1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
24 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
25 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
26 | import agents.anac.y2019.harddealer.math3.special.Erf;
|
---|
27 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Implementation of the normal (gaussian) distribution.
|
---|
31 | *
|
---|
32 | * @see <a href="http://en.wikipedia.org/wiki/Normal_distribution">Normal distribution (Wikipedia)</a>
|
---|
33 | * @see <a href="http://mathworld.wolfram.com/NormalDistribution.html">Normal distribution (MathWorld)</a>
|
---|
34 | */
|
---|
35 | public class NormalDistribution extends AbstractRealDistribution {
|
---|
36 | /**
|
---|
37 | * Default inverse cumulative probability accuracy.
|
---|
38 | * @since 2.1
|
---|
39 | */
|
---|
40 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
41 | /** Serializable version identifier. */
|
---|
42 | private static final long serialVersionUID = 8589540077390120676L;
|
---|
43 | /** √(2) */
|
---|
44 | private static final double SQRT2 = FastMath.sqrt(2.0);
|
---|
45 | /** Mean of this distribution. */
|
---|
46 | private final double mean;
|
---|
47 | /** Standard deviation of this distribution. */
|
---|
48 | private final double standardDeviation;
|
---|
49 | /** The value of {@code log(sd) + 0.5*log(2*pi)} stored for faster computation. */
|
---|
50 | private final double logStandardDeviationPlusHalfLog2Pi;
|
---|
51 | /** Inverse cumulative probability accuracy. */
|
---|
52 | private final double solverAbsoluteAccuracy;
|
---|
53 |
|
---|
54 | /**
|
---|
55 | * Create a normal distribution with mean equal to zero and standard
|
---|
56 | * deviation equal to one.
|
---|
57 | * <p>
|
---|
58 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
59 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
60 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
61 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
62 | * as random generator via the appropriate constructors to avoid the
|
---|
63 | * additional initialisation overhead.
|
---|
64 | */
|
---|
65 | public NormalDistribution() {
|
---|
66 | this(0, 1);
|
---|
67 | }
|
---|
68 |
|
---|
69 | /**
|
---|
70 | * Create a normal distribution using the given mean and standard deviation.
|
---|
71 | * <p>
|
---|
72 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
73 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
74 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
75 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
76 | * as random generator via the appropriate constructors to avoid the
|
---|
77 | * additional initialisation overhead.
|
---|
78 | *
|
---|
79 | * @param mean Mean for this distribution.
|
---|
80 | * @param sd Standard deviation for this distribution.
|
---|
81 | * @throws NotStrictlyPositiveException if {@code sd <= 0}.
|
---|
82 | */
|
---|
83 | public NormalDistribution(double mean, double sd)
|
---|
84 | throws NotStrictlyPositiveException {
|
---|
85 | this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Create a normal distribution using the given mean, standard deviation and
|
---|
90 | * inverse cumulative distribution accuracy.
|
---|
91 | * <p>
|
---|
92 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
93 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
94 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
95 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
96 | * as random generator via the appropriate constructors to avoid the
|
---|
97 | * additional initialisation overhead.
|
---|
98 | *
|
---|
99 | * @param mean Mean for this distribution.
|
---|
100 | * @param sd Standard deviation for this distribution.
|
---|
101 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
102 | * @throws NotStrictlyPositiveException if {@code sd <= 0}.
|
---|
103 | * @since 2.1
|
---|
104 | */
|
---|
105 | public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
|
---|
106 | throws NotStrictlyPositiveException {
|
---|
107 | this(new Well19937c(), mean, sd, inverseCumAccuracy);
|
---|
108 | }
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Creates a normal distribution.
|
---|
112 | *
|
---|
113 | * @param rng Random number generator.
|
---|
114 | * @param mean Mean for this distribution.
|
---|
115 | * @param sd Standard deviation for this distribution.
|
---|
116 | * @throws NotStrictlyPositiveException if {@code sd <= 0}.
|
---|
117 | * @since 3.3
|
---|
118 | */
|
---|
119 | public NormalDistribution(RandomGenerator rng, double mean, double sd)
|
---|
120 | throws NotStrictlyPositiveException {
|
---|
121 | this(rng, mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Creates a normal distribution.
|
---|
126 | *
|
---|
127 | * @param rng Random number generator.
|
---|
128 | * @param mean Mean for this distribution.
|
---|
129 | * @param sd Standard deviation for this distribution.
|
---|
130 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
131 | * @throws NotStrictlyPositiveException if {@code sd <= 0}.
|
---|
132 | * @since 3.1
|
---|
133 | */
|
---|
134 | public NormalDistribution(RandomGenerator rng,
|
---|
135 | double mean,
|
---|
136 | double sd,
|
---|
137 | double inverseCumAccuracy)
|
---|
138 | throws NotStrictlyPositiveException {
|
---|
139 | super(rng);
|
---|
140 |
|
---|
141 | if (sd <= 0) {
|
---|
142 | throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
|
---|
143 | }
|
---|
144 |
|
---|
145 | this.mean = mean;
|
---|
146 | standardDeviation = sd;
|
---|
147 | logStandardDeviationPlusHalfLog2Pi = FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI);
|
---|
148 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /**
|
---|
152 | * Access the mean.
|
---|
153 | *
|
---|
154 | * @return the mean for this distribution.
|
---|
155 | */
|
---|
156 | public double getMean() {
|
---|
157 | return mean;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * Access the standard deviation.
|
---|
162 | *
|
---|
163 | * @return the standard deviation for this distribution.
