|
---|
31 | * <strong>Parameters:</strong>
|
---|
32 | * The probability distribution function of {@code X} is given by (for {@code x >= k}):
|
---|
33 | * <pre>
|
---|
34 | * α * k^α / x^(α + 1)
|
---|
35 | * </pre>
|
---|
36 | * <p>
|
---|
37 | * <ul>
|
---|
38 | * <li>{@code k} is the <em>scale</em> parameter: this is the minimum possible value of {@code X},</li>
|
---|
39 | * <li>{@code α} is the <em>shape</em> parameter: this is the Pareto index</li>
|
---|
40 | * </ul>
|
---|
41 | *
|
---|
42 | * @see <a href="http://en.wikipedia.org/wiki/Pareto_distribution">
|
---|
43 | * Pareto distribution (Wikipedia)</a>
|
---|
44 | * @see <a href="http://mathworld.wolfram.com/ParetoDistribution.html">
|
---|
45 | * Pareto distribution (MathWorld)</a>
|
---|
46 | *
|
---|
47 | * @since 3.3
|
---|
48 | */
|
---|
49 | public class ParetoDistribution extends AbstractRealDistribution {
|
---|
50 |
|
---|
51 | /** Default inverse cumulative probability accuracy. */
|
---|
52 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
53 |
|
---|
54 | /** Serializable version identifier. */
|
---|
55 | private static final long serialVersionUID = 20130424;
|
---|
56 |
|
---|
57 | /** The scale parameter of this distribution. */
|
---|
58 | private final double scale;
|
---|
59 |
|
---|
60 | /** The shape parameter of this distribution. */
|
---|
61 | private final double shape;
|
---|
62 |
|
---|
63 | /** Inverse cumulative probability accuracy. */
|
---|
64 | private final double solverAbsoluteAccuracy;
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Create a Pareto distribution with a scale of {@code 1} and a shape of {@code 1}.
|
---|
68 | */
|
---|
69 | public ParetoDistribution() {
|
---|
70 | this(1, 1);
|
---|
71 | }
|
---|
72 |
|
---|
73 | /**
|
---|
74 | * Create a Pareto distribution using the specified scale and shape.
|
---|
75 | * <p>
|
---|
76 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
77 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
78 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
79 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
80 | * as random generator via the appropriate constructors to avoid the
|
---|
81 | * additional initialisation overhead.
|
---|
82 | *
|
---|
83 | * @param scale the scale parameter of this distribution
|
---|
84 | * @param shape the shape parameter of this distribution
|
---|
85 | * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
|
---|
86 | */
|
---|
87 | public ParetoDistribution(double scale, double shape)
|
---|
88 | throws NotStrictlyPositiveException {
|
---|
89 | this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
90 | }
|
---|
91 |
|
---|
92 | /**
|
---|
93 | * Create a Pareto distribution using the specified scale, shape and
|
---|
94 | * inverse cumulative distribution accuracy.
|
---|
95 | * <p>
|
---|
96 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
97 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
98 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
99 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
100 | * as random generator via the appropriate constructors to avoid the
|
---|
101 | * additional initialisation overhead.
|
---|
102 | *
|
---|
103 | * @param scale the scale parameter of this distribution
|
---|
104 | * @param shape the shape parameter of this distribution
|
---|
105 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
106 | * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
|
---|
107 | */
|
---|
108 | public ParetoDistribution(double scale, double shape, double inverseCumAccuracy)
|
---|
109 | throws NotStrictlyPositiveException {
|
---|
110 | this(new Well19937c(), scale, shape, inverseCumAccuracy);
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Creates a Pareto distribution.
|
---|
115 | *
|
---|
116 | * @param rng Random number generator.
|
---|
117 | * @param scale Scale parameter of this distribution.
|
---|
118 | * @param shape Shape parameter of this distribution.
