1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
22 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
23 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.CombinatoricsUtils;
|
---|
25 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
26 | import agents.anac.y2019.harddealer.math3.util.ResizableDoubleArray;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Implementation of the exponential distribution.
|
---|
30 | *
|
---|
31 | * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a>
|
---|
32 | * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a>
|
---|
33 | */
|
---|
34 | public class ExponentialDistribution extends AbstractRealDistribution {
|
---|
35 | /**
|
---|
36 | * Default inverse cumulative probability accuracy.
|
---|
37 | * @since 2.1
|
---|
38 | */
|
---|
39 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
40 | /** Serializable version identifier */
|
---|
41 | private static final long serialVersionUID = 2401296428283614780L;
|
---|
42 | /**
|
---|
43 | * Used when generating Exponential samples.
|
---|
44 | * Table containing the constants
|
---|
45 | * q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i!
|
---|
46 | * until the largest representable fraction below 1 is exceeded.
|
---|
47 | *
|
---|
48 | * Note that
|
---|
49 | * 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n!
|
---|
50 | * thus q_i -> 1 as i -> +inf,
|
---|
51 | * so the higher i, the closer to one we get (the series is not alternating).
|
---|
52 | *
|
---|
53 | * By trying, n = 16 in Java is enough to reach 1.0.
|
---|
54 | */
|
---|
55 | private static final double[] EXPONENTIAL_SA_QI;
|
---|
56 | /** The mean of this distribution. */
|
---|
57 | private final double mean;
|
---|
58 | /** The logarithm of the mean, stored to reduce computing time. **/
|
---|
59 | private final double logMean;
|
---|
60 | /** Inverse cumulative probability accuracy. */
|
---|
61 | private final double solverAbsoluteAccuracy;
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Initialize tables.
|
---|
65 | */
|
---|
66 | static {
|
---|
67 | /**
|
---|
68 | * Filling EXPONENTIAL_SA_QI table.
|
---|
69 | * Note that we don't want qi = 0 in the table.
|
---|
70 | */
|
---|
71 | final double LN2 = FastMath.log(2);
|
---|
72 | double qi = 0;
|
---|
73 | int i = 1;
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * ArithmeticUtils provides factorials up to 20, so let's use that
|
---|
77 | * limit together with Precision.EPSILON to generate the following
|
---|
78 | * code (a priori, we know that there will be 16 elements, but it is
|
---|
79 | * better to not hardcode it).
|
---|
80 | */
|
---|
81 | final ResizableDoubleArray ra = new ResizableDoubleArray(20);
|
---|
82 |
|
---|
83 | while (qi < 1) {
|
---|
84 | qi += FastMath.pow(LN2, i) / CombinatoricsUtils.factorial(i);
|
---|
85 | ra.addElement(qi);
|
---|
86 | ++i;
|
---|
87 | }
|
---|
88 |
|
---|
89 | EXPONENTIAL_SA_QI = ra.getElements();
|
---|
90 | }
|
---|
91 |
|
---|
92 | /**
|
---|
93 | * Create an exponential distribution with the given mean.
|
---|
94 | * <p>
|
---|
95 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
96 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
97 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
98 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
99 | * as random generator via the appropriate constructors to avoid the
|
---|
100 | * additional initialisation overhead.
|
---|
101 | *
|
---|
102 | * @param mean mean of this distribution.
|
---|
103 | */
|
---|
104 | public ExponentialDistribution(double mean) {
|
---|
105 | this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
106 | }
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Create an exponential distribution with the given mean.
|
---|
110 | * <p>
|
---|
111 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
112 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
113 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
114 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
115 | * as random generator via the appropriate constructors to avoid the
|
---|
116 | * additional initialisation overhead.
|
---|
117 | *
|
---|
118 | * @param mean Mean of this distribution.
|
---|
119 | * @param inverseCumAccuracy Maximum absolute error in inverse
|
---|
120 | * cumulative probability estimates (defaults to
|
---|
121 | * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
|
---|
122 | * @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
---|
123 | * @since 2.1
|
---|
124 | */
|
---|
125 | public ExponentialDistribution(double mean, double inverseCumAccuracy) {
|
---|
126 | this(new Well19937c(), mean, inverseCumAccuracy);
|
---|
127 | }
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Creates an exponential distribution.