|
---|
164 | */
|
---|
165 | public double getStandardDeviation() {
|
---|
166 | return standardDeviation;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /** {@inheritDoc} */
|
---|
170 | public double density(double x) {
|
---|
171 | return FastMath.exp(logDensity(x));
|
---|
172 | }
|
---|
173 |
|
---|
174 | /** {@inheritDoc} */
|
---|
175 | @Override
|
---|
176 | public double logDensity(double x) {
|
---|
177 | final double x0 = x - mean;
|
---|
178 | final double x1 = x0 / standardDeviation;
|
---|
179 | return -0.5 * x1 * x1 - logStandardDeviationPlusHalfLog2Pi;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /**
|
---|
183 | * {@inheritDoc}
|
---|
184 | *
|
---|
185 | * If {@code x} is more than 40 standard deviations from the mean, 0 or 1
|
---|
186 | * is returned, as in these cases the actual value is within
|
---|
187 | * {@code Double.MIN_VALUE} of 0 or 1.
|
---|
188 | */
|
---|
189 | public double cumulativeProbability(double x) {
|
---|
190 | final double dev = x - mean;
|
---|
191 | if (FastMath.abs(dev) > 40 * standardDeviation) {
|
---|
192 | return dev < 0 ? 0.0d : 1.0d;
|
---|
193 | }
|
---|
194 | return 0.5 * Erf.erfc(-dev / (standardDeviation * SQRT2));
|
---|
195 | }
|
---|
196 |
|
---|
197 | /** {@inheritDoc}
|
---|
198 | * @since 3.2
|
---|
199 | */
|
---|
200 | @Override
|
---|
201 | public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
|
---|
202 | if (p < 0.0 || p > 1.0) {
|
---|
203 | throw new OutOfRangeException(p, 0, 1);
|
---|
204 | }
|
---|
205 | return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1);
|
---|
206 | }
|
---|
207 |
|
---|
208 | /**
|
---|
209 | * {@inheritDoc}
|
---|
210 | *
|
---|
211 | * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
|
---|
212 | */
|
---|
213 | @Override@Deprecated
|
---|
214 | public double cumulativeProbability(double x0, double x1)
|
---|
215 | throws NumberIsTooLargeException {
|
---|
216 | return probability(x0, x1);
|
---|
217 | }
|
---|
218 |
|
---|
219 | /** {@inheritDoc} */
|
---|
220 | @Override
|
---|
221 | public double probability(double x0,
|
---|
222 | double x1)
|
---|
223 | throws NumberIsTooLargeException {
|
---|
224 | if (x0 > x1) {
|
---|
225 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
|
---|
226 | x0, x1, true);
|
---|
227 | }
|
---|
228 | final double denom = standardDeviation * SQRT2;
|
---|
229 | final double v0 = (x0 - mean) / denom;
|
---|
230 | final double v1 = (x1 - mean) / denom;
|
---|
231 | return 0.5 * Erf.erf(v0, v1);
|
---|
232 | }
|
---|
233 |
|
---|
234 | /** {@inheritDoc} */
|
---|
235 | @Override
|
---|
236 | protected double getSolverAbsoluteAccuracy() {
|
---|
237 | return solverAbsoluteAccuracy;
|
---|
238 | }
|
---|
239 |
|
---|
240 | /**
|
---|
241 | * {@inheritDoc}
|
---|
242 | *
|
---|
243 | * For mean parameter {@code mu}, the mean is {@code mu}.
|
---|
244 | */
|
---|
245 | public double getNumericalMean() {
|
---|
246 | return getMean();
|
---|
247 | }
|
---|
248 |
|
---|
249 | /**
|
---|
250 | * {@inheritDoc}
|
---|
251 | *
|
---|
252 | * For standard deviation parameter {@code s}, the variance is {@code s^2}.
|
---|
253 | */
|
---|
254 | public double getNumericalVariance() {
|
---|
255 | final double s = getStandardDeviation();
|
---|
256 | return s * s;
|
---|
257 | }
|
---|
258 |
|
---|
259 | /**
|
---|
260 | * {@inheritDoc}
|
---|
261 | *
|
---|
262 | * The lower bound of the support is always negative infinity
|
---|
263 | * no matter the parameters.
|
---|
264 | *
|
---|
265 | * @return lower bound of the support (always
|
---|
266 | * {@code Double.NEGATIVE_INFINITY})
|
---|
267 | */
|
---|
268 | public double getSupportLowerBound() {
|
---|
269 | return Double.NEGATIVE_INFINITY;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * {@inheritDoc}
|
---|
274 | *
|
---|
275 | * The upper bound of the support is always positive infinity
|
---|
276 | * no matter the parameters.
|
---|
277 | *
|
---|
278 | * @return upper bound of the support (always
|
---|
279 | * {@code Double.POSITIVE_INFINITY})
|
---|
280 | */
|
---|
281 | public double getSupportUpperBound() {
|
---|
282 | return Double.POSITIVE_INFINITY;
|
---|
283 | }
|
---|
284 |
|
---|
285 | /** {@inheritDoc} */
|
---|
286 | public boolean isSupportLowerBoundInclusive() {
|
---|
287 | return false;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /** {@inheritDoc} */
|
---|
291 | public boolean isSupportUpperBoundInclusive() {
|
---|
292 | return false;
|
---|
293 | }
|
---|
294 |
|
---|
295 | /**
|
---|
296 | * {@inheritDoc}
|
---|
297 | *
|
---|
298 | * The support of this distribution is connected.
|
---|
299 | *
|
---|
300 | * @return {@code true}
|
---|
301 | */
|
---|
302 | public boolean isSupportConnected() {
|
---|
303 | return true;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /** {@inheritDoc} */
|
---|
307 | @Override
|
---|
308 | public double sample() {
|
---|
309 | return standardDeviation * random.nextGaussian() + mean;
|
---|
310 | }
|
---|
311 | }
|
---|