1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
23 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
24 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
25 | import agents.anac.y2019.harddealer.math3.special.Erf;
|
---|
26 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Implementation of the log-normal (gaussian) distribution.
|
---|
30 | *
|
---|
31 | * <p>
|
---|
32 | * <strong>Parameters:</strong>
|
---|
33 | * {@code X} is log-normally distributed if its natural logarithm {@code log(X)}
|
---|
34 | * is normally distributed. The probability distribution function of {@code X}
|
---|
35 | * is given by (for {@code x > 0})
|
---|
36 | * </p>
|
---|
37 | * <p>
|
---|
38 | * {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)}
|
---|
39 | * </p>
|
---|
40 | * <ul>
|
---|
41 | * <li>{@code m} is the <em>scale</em> parameter: this is the mean of the
|
---|
42 | * normally distributed natural logarithm of this distribution,</li>
|
---|
43 | * <li>{@code s} is the <em>shape</em> parameter: this is the standard
|
---|
44 | * deviation of the normally distributed natural logarithm of this
|
---|
45 | * distribution.
|
---|
46 | * </ul>
|
---|
47 | *
|
---|
48 | * @see <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">
|
---|
49 | * Log-normal distribution (Wikipedia)</a>
|
---|
50 | * @see <a href="http://mathworld.wolfram.com/LogNormalDistribution.html">
|
---|
51 | * Log Normal distribution (MathWorld)</a>
|
---|
52 | *
|
---|
53 | * @since 3.0
|
---|
54 | */
|
---|
55 | public class LogNormalDistribution extends AbstractRealDistribution {
|
---|
56 | /** Default inverse cumulative probability accuracy. */
|
---|
57 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
58 |
|
---|
59 | /** Serializable version identifier. */
|
---|
60 | private static final long serialVersionUID = 20120112;
|
---|
61 |
|
---|
62 | /** √(2 π) */
|
---|
63 | private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI);
|
---|
64 |
|
---|
65 | /** √(2) */
|
---|
66 | private static final double SQRT2 = FastMath.sqrt(2.0);
|
---|
67 |
|
---|
68 | /** The scale parameter of this distribution. */
|
---|
69 | private final double scale;
|
---|
70 |
|
---|
71 | /** The shape parameter of this distribution. */
|
---|
72 | private final double shape;
|
---|
73 | /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */
|
---|
74 | private final double logShapePlusHalfLog2Pi;
|
---|
75 |
|
---|
76 | /** Inverse cumulative probability accuracy. */
|
---|
77 | private final double solverAbsoluteAccuracy;
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * Create a log-normal distribution, where the mean and standard deviation
|
---|
81 | * of the {@link NormalDistribution normally distributed} natural
|
---|
82 | * logarithm of the log-normal distribution are equal to zero and one
|
---|
83 | * respectively. In other words, the scale of the returned distribution is
|
---|
84 | * {@code 0}, while its shape is {@code 1}.
|
---|
85 | * <p>
|
---|
86 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
87 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
88 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
89 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
90 | * as random generator via the appropriate constructors to avoid the
|
---|
91 | * additional initialisation overhead.
|
---|
92 | */
|
---|
93 | public LogNormalDistribution() {
|
---|
94 | this(0, 1);
|
---|
95 | }
|
---|
96 |
|
---|
97 | /**
|
---|
98 | * Create a log-normal distribution using the specified scale and shape.
|
---|
99 | * <p>
|
---|
100 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
101 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
102 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
103 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
104 | * as random generator via the appropriate constructors to avoid the
|
---|
105 | * additional initialisation overhead.
|
---|
106 | *
|
---|
107 | * @param scale the scale parameter of this distribution
|
---|
108 | * @param shape the shape parameter of this distribution
|
---|
109 | * @throws NotStrictlyPositiveException if {@code shape <= 0}.
|
---|
110 | */
|
---|
111 | public LogNormalDistribution(double scale, double shape)
|
---|
112 | throws NotStrictlyPositiveException {
|
---|
113 | this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
114 | }
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Create a log-normal distribution using the specified scale, shape and
|
---|
118 | * inverse cumulative distribution accuracy.
|
---|
119 | * <p>
|
---|
120 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
121 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
122 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
123 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
124 | * as random generator via the appropriate constructors to avoid the
|
---|
125 | * additional initialisation overhead.
|
---|
126 | *
|
---|
127 | * @param scale the scale parameter of this distribution
|
---|
128 | * @param shape the shape parameter of this distribution
|
---|
129 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
130 | * @throws NotStrictlyPositiveException if {@code shape <= 0}.
|
---|
131 | */
|
---|
132 | public LogNormalDistribution(double scale, double shape, double inverseCumAccuracy)
|
---|
133 | throws NotStrictlyPositiveException {
|
---|
134 | this(new Well19937c(), scale, shape, inverseCumAccuracy);
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Creates a log-normal distribution.
