1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
18 |
|
---|
19 | import java.util.ArrayList;
|
---|
20 | import java.util.HashMap;
|
---|
21 | import java.util.List;
|
---|
22 | import java.util.Map;
|
---|
23 | import java.util.Map.Entry;
|
---|
24 |
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.MathArithmeticException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NotANumberException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.NotFiniteNumberException;
|
---|
29 | import agents.anac.y2019.harddealer.math3.exception.NotPositiveException;
|
---|
30 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
31 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
32 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
33 | import agents.anac.y2019.harddealer.math3.util.Pair;
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * <p>Implementation of a real-valued {@link EnumeratedDistribution}.
|
---|
37 | *
|
---|
38 | * <p>Values with zero-probability are allowed but they do not extend the
|
---|
39 | * support.<br/>
|
---|
40 | * Duplicate values are allowed. Probabilities of duplicate values are combined
|
---|
41 | * when computing cumulative probabilities and statistics.</p>
|
---|
42 | *
|
---|
43 | * @since 3.2
|
---|
44 | */
|
---|
45 | public class EnumeratedRealDistribution extends AbstractRealDistribution {
|
---|
46 |
|
---|
47 | /** Serializable UID. */
|
---|
48 | private static final long serialVersionUID = 20130308L;
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * {@link EnumeratedDistribution} (using the {@link Double} wrapper)
|
---|
52 | * used to generate the pmf.
|
---|
53 | */
|
---|
54 | protected final EnumeratedDistribution<Double> innerDistribution;
|
---|
55 |
|
---|
56 | /**
|
---|
57 | * Create a discrete real-valued distribution using the given probability mass function
|
---|
58 | * enumeration.
|
---|
59 | * <p>
|
---|
60 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
61 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
62 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
63 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
64 | * as random generator via the appropriate constructors to avoid the
|
---|
65 | * additional initialisation overhead.
|
---|
66 | *
|
---|
67 | * @param singletons array of random variable values.
|
---|
68 | * @param probabilities array of probabilities.
|
---|
69 | * @throws DimensionMismatchException if
|
---|
70 | * {@code singletons.length != probabilities.length}
|
---|
71 | * @throws NotPositiveException if any of the probabilities are negative.
|
---|
72 | * @throws NotFiniteNumberException if any of the probabilities are infinite.
|
---|
73 | * @throws NotANumberException if any of the probabilities are NaN.
|
---|
74 | * @throws MathArithmeticException all of the probabilities are 0.
|
---|
75 | */
|
---|
76 | public EnumeratedRealDistribution(final double[] singletons, final double[] probabilities)
|
---|
77 | throws DimensionMismatchException, NotPositiveException, MathArithmeticException,
|
---|
78 | NotFiniteNumberException, NotANumberException {
|
---|
79 | this(new Well19937c(), singletons, probabilities);
|
---|
80 | }
|
---|
81 |
|
---|
82 | /**
|
---|
83 | * Create a discrete real-valued distribution using the given random number generator
|
---|
84 | * and probability mass function enumeration.
|
---|
85 | *
|
---|
86 | * @param rng random number generator.
|
---|
87 | * @param singletons array of random variable values.
|
---|
88 | * @param probabilities array of probabilities.
|
---|
89 | * @throws DimensionMismatchException if
|
---|
90 | * {@code singletons.length != probabilities.length}
|
---|
91 | * @throws NotPositiveException if any of the probabilities are negative.
|
---|
92 | * @throws NotFiniteNumberException if any of the probabilities are infinite.
|
---|
93 | * @throws NotANumberException if any of the probabilities are NaN.
|
---|
94 | * @throws MathArithmeticException all of the probabilities are 0.
|
---|
95 | */
|
---|
96 | public EnumeratedRealDistribution(final RandomGenerator rng,
|
---|
97 | final double[] singletons, final double[] probabilities)
|
---|
98 | throws DimensionMismatchException, NotPositiveException, MathArithmeticException,
|
---|
99 | NotFiniteNumberException, NotANumberException {
|
---|
100 | super(rng);
|
---|
101 |
|
---|
102 | innerDistribution = new EnumeratedDistribution<Double>(
|
---|
103 | rng, createDistribution(singletons, probabilities));
|
---|
104 | }
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Create a discrete real-valued distribution from the input data. Values are assigned
|
---|
108 | * mass based on their frequency.
