1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.linear.Array2DRowRealMatrix;
|
---|
21 | import agents.anac.y2019.harddealer.math3.linear.EigenDecomposition;
|
---|
22 | import agents.anac.y2019.harddealer.math3.linear.NonPositiveDefiniteMatrixException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.linear.RealMatrix;
|
---|
24 | import agents.anac.y2019.harddealer.math3.linear.SingularMatrixException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
26 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
27 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
28 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Implementation of the multivariate normal (Gaussian) distribution.
|
---|
32 | *
|
---|
33 | * @see <a href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
|
---|
34 | * Multivariate normal distribution (Wikipedia)</a>
|
---|
35 | * @see <a href="http://mathworld.wolfram.com/MultivariateNormalDistribution.html">
|
---|
36 | * Multivariate normal distribution (MathWorld)</a>
|
---|
37 | *
|
---|
38 | * @since 3.1
|
---|
39 | */
|
---|
40 | public class MultivariateNormalDistribution
|
---|
41 | extends AbstractMultivariateRealDistribution {
|
---|
42 | /** Vector of means. */
|
---|
43 | private final double[] means;
|
---|
44 | /** Covariance matrix. */
|
---|
45 | private final RealMatrix covarianceMatrix;
|
---|
46 | /** The matrix inverse of the covariance matrix. */
|
---|
47 | private final RealMatrix covarianceMatrixInverse;
|
---|
48 | /** The determinant of the covariance matrix. */
|
---|
49 | private final double covarianceMatrixDeterminant;
|
---|
50 | /** Matrix used in computation of samples. */
|
---|
51 | private final RealMatrix samplingMatrix;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Creates a multivariate normal distribution with the given mean vector and
|
---|
55 | * covariance matrix.
|
---|
56 | * <br/>
|
---|
57 | * The number of dimensions is equal to the length of the mean vector
|
---|
58 | * and to the number of rows and columns of the covariance matrix.
|
---|
59 | * It is frequently written as "p" in formulae.
|
---|
60 | * <p>
|
---|
61 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
62 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
63 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
64 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
65 | * as random generator via the appropriate constructors to avoid the
|
---|
66 | * additional initialisation overhead.
|
---|
67 | *
|
---|
68 | * @param means Vector of means.
|
---|
69 | * @param covariances Covariance matrix.
|
---|
70 | * @throws DimensionMismatchException if the arrays length are
|
---|
71 | * inconsistent.
|
---|
72 | * @throws SingularMatrixException if the eigenvalue decomposition cannot
|
---|
73 | * be performed on the provided covariance matrix.
|
---|
74 | * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
|
---|
75 | * negative.
|
---|
76 | */
|
---|
77 | public MultivariateNormalDistribution(final double[] means,
|
---|
78 | final double[][] covariances)
|
---|
79 | throws SingularMatrixException,
|
---|
80 | DimensionMismatchException,
|
---|
81 | NonPositiveDefiniteMatrixException {
|
---|
82 | this(new Well19937c(), means, covariances);
|
---|
83 | }
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Creates a multivariate normal distribution with the given mean vector and
|
---|
87 | * covariance matrix.
|
---|
88 | * <br/>
|
---|
89 | * The number of dimensions is equal to the length of the mean vector
|
---|
90 | * and to the number of rows and columns of the covariance matrix.
|
---|
91 | * It is frequently written as "p" in formulae.
|
---|
92 | *
|
---|
93 | * @param rng Random Number Generator.
|
---|
94 | * @param means Vector of means.
|
---|
95 | * @param covariances Covariance matrix.
|
---|
96 | * @throws DimensionMismatchException if the arrays length are
|
---|
97 | * inconsistent.
|
---|
98 | * @throws SingularMatrixException if the eigenvalue decomposition cannot
|
---|
99 | * be performed on the provided covariance matrix.
|
---|
100 | * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
|
---|
101 | * negative.
|
---|
102 | */
|
---|
103 | public MultivariateNormalDistribution(RandomGenerator rng,
|
---|
104 | final double[] means,
|
---|
105 | final double[][] covariances)
|
---|
106 | throws SingularMatrixException,
|
---|
107 | DimensionMismatchException,
|
---|
108 | NonPositiveDefiniteMatrixException {
|
---|
109 | super(rng, means.length);
|
---|
110 |
|
---|
111 | final int dim = means.length;
|
---|
112 |
|
---|
113 | if (covariances.length != dim) {
|
---|
114 | throw new DimensionMismatchException(covariances.length, dim);
|
---|
115 | }
|
---|
116 |
|
---|
117 | for (int i = 0; i < dim; i++) {
|
---|
118 | if (dim != covariances[i].length) {
|
---|
119 | throw new DimensionMismatchException(covariances[i].length, dim);
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | this.means = MathArrays.copyOf(means);
|
---|
124 |
|
---|
125 | covarianceMatrix = new Array2DRowRealMatrix(covariances);
|
---|
126 |
|
---|
127 | // Covariance matrix eigen decomposition.
|
---|
128 | final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
|
---|
129 |
|
---|
130 | // Compute and store the inverse.