|
---|
139 | *
|
---|
140 | * @param rng Random number generator.
|
---|
141 | * @param scale Scale parameter of this distribution.
|
---|
142 | * @param shape Shape parameter of this distribution.
|
---|
143 | * @throws NotStrictlyPositiveException if {@code shape <= 0}.
|
---|
144 | * @since 3.3
|
---|
145 | */
|
---|
146 | public LogNormalDistribution(RandomGenerator rng, double scale, double shape)
|
---|
147 | throws NotStrictlyPositiveException {
|
---|
148 | this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
149 | }
|
---|
150 |
|
---|
151 | /**
|
---|
152 | * Creates a log-normal distribution.
|
---|
153 | *
|
---|
154 | * @param rng Random number generator.
|
---|
155 | * @param scale Scale parameter of this distribution.
|
---|
156 | * @param shape Shape parameter of this distribution.
|
---|
157 | * @param inverseCumAccuracy Inverse cumulative probability accuracy.
|
---|
158 | * @throws NotStrictlyPositiveException if {@code shape <= 0}.
|
---|
159 | * @since 3.1
|
---|
160 | */
|
---|
161 | public LogNormalDistribution(RandomGenerator rng,
|
---|
162 | double scale,
|
---|
163 | double shape,
|
---|
164 | double inverseCumAccuracy)
|
---|
165 | throws NotStrictlyPositiveException {
|
---|
166 | super(rng);
|
---|
167 |
|
---|
168 | if (shape <= 0) {
|
---|
169 | throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
|
---|
170 | }
|
---|
171 |
|
---|
172 | this.scale = scale;
|
---|
173 | this.shape = shape;
|
---|
174 | this.logShapePlusHalfLog2Pi = FastMath.log(shape) + 0.5 * FastMath.log(2 * FastMath.PI);
|
---|
175 | this.solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
176 | }
|
---|
177 |
|
---|
178 | /**
|
---|
179 | * Returns the scale parameter of this distribution.
|
---|
180 | *
|
---|
181 | * @return the scale parameter
|
---|
182 | */
|
---|
183 | public double getScale() {
|
---|
184 | return scale;
|
---|
185 | }
|
---|
186 |
|
---|
187 | /**
|
---|
188 | * Returns the shape parameter of this distribution.
|
---|
189 | *
|
---|
190 | * @return the shape parameter
|
---|
191 | */
|
---|
192 | public double getShape() {
|
---|
193 | return shape;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * {@inheritDoc}
|
---|
198 | *
|
---|
199 | * For scale {@code m}, and shape {@code s} of this distribution, the PDF
|
---|
200 | * is given by
|
---|
201 | * <ul>
|
---|
202 | * <li>{@code 0} if {@code x <= 0},</li>
|
---|
203 | * <li>{@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)}
|
---|
204 | * otherwise.</li>
|
---|
205 | * </ul>
|
---|
206 | */
|
---|
207 | public double density(double x) {
|
---|
208 | if (x <= 0) {
|
---|
209 | return 0;
|
---|
210 | }
|
---|
211 | final double x0 = FastMath.log(x) - scale;
|
---|
212 | final double x1 = x0 / shape;
|
---|
213 | return FastMath.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x);
|
---|
214 | }
|
---|
215 |
|
---|
216 | /** {@inheritDoc}
|
---|
217 | *
|
---|
218 | * See documentation of {@link #density(double)} for computation details.
|
---|
219 | */
|
---|
220 | @Override
|
---|
221 | public double logDensity(double x) {
|
---|
222 | if (x <= 0) {
|
---|
223 | return Double.NEGATIVE_INFINITY;
|
---|
224 | }
|
---|
225 | final double logX = FastMath.log(x);
|
---|
226 | final double x0 = logX - scale;
|
---|
227 | final double x1 = x0 / shape;
|
---|
228 | return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /**
|
---|
232 | * {@inheritDoc}
|
---|
233 | *
|
---|
234 | * For scale {@code m}, and shape {@code s} of this distribution, the CDF
|
---|
235 | * is given by
|
---|
236 | * <ul>
|
---|
237 | * <li>{@code 0} if {@code x <= 0},</li>
|
---|
238 | * <li>{@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as
|
---|
239 | * in these cases the actual value is within {@code Double.MIN_VALUE} of 0,
|
---|
240 | * <li>{@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s},
|
---|
241 | * as in these cases the actual value is within {@code Double.MIN_VALUE} of
|
---|
242 | * 1,</li>
|
---|
243 | * <li>{@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.</li>
