1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.complex;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
22 | import agents.anac.y2019.harddealer.math3.util.MathUtils;
|
---|
23 | import agents.anac.y2019.harddealer.math3.util.Precision;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.ZeroException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">
|
---|
30 | * quaternions</a> (Hamilton's hypercomplex numbers).
|
---|
31 | * <br/>
|
---|
32 | * Instance of this class are guaranteed to be immutable.
|
---|
33 | *
|
---|
34 | * @since 3.1
|
---|
35 | */
|
---|
36 | public final class Quaternion implements Serializable {
|
---|
37 | /** Identity quaternion. */
|
---|
38 | public static final Quaternion IDENTITY = new Quaternion(1, 0, 0, 0);
|
---|
39 | /** Zero quaternion. */
|
---|
40 | public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0);
|
---|
41 | /** i */
|
---|
42 | public static final Quaternion I = new Quaternion(0, 1, 0, 0);
|
---|
43 | /** j */
|
---|
44 | public static final Quaternion J = new Quaternion(0, 0, 1, 0);
|
---|
45 | /** k */
|
---|
46 | public static final Quaternion K = new Quaternion(0, 0, 0, 1);
|
---|
47 |
|
---|
48 | /** Serializable version identifier. */
|
---|
49 | private static final long serialVersionUID = 20092012L;
|
---|
50 |
|
---|
51 | /** First component (scalar part). */
|
---|
52 | private final double q0;
|
---|
53 | /** Second component (first vector part). */
|
---|
54 | private final double q1;
|
---|
55 | /** Third component (second vector part). */
|
---|
56 | private final double q2;
|
---|
57 | /** Fourth component (third vector part). */
|
---|
58 | private final double q3;
|
---|
59 |
|
---|
60 | /**
|
---|
61 | * Builds a quaternion from its components.
|
---|
62 | *
|
---|
63 | * @param a Scalar component.
|
---|
64 | * @param b First vector component.
|
---|
65 | * @param c Second vector component.
|
---|
66 | * @param d Third vector component.
|
---|
67 | */
|
---|
68 | public Quaternion(final double a,
|
---|
69 | final double b,
|
---|
70 | final double c,
