1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
18 |
|
---|
19 | import java.util.ArrayList;
|
---|
20 | import java.util.List;
|
---|
21 |
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.MathArithmeticException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.NotPositiveException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
26 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
27 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
28 | import agents.anac.y2019.harddealer.math3.util.Pair;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Class for representing <a href="http://en.wikipedia.org/wiki/Mixture_model">
|
---|
32 | * mixture model</a> distributions.
|
---|
33 | *
|
---|
34 | * @param <T> Type of the mixture components.
|
---|
35 | *
|
---|
36 | * @since 3.1
|
---|
37 | */
|
---|
38 | public class MixtureMultivariateRealDistribution<T extends MultivariateRealDistribution>
|
---|
39 | extends AbstractMultivariateRealDistribution {
|
---|
40 | /** Normalized weight of each mixture component. */
|
---|
41 | private final double[] weight;
|
---|
42 | /** Mixture components. */
|
---|
43 | private final List<T> distribution;
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * Creates a mixture model from a list of distributions and their
|
---|
47 | * associated weights.
|
---|
48 | * <p>
|
---|
49 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
50 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
51 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
52 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
53 | * as random generator via the appropriate constructors to avoid the
|
---|
54 | * additional initialisation overhead.
|
---|
55 | *
|
---|
56 | * @param components List of (weight, distribution) pairs from which to sample.
|
---|
57 | */
|
---|
58 | public MixtureMultivariateRealDistribution(List<Pair<Double, T>> components) {
|
---|
59 | this(new Well19937c(), components);
|
---|
60 | }
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * Creates a mixture model from a list of distributions and their
|
---|
64 | * associated weights.
|
---|
65 | *
|
---|
66 | * @param rng Random number generator.
|
---|
67 | * @param components Distributions from which to sample.
|
---|
68 | * @throws NotPositiveException if any of the weights is negative.
|
---|
69 | * @throws DimensionMismatchException if not all components have the same
|
---|
70 | * number of variables.
|
---|
71 | */
|
---|
72 | public MixtureMultivariateRealDistribution(RandomGenerator rng,
|
---|
73 | List<Pair<Double, T>> components) {
|
---|
74 | super(rng, components.get(0).getSecond().getDimension());
|
---|
75 |
|
---|
76 | final int numComp = components.size();
|
---|
77 | final int dim = getDimension();
|
---|
78 | double weightSum = 0;
|
---|
79 | for (int i = 0; i < numComp; i++) {
|
---|
80 | final Pair<Double, T> comp = components.get(i);
|
---|
81 | if (comp.getSecond().getDimension() != dim) {
|
---|
82 | throw new DimensionMismatchException(comp.getSecond().getDimension(), dim);
|
---|
83 | }
|
---|
84 | if (comp.getFirst() < 0) {
|
---|
85 | throw new NotPositiveException(comp.getFirst());
|
---|
86 | }
|
---|
87 | weightSum += comp.getFirst();
|
---|
88 | }
|
---|
89 |
|
---|
90 | // Check for overflow.
|
---|
91 | if (Double.isInfinite(weightSum)) {
|
---|
92 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW);
|
---|
93 | }
|
---|
94 |
|
---|
95 | // Store each distribution and its normalized weight.
|
---|
96 | distribution = new ArrayList<T>();
|
---|
97 | weight = new double[numComp];
|
---|
98 | for (int i = 0; i < numComp; i++) {
|
---|
99 | final Pair<Double, T> comp = components.get(i);
|
---|
100 | weight[i] = comp.getFirst() / weightSum;
|
---|
101 | distribution.add(comp.getSecond());
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | /** {@inheritDoc} */
|
---|
106 | public double density(final double[] values) {
|
---|
107 | double p = 0;
|
---|
108 | for (int i = 0; i < weight.length; i++) {
|
---|
109 | p += weight[i] * distribution.get(i).density(values);
|
---|
110 | }
|
---|
111 | return p;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /** {@inheritDoc} */
|
---|
115 | @Override
|
---|
116 | public double[] sample() {
|
---|
117 | // Sampled values.
|
---|
118 | double[] vals = null;
|
---|
119 |
|
---|
120 | // Determine which component to sample from.
|
---|
121 | final double randomValue = random.nextDouble();
|
---|
122 | double sum = 0;
|
---|
123 |
|
---|
124 | for (int i = 0; i < weight.length; i++) {
|
---|
125 | sum += weight[i];
|
---|
126 | if (randomValue <= sum) {
|
---|
127 | // pick model i
|
---|
128 | vals = distribution.get(i).sample();
|
---|
129 | break;
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | if (vals == null) {
|
---|
134 | // This should never happen, but it ensures we won't return a null in
|
---|
135 | // case the loop above has some floating point inequality problem on
|
---|
136 | // the final iteration.
|
---|
137 | vals = distribution.get(weight.length - 1).sample();
|
---|
138 | }
|
---|
139 |
|
---|
140 | return vals;
|
---|
141 | }
|
---|
142 |
|
---|
143 | /** {@inheritDoc} */
|
---|
144 | @Override
|
---|
145 | public void reseedRandomGenerator(long seed) {
|
---|
146 | // Seed needs to be propagated to underlying components
|
---|
147 | // in order to maintain consistency between runs.
|
---|
148 | super.reseedRandomGenerator(seed);
|
---|
149 |
|
---|
150 | for (int i = 0; i < distribution.size(); i++) {
|
---|
151 | // Make each component's seed different in order to avoid
|
---|
152 | // using the same sequence of random numbers.
|
---|
153 | distribution.get(i).reseedRandomGenerator(i + 1 + seed);
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | /**
|
---|
158 | * Gets the distributions that make up the mixture model.
|
---|
159 | *
|
---|
160 | * @return the component distributions and associated weights.
|
---|
161 | */
|
---|
162 | public List<Pair<Double, T>> getComponents() {
|
---|
163 | final List<Pair<Double, T>> list = new ArrayList<Pair<Double, T>>(weight.length);
|
---|
164 |
|
---|
165 | for (int i = 0; i < weight.length; i++) {
|
---|
166 | list.add(new Pair<Double, T>(weight[i], distribution.get(i)));
|
---|
167 | }
|
---|
168 |
|
---|
169 | return list;
|
---|
170 | }
|
---|
171 | }
|
---|