|
---|
109 | *
|
---|
110 | * @param rng random number generator used for sampling
|
---|
111 | * @param data input dataset
|
---|
112 | * @since 3.6
|
---|
113 | */
|
---|
114 | public EnumeratedRealDistribution(final RandomGenerator rng, final double[] data) {
|
---|
115 | super(rng);
|
---|
116 | final Map<Double, Integer> dataMap = new HashMap<Double, Integer>();
|
---|
117 | for (double value : data) {
|
---|
118 | Integer count = dataMap.get(value);
|
---|
119 | if (count == null) {
|
---|
120 | count = 0;
|
---|
121 | }
|
---|
122 | dataMap.put(value, ++count);
|
---|
123 | }
|
---|
124 | final int massPoints = dataMap.size();
|
---|
125 | final double denom = data.length;
|
---|
126 | final double[] values = new double[massPoints];
|
---|
127 | final double[] probabilities = new double[massPoints];
|
---|
128 | int index = 0;
|
---|
129 | for (Entry<Double, Integer> entry : dataMap.entrySet()) {
|
---|
130 | values[index] = entry.getKey();
|
---|
131 | probabilities[index] = entry.getValue().intValue() / denom;
|
---|
132 | index++;
|
---|
133 | }
|
---|
134 | innerDistribution = new EnumeratedDistribution<Double>(rng, createDistribution(values, probabilities));
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Create a discrete real-valued distribution from the input data. Values are assigned
|
---|
139 | * mass based on their frequency. For example, [0,1,1,2] as input creates a distribution
|
---|
140 | * with values 0, 1 and 2 having probability masses 0.25, 0.5 and 0.25 respectively,
|
---|
141 | *
|
---|
142 | * @param data input dataset
|
---|
143 | * @since 3.6
|
---|
144 | */
|
---|
145 | public EnumeratedRealDistribution(final double[] data) {
|
---|
146 | this(new Well19937c(), data);
|
---|
147 | }
|
---|
148 | /**
|
---|
149 | * Create the list of Pairs representing the distribution from singletons and probabilities.
|
---|
150 | *
|
---|
151 | * @param singletons values
|
---|
152 | * @param probabilities probabilities
|
---|
153 | * @return list of value/probability pairs
|
---|
154 | */
|
---|
155 | private static List<Pair<Double, Double>> createDistribution(double[] singletons, double[] probabilities) {
|
---|
156 | if (singletons.length != probabilities.length) {
|
---|
157 | throw new DimensionMismatchException(probabilities.length, singletons.length);
|
---|
158 | }
|
---|
159 |
|
---|
160 | final List<Pair<Double, Double>> samples = new ArrayList<Pair<Double, Double>>(singletons.length);
|
---|
161 |
|
---|
162 | for (int i = 0; i < singletons.length; i++) {
|
---|
163 | samples.add(new Pair<Double, Double>(singletons[i], probabilities[i]));
|
---|
164 | }
|
---|
165 | return samples;
|
---|
166 |
|
---|
167 | }
|
---|
168 |
|
---|
169 | /**
|
---|
170 | * {@inheritDoc}
|
---|
171 | */
|
---|
172 | @Override
|
---|
173 | public double probability(final double x) {
|
---|
174 | return innerDistribution.probability(x);
|
---|
175 | }
|
---|
176 |
|
---|
177 | /**
|
---|
178 | * For a random variable {@code X} whose values are distributed according to
|
---|
179 | * this distribution, this method returns {@code P(X = x)}. In other words,
|
---|
180 | * this method represents the probability mass function (PMF) for the
|
---|
181 | * distribution.