|
---|
131 | *
|
---|
132 | * @param rng Random number generator.
|
---|
133 | * @param mean Mean of this distribution.
|
---|
134 | * @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
---|
135 | * @since 3.3
|
---|
136 | */
|
---|
137 | public ExponentialDistribution(RandomGenerator rng, double mean)
|
---|
138 | throws NotStrictlyPositiveException {
|
---|
139 | this(rng, mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
140 | }
|
---|
141 |
|
---|
142 | /**
|
---|
143 | * Creates an exponential distribution.
|
---|
144 | *
|
---|
145 | * @param rng Random number generator.
|
---|
146 | * @param mean Mean of this distribution.
|
---|
147 | * @param inverseCumAccuracy Maximum absolute error in inverse
|
---|
148 | * cumulative probability estimates (defaults to
|
---|
149 | * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
|
---|
150 | * @throws NotStrictlyPositiveException if {@code mean <= 0}.
|
---|
151 | * @since 3.1
|
---|
152 | */
|
---|
153 | public ExponentialDistribution(RandomGenerator rng,
|
---|
154 | double mean,
|
---|
155 | double inverseCumAccuracy)
|
---|
156 | throws NotStrictlyPositiveException {
|
---|
157 | super(rng);
|
---|
158 |
|
---|
159 | if (mean <= 0) {
|
---|
160 | throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
|
---|
161 | }
|
---|
162 | this.mean = mean;
|
---|
163 | logMean = FastMath.log(mean);
|
---|
164 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
165 | }
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * Access the mean.
|
---|
169 | *
|
---|
170 | * @return the mean.
|
---|
171 | */
|
---|
172 | public double getMean() {
|
---|
173 | return mean;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /** {@inheritDoc} */
|
---|
177 | public double density(double x) {
|
---|
178 | final double logDensity = logDensity(x);
|
---|
179 | return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
|
---|
180 | }
|
---|
181 |
|
---|
182 | /** {@inheritDoc} **/
|
---|
183 | @Override
|
---|
184 | public double logDensity(double x) {
|
---|
185 | if (x < 0) {
|
---|
186 | return Double.NEGATIVE_INFINITY;
|
---|
187 | }
|
---|
188 | return -x / mean - logMean;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /**
|
---|
192 | * {@inheritDoc}
|
---|
193 | *
|
---|
194 | * The implementation of this method is based on:
|
---|
195 | * <ul>
|
---|
196 | * <li>
|
---|
197 | * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">
|
---|
198 | * Exponential Distribution</a>, equation (1).</li>
|
---|
199 | * </ul>
|
---|
200 | */
|
---|
201 | public double cumulativeProbability(double x) {
|
---|
202 | double ret;
|
---|
203 | if (x <= 0.0) {
|
---|
204 | ret = 0.0;
|
---|
205 | } else {
|
---|
206 | ret = 1.0 - FastMath.exp(-x / mean);
|
---|
207 | }
|
---|
208 | return ret;
|
---|
209 | }
|
---|
210 |
|
---|
211 | /**
|
---|
212 | * {@inheritDoc}
|
---|
213 | *
|
---|
214 | * Returns {@code 0} when {@code p= = 0} and
|
---|
215 | * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
|
---|
216 | */
|
---|
217 | @Override
|
---|
218 | public double inverseCumulativeProbability(double p) throws OutOfRangeException {
|
---|
219 | double ret;
|
---|
220 |
|
---|
221 | if (p < 0.0 || p > 1.0) {
|
---|
222 | throw new OutOfRangeException(p, 0.0, 1.0);
|
---|
223 | } else if (p == 1.0) {
|
---|
224 | ret = Double.POSITIVE_INFINITY;
|
---|
225 | } else {
|
---|
226 | ret = -mean * FastMath.log(1.0 - p);
|
---|
227 | }
|
---|
228 |
|
---|
229 | return ret;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /**
|
---|
233 | * {@inheritDoc}
|
---|
234 | *
|
---|
235 | * <p><strong>Algorithm Description</strong>: this implementation uses the
|
---|
236 | * <a href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html">
|
---|
237 | * Inversion Method</a> to generate exponentially distributed random values
|
---|
238 | * from uniform deviates.</p>
|
---|
239 | *
|
---|
240 | * @return a random value.