|
---|
119 | * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
|
---|
120 | */
|
---|
121 | public ParetoDistribution(RandomGenerator rng, double scale, double shape)
|
---|
122 | throws NotStrictlyPositiveException {
|
---|
123 | this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Creates a Pareto distribution.
|
---|
128 | *
|
---|
129 | * @param rng Random number generator.
|
---|
130 | * @param scale Scale parameter of this distribution.
|
---|
131 | * @param shape Shape parameter of this distribution.
|
---|
132 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
133 | * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
|
---|
134 | */
|
---|
135 | public ParetoDistribution(RandomGenerator rng,
|
---|
136 | double scale,
|
---|
137 | double shape,
|
---|
138 | double inverseCumAccuracy)
|
---|
139 | throws NotStrictlyPositiveException {
|
---|
140 | super(rng);
|
---|
141 |
|
---|
142 | if (scale <= 0) {
|
---|
143 | throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale);
|
---|
144 | }
|
---|
145 |
|
---|
146 | if (shape <= 0) {
|
---|
147 | throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
|
---|
148 | }
|
---|
149 |
|
---|
150 | this.scale = scale;
|
---|
151 | this.shape = shape;
|
---|
152 | this.solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
153 | }
|
---|
154 |
|
---|
155 | /**
|
---|
156 | * Returns the scale parameter of this distribution.
|
---|
157 | *
|
---|
158 | * @return the scale parameter
|
---|
159 | */
|
---|
160 | public double getScale() {
|
---|
161 | return scale;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Returns the shape parameter of this distribution.
|
---|
166 | *
|
---|
167 | * @return the shape parameter
|
---|
168 | */
|
---|
169 | public double getShape() {
|
---|
170 | return shape;
|
---|
171 | }
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * {@inheritDoc}
|
---|
175 | * <p>
|
---|
176 | * For scale {@code k}, and shape {@code α} of this distribution, the PDF
|
---|
177 | * is given by
|
---|
178 | * <ul>
|
---|
179 | * <li>{@code 0} if {@code x < k},</li>
|
---|
180 | * <li>{@code α * k^α / x^(α + 1)} otherwise.</li>
|
---|
181 | * </ul>
|
---|
182 | */
|
---|
183 | public double density(double x) {
|
---|
184 | if (x < scale) {
|
---|
185 | return 0;
|
---|
186 | }
|
---|
187 | return FastMath.pow(scale, shape) / FastMath.pow(x, shape + 1) * shape;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /** {@inheritDoc}
|
---|
191 | *
|
---|
192 | * See documentation of {@link #density(double)} for computation details.
|
---|
193 | */
|
---|
194 | @Override
|
---|
195 | public double logDensity(double x) {
|
---|
196 | if (x < scale) {
|
---|
197 | return Double.NEGATIVE_INFINITY;
|
---|
198 | }
|
---|
199 | return FastMath.log(scale) * shape - FastMath.log(x) * (shape + 1) + FastMath.log(shape);
|
---|
200 | }
|
---|
201 |
|
---|
202 | /**
|
---|
203 | * {@inheritDoc}
|
---|
204 | * <p>
|
---|
205 | * For scale {@code k}, and shape {@code α} of this distribution, the CDF is given by
|
---|
206 | * <ul>
|
---|
207 | * <li>{@code 0} if {@code x < k},</li>
|
---|
208 | * <li>{@code 1 - (k / x)^α} otherwise.</li>
|
---|
209 | * </ul>
|
---|
210 | */
|
---|
211 | public double cumulativeProbability(double x) {
|
---|
212 | if (x <= scale) {
|
---|
213 | return 0;
|
---|
214 | }
|
---|