|
---|
182 | *
|
---|
183 | * @param x the point at which the PMF is evaluated
|
---|
184 | * @return the value of the probability mass function at point {@code x}
|
---|
185 | */
|
---|
186 | public double density(final double x) {
|
---|
187 | return probability(x);
|
---|
188 | }
|
---|
189 |
|
---|
190 | /**
|
---|
191 | * {@inheritDoc}
|
---|
192 | */
|
---|
193 | public double cumulativeProbability(final double x) {
|
---|
194 | double probability = 0;
|
---|
195 |
|
---|
196 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
197 | if (sample.getKey() <= x) {
|
---|
198 | probability += sample.getValue();
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | return probability;
|
---|
203 | }
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * {@inheritDoc}
|
---|
207 | */
|
---|
208 | @Override
|
---|
209 | public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
|
---|
210 | if (p < 0.0 || p > 1.0) {
|
---|
211 | throw new OutOfRangeException(p, 0, 1);
|
---|
212 | }
|
---|
213 |
|
---|
214 | double probability = 0;
|
---|
215 | double x = getSupportLowerBound();
|
---|
216 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
217 | if (sample.getValue() == 0.0) {
|
---|
218 | continue;
|
---|
219 | }
|
---|
220 |
|
---|
221 | probability += sample.getValue();
|
---|
222 | x = sample.getKey();
|
---|
223 |
|
---|
224 | if (probability >= p) {
|
---|
225 | break;
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | return x;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /**
|
---|
233 | * {@inheritDoc}
|
---|
234 | *
|
---|
235 | * @return {@code sum(singletons[i] * probabilities[i])}
|
---|
236 | */
|
---|
237 | public double getNumericalMean() {
|
---|
238 | double mean = 0;
|
---|
239 |
|
---|
240 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
241 | mean += sample.getValue() * sample.getKey();
|
---|
242 | }
|
---|
243 |
|
---|
244 | return mean;
|
---|
245 | }
|
---|
246 |
|
---|
247 | /**
|
---|
248 | * {@inheritDoc}
|
---|
249 | *
|
---|
250 | * @return {@code sum((singletons[i] - mean) ^ 2 * probabilities[i])}
|
---|
251 | */
|
---|
252 | public double getNumericalVariance() {
|
---|
253 | double mean = 0;
|
---|
254 | double meanOfSquares = 0;
|
---|
255 |
|
---|
256 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
257 | mean += sample.getValue() * sample.getKey();
|
---|
258 | meanOfSquares += sample.getValue() * sample.getKey() * sample.getKey();
|
---|
259 | }
|
---|
260 |
|
---|
261 | return meanOfSquares - mean * mean;
|
---|
262 | }
|
---|
263 |
|
---|
264 | /**
|
---|
265 | * {@inheritDoc}
|
---|
266 | *
|
---|
267 | * Returns the lowest value with non-zero probability.
|
---|
268 | *
|
---|
269 | * @return the lowest value with non-zero probability.
|
---|
270 | */
|
---|
271 | public double getSupportLowerBound() {
|
---|
272 | double min = Double.POSITIVE_INFINITY;
|
---|
273 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
274 | if (sample.getKey() < min && sample.getValue() > 0) {
|
---|
275 | min = sample.getKey();
|
---|
276 | }
|
---|
277 | }
|
---|
278 |
|
---|
279 | return min;
|
---|
280 | }
|
---|
281 |
|
---|
282 | /**
|
---|
283 | * {@inheritDoc}
|
---|
284 | *
|
---|
285 | * Returns the highest value with non-zero probability.
|
---|
286 | *
|
---|
287 | * @return the highest value with non-zero probability.
|
---|
288 | */
|
---|
289 | public double getSupportUpperBound() {
|
---|
290 | double max = Double.NEGATIVE_INFINITY;
|
---|
291 | for (final Pair<Double, Double> sample : innerDistribution.getPmf()) {
|
---|
292 | if (sample.getKey() > max && sample.getValue() > 0) {
|
---|
293 | max = sample.getKey();
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | return max;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /**
|
---|
301 | * {@inheritDoc}
|
---|
302 | *
|
---|
303 | * The support of this distribution includes the lower bound.
|
---|
304 | *
|
---|
305 | * @return {@code true}
|
---|
306 | */
|
---|
307 | public boolean isSupportLowerBoundInclusive() {
|
---|
308 | return true;
|
---|
309 | }
|
---|
310 |
|
---|
311 | /**
|
---|
312 | * {@inheritDoc}
|
---|
313 | *
|
---|
314 | * The support of this distribution includes the upper bound.
|
---|
315 | *
|
---|
316 | * @return {@code true}
|
---|
317 | */
|
---|
318 | public boolean isSupportUpperBoundInclusive() {
|
---|
319 | return true;
|
---|
320 | }
|
---|
321 |
|
---|
322 | /**
|
---|
323 | * {@inheritDoc}
|
---|
324 | *
|
---|
325 | * The support of this distribution is connected.
|
---|
326 | *
|
---|
327 | * @return {@code true}
|
---|
328 | */
|
---|
329 | public boolean isSupportConnected() {
|
---|
330 | return true;
|
---|
331 | }
|
---|
332 |
|
---|
333 | /**
|
---|
334 | * {@inheritDoc}
|
---|
335 | */
|
---|
336 | @Override
|
---|
337 | public double sample() {
|
---|
338 | return innerDistribution.sample();
|
---|
339 | }
|
---|
340 | }
|
---|