|
---|
241 | * @since 2.2
|
---|
242 | */
|
---|
243 | @Override
|
---|
244 | public double sample() {
|
---|
245 | // Step 1:
|
---|
246 | double a = 0;
|
---|
247 | double u = random.nextDouble();
|
---|
248 |
|
---|
249 | // Step 2 and 3:
|
---|
250 | while (u < 0.5) {
|
---|
251 | a += EXPONENTIAL_SA_QI[0];
|
---|
252 | u *= 2;
|
---|
253 | }
|
---|
254 |
|
---|
255 | // Step 4 (now u >= 0.5):
|
---|
256 | u += u - 1;
|
---|
257 |
|
---|
258 | // Step 5:
|
---|
259 | if (u <= EXPONENTIAL_SA_QI[0]) {
|
---|
260 | return mean * (a + u);
|
---|
261 | }
|
---|
262 |
|
---|
263 | // Step 6:
|
---|
264 | int i = 0; // Should be 1, be we iterate before it in while using 0
|
---|
265 | double u2 = random.nextDouble();
|
---|
266 | double umin = u2;
|
---|
267 |
|
---|
268 | // Step 7 and 8:
|
---|
269 | do {
|
---|
270 | ++i;
|
---|
271 | u2 = random.nextDouble();
|
---|
272 |
|
---|
273 | if (u2 < umin) {
|
---|
274 | umin = u2;
|
---|
275 | }
|
---|
276 |
|
---|
277 | // Step 8:
|
---|
278 | } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1
|
---|
279 |
|
---|
280 | return mean * (a + umin * EXPONENTIAL_SA_QI[0]);
|
---|
281 | }
|
---|
282 |
|
---|
283 | /** {@inheritDoc} */
|
---|
284 | @Override
|
---|
285 | protected double getSolverAbsoluteAccuracy() {
|
---|
286 | return solverAbsoluteAccuracy;
|
---|
287 | }
|
---|
288 |
|
---|
289 | /**
|
---|
290 | * {@inheritDoc}
|
---|
291 | *
|
---|
292 | * For mean parameter {@code k}, the mean is {@code k}.
|
---|
293 | */
|
---|
294 | public double getNumericalMean() {
|
---|
295 | return getMean();
|
---|
296 | }
|
---|
297 |
|
---|
298 | /**
|
---|
299 | * {@inheritDoc}
|
---|
300 | *
|
---|
301 | * For mean parameter {@code k}, the variance is {@code k^2}.
|
---|
302 | */
|
---|
303 | public double getNumericalVariance() {
|
---|
304 | final double m = getMean();
|
---|
305 | return m * m;
|
---|
306 | }
|
---|
307 |
|
---|
308 | /**
|
---|
309 | * {@inheritDoc}
|
---|
310 | *
|
---|
311 | * The lower bound of the support is always 0 no matter the mean parameter.
|
---|
312 | *
|
---|
313 | * @return lower bound of the support (always 0)
|
---|
314 | */
|
---|
315 | public double getSupportLowerBound() {
|
---|
316 | return 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * {@inheritDoc}
|
---|
321 | *
|
---|
322 | * The upper bound of the support is always positive infinity
|
---|
323 | * no matter the mean parameter.
|
---|
324 | *
|
---|
325 | * @return upper bound of the support (always Double.POSITIVE_INFINITY)
|
---|
326 | */
|
---|
327 | public double getSupportUpperBound() {
|
---|
328 | return Double.POSITIVE_INFINITY;
|
---|
329 | }
|
---|
330 |
|
---|
331 | /** {@inheritDoc} */
|
---|
332 | public boolean isSupportLowerBoundInclusive() {
|
---|
333 | return true;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /** {@inheritDoc} */
|
---|
337 | public boolean isSupportUpperBoundInclusive() {
|
---|
338 | return false;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * {@inheritDoc}
|
---|
343 | *
|
---|
344 | * The support of this distribution is connected.
|
---|
345 | *
|
---|
346 | * @return {@code true}
|
---|
347 | */
|
---|
348 | public boolean isSupportConnected() {
|
---|
349 | return true;
|
---|
350 | }
|
---|
351 | }
|
---|