215 | return 1 - FastMath.pow(scale / x, shape);
|
---|
216 | }
|
---|
217 |
|
---|
218 | /**
|
---|
219 | * {@inheritDoc}
|
---|
220 | *
|
---|
221 | * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
|
---|
222 | */
|
---|
223 | @Override
|
---|
224 | @Deprecated
|
---|
225 | public double cumulativeProbability(double x0, double x1)
|
---|
226 | throws NumberIsTooLargeException {
|
---|
227 | return probability(x0, x1);
|
---|
228 | }
|
---|
229 |
|
---|
230 | /** {@inheritDoc} */
|
---|
231 | @Override
|
---|
232 | protected double getSolverAbsoluteAccuracy() {
|
---|
233 | return solverAbsoluteAccuracy;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * {@inheritDoc}
|
---|
238 | * <p>
|
---|
239 | * For scale {@code k} and shape {@code α}, the mean is given by
|
---|
240 | * <ul>
|
---|
241 | * <li>{@code ∞} if {@code α <= 1},</li>
|
---|
242 | * <li>{@code α * k / (α - 1)} otherwise.</li>
|
---|
243 | * </ul>
|
---|
244 | */
|
---|
245 | public double getNumericalMean() {
|
---|
246 | if (shape <= 1) {
|
---|
247 | return Double.POSITIVE_INFINITY;
|
---|
248 | }
|
---|
249 | return shape * scale / (shape - 1);
|
---|
250 | }
|
---|
251 |
|
---|
252 | /**
|
---|
253 | * {@inheritDoc}
|
---|
254 | * <p>
|
---|
255 | * For scale {@code k} and shape {@code α}, the variance is given by
|
---|
256 | * <ul>
|
---|
257 | * <li>{@code ∞} if {@code 1 < α <= 2},</li>
|
---|
258 | * <li>{@code k^2 * α / ((α - 1)^2 * (α - 2))} otherwise.</li>
|
---|
259 | * </ul>
|
---|
260 | */
|
---|
261 | public double getNumericalVariance() {
|
---|
262 | if (shape <= 2) {
|
---|
263 | return Double.POSITIVE_INFINITY;
|
---|
264 | }
|
---|
265 | double s = shape - 1;
|
---|
266 | return scale * scale * shape / (s * s) / (shape - 2);
|
---|
267 | }
|
---|
268 |
|
---|
269 | /**
|
---|
270 | * {@inheritDoc}
|
---|
271 | * <p>
|
---|
272 | * The lower bound of the support is equal to the scale parameter {@code k}.
|
---|
273 | *
|
---|
274 | * @return lower bound of the support
|
---|
275 | */
|
---|
276 | public double getSupportLowerBound() {
|
---|
277 | return scale;
|
---|
278 | }
|
---|
279 |
|
---|
280 | /**
|
---|
281 | * {@inheritDoc}
|
---|
282 | * <p>
|
---|
283 | * The upper bound of the support is always positive infinity no matter the parameters.
|
---|
284 | *
|
---|
285 | * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY})
|
---|
286 | */
|
---|
287 | public double getSupportUpperBound() {
|
---|
288 | return Double.POSITIVE_INFINITY;
|
---|
289 | }
|
---|
290 |
|
---|
291 | /** {@inheritDoc} */
|
---|
292 | public boolean isSupportLowerBoundInclusive() {
|
---|
293 | return true;
|
---|
294 | }
|
---|
295 |
|
---|
296 | /** {@inheritDoc} */
|
---|
297 | public boolean isSupportUpperBoundInclusive() {
|
---|
298 | return false;
|
---|
299 | }
|
---|
300 |
|
---|
301 | /**
|
---|
302 | * {@inheritDoc}
|
---|
303 | * <p>
|
---|
304 | * The support of this distribution is connected.
|
---|
305 | *
|
---|
306 | * @return {@code true}
|
---|
307 | */
|
---|
308 | public boolean isSupportConnected() {
|
---|
309 | return true;
|
---|
310 | }
|
---|
311 |
|
---|
312 | /** {@inheritDoc} */
|
---|
313 | @Override
|
---|
314 | public double sample() {
|
---|
315 | final double n = random.nextDouble();
|
---|
316 | return scale / FastMath.pow(n, 1 / shape);
|
---|
317 | }
|
---|
318 | }
|
---|