|
---|
131 | covarianceMatrixInverse = covMatDec.getSolver().getInverse();
|
---|
132 | // Compute and store the determinant.
|
---|
133 | covarianceMatrixDeterminant = covMatDec.getDeterminant();
|
---|
134 |
|
---|
135 | // Eigenvalues of the covariance matrix.
|
---|
136 | final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
|
---|
137 |
|
---|
138 | for (int i = 0; i < covMatEigenvalues.length; i++) {
|
---|
139 | if (covMatEigenvalues[i] < 0) {
|
---|
140 | throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | // Matrix where each column is an eigenvector of the covariance matrix.
|
---|
145 | final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
|
---|
146 | for (int v = 0; v < dim; v++) {
|
---|
147 | final double[] evec = covMatDec.getEigenvector(v).toArray();
|
---|
148 | covMatEigenvectors.setColumn(v, evec);
|
---|
149 | }
|
---|
150 |
|
---|
151 | final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
|
---|
152 |
|
---|
153 | // Scale each eigenvector by the square root of its eigenvalue.
|
---|
154 | for (int row = 0; row < dim; row++) {
|
---|
155 | final double factor = FastMath.sqrt(covMatEigenvalues[row]);
|
---|
156 | for (int col = 0; col < dim; col++) {
|
---|
157 | tmpMatrix.multiplyEntry(row, col, factor);
|
---|
158 | }
|
---|
159 | }
|
---|
160 |
|
---|
161 | samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Gets the mean vector.
|
---|
166 | *
|
---|
167 | * @return the mean vector.
|
---|
168 | */
|
---|
169 | public double[] getMeans() {
|
---|
170 | return MathArrays.copyOf(means);
|
---|
171 | }
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * Gets the covariance matrix.
|
---|
175 | *
|
---|
176 | * @return the covariance matrix.
|
---|
177 | */
|
---|
178 | public RealMatrix getCovariances() {
|
---|
179 | return covarianceMatrix.copy();
|
---|
180 | }
|
---|
181 |
|
---|
182 | /** {@inheritDoc} */
|
---|
183 | public double density(final double[] vals) throws DimensionMismatchException {
|
---|
184 | final int dim = getDimension();
|
---|
185 | if (vals.length != dim) {
|
---|
186 | throw new DimensionMismatchException(vals.length, dim);
|
---|
187 | }
|
---|
188 |
|
---|
189 | return FastMath.pow(2 * FastMath.PI, -0.5 * dim) *
|
---|
190 | FastMath.pow(covarianceMatrixDeterminant, -0.5) *
|
---|
191 | getExponentTerm(vals);
|
---|
192 | }
|
---|
193 |
|
---|
194 | /**
|
---|
195 | * Gets the square root of each element on the diagonal of the covariance
|
---|
196 | * matrix.
|
---|
197 | *
|
---|
198 | * @return the standard deviations.
|
---|
199 | */
|
---|
200 | public double[] getStandardDeviations() {
|
---|
201 | final int dim = getDimension();
|
---|
202 | final double[] std = new double[dim];
|
---|
203 | final double[][] s = covarianceMatrix.getData();
|
---|
204 | for (int i = 0; i < dim; i++) {
|
---|
205 | std[i] = FastMath.sqrt(s[i][i]);
|
---|
206 | }
|
---|
207 | return std;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /** {@inheritDoc} */
|
---|
211 | @Override
|
---|
212 | public double[] sample() {
|
---|
213 | final int dim = getDimension();
|
---|
214 | final double[] normalVals = new double[dim];
|
---|
215 |
|
---|
216 | for (int i = 0; i < dim; i++) {
|
---|
217 | normalVals[i] = random.nextGaussian();
|
---|
218 | }
|
---|
219 |
|
---|
220 | final double[] vals = samplingMatrix.operate(normalVals);
|
---|
221 |
|
---|
222 | for (int i = 0; i < dim; i++) {
|
---|
223 | vals[i] += means[i];
|
---|
224 | }
|
---|
225 |
|
---|
226 | return vals;
|
---|
227 | }
|
---|
228 |
|
---|
229 | /**
|
---|
230 | * Computes the term used in the exponent (see definition of the distribution).
|
---|
231 | *
|
---|
232 | * @param values Values at which to compute density.
|
---|
233 | * @return the multiplication factor of density calculations.
|
---|
234 | */
|
---|
235 | private double getExponentTerm(final double[] values) {
|
---|
236 | final double[] centered = new double[values.length];
|
---|
237 | for (int i = 0; i < centered.length; i++) {
|
---|
238 | centered[i] = values[i] - getMeans()[i];
|
---|
239 | }
|
---|
240 | final double[] preMultiplied = covarianceMatrixInverse.preMultiply(centered);
|
---|
241 | double sum = 0;
|
---|
242 | for (int i = 0; i < preMultiplied.length; i++) {
|
---|
243 | sum += preMultiplied[i] * centered[i];
|
---|
244 | }
|
---|
245 | return FastMath.exp(-0.5 * sum);
|
---|
246 | }
|
---|
247 | }
|
---|