|
---|
244 | * </ul>
|
---|
245 | */
|
---|
246 | public double cumulativeProbability(double x) {
|
---|
247 | if (x <= 0) {
|
---|
248 | return 0;
|
---|
249 | }
|
---|
250 | final double dev = FastMath.log(x) - scale;
|
---|
251 | if (FastMath.abs(dev) > 40 * shape) {
|
---|
252 | return dev < 0 ? 0.0d : 1.0d;
|
---|
253 | }
|
---|
254 | return 0.5 + 0.5 * Erf.erf(dev / (shape * SQRT2));
|
---|
255 | }
|
---|
256 |
|
---|
257 | /**
|
---|
258 | * {@inheritDoc}
|
---|
259 | *
|
---|
260 | * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
|
---|
261 | */
|
---|
262 | @Override@Deprecated
|
---|
263 | public double cumulativeProbability(double x0, double x1)
|
---|
264 | throws NumberIsTooLargeException {
|
---|
265 | return probability(x0, x1);
|
---|
266 | }
|
---|
267 |
|
---|
268 | /** {@inheritDoc} */
|
---|
269 | @Override
|
---|
270 | public double probability(double x0,
|
---|
271 | double x1)
|
---|
272 | throws NumberIsTooLargeException {
|
---|
273 | if (x0 > x1) {
|
---|
274 | throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
|
---|
275 | x0, x1, true);
|
---|
276 | }
|
---|
277 | if (x0 <= 0 || x1 <= 0) {
|
---|
278 | return super.probability(x0, x1);
|
---|
279 | }
|
---|
280 | final double denom = shape * SQRT2;
|
---|
281 | final double v0 = (FastMath.log(x0) - scale) / denom;
|
---|
282 | final double v1 = (FastMath.log(x1) - scale) / denom;
|
---|
283 | return 0.5 * Erf.erf(v0, v1);
|
---|
284 | }
|
---|
285 |
|
---|
286 | /** {@inheritDoc} */
|
---|
287 | @Override
|
---|
288 | protected double getSolverAbsoluteAccuracy() {
|
---|
289 | return solverAbsoluteAccuracy;
|
---|
290 | }
|
---|
291 |
|
---|
292 | /**
|
---|
293 | * {@inheritDoc}
|
---|
294 | *
|
---|
295 | * For scale {@code m} and shape {@code s}, the mean is
|
---|
296 | * {@code exp(m + s^2 / 2)}.
|
---|
297 | */
|
---|
298 | public double getNumericalMean() {
|
---|
299 | double s = shape;
|
---|
300 | return FastMath.exp(scale + (s * s / 2));
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * {@inheritDoc}
|
---|
305 | *
|
---|
306 | * For scale {@code m} and shape {@code s}, the variance is
|
---|
307 | * {@code (exp(s^2) - 1) * exp(2 * m + s^2)}.
|
---|
308 | */
|
---|
309 | public double getNumericalVariance() {
|
---|
310 | final double s = shape;
|
---|
311 | final double ss = s * s;
|
---|
312 | return (FastMath.expm1(ss)) * FastMath.exp(2 * scale + ss);
|
---|
313 | }
|
---|
314 |
|
---|
315 | /**
|
---|
316 | * {@inheritDoc}
|
---|
317 | *
|
---|
318 | * The lower bound of the support is always 0 no matter the parameters.
|
---|
319 | *
|
---|
320 | * @return lower bound of the support (always 0)
|
---|
321 | */
|
---|
322 | public double getSupportLowerBound() {
|
---|
323 | return 0;
|
---|
324 | }
|
---|
325 |
|
---|
326 | /**
|
---|
327 | * {@inheritDoc}
|
---|
328 | *
|
---|
329 | * The upper bound of the support is always positive infinity
|
---|
330 | * no matter the parameters.
|
---|
331 | *
|
---|
332 | * @return upper bound of the support (always
|
---|
333 | * {@code Double.POSITIVE_INFINITY})
|
---|
334 | */
|
---|
335 | public double getSupportUpperBound() {
|
---|
336 | return Double.POSITIVE_INFINITY;
|
---|
337 | }
|
---|
338 |
|
---|
339 | /** {@inheritDoc} */
|
---|
340 | public boolean isSupportLowerBoundInclusive() {
|
---|
341 | return true;
|
---|
342 | }
|
---|
343 |
|
---|
344 | /** {@inheritDoc} */
|
---|
345 | public boolean isSupportUpperBoundInclusive() {
|
---|
346 | return false;
|
---|
347 | }
|
---|
348 |
|
---|
349 | /**
|
---|
350 | * {@inheritDoc}
|
---|
351 | *
|
---|
352 | * The support of this distribution is connected.
|
---|
353 | *
|
---|
354 | * @return {@code true}
|
---|
355 | */
|
---|
356 | public boolean isSupportConnected() {
|
---|
357 | return true;
|
---|
358 | }
|
---|
359 |
|
---|
360 | /** {@inheritDoc} */
|
---|
361 | @Override
|
---|
362 | public double sample() {
|
---|
363 | final double n = random.nextGaussian();
|
---|
364 | return FastMath.exp(scale + shape * n);
|
---|
365 | }
|
---|
366 | }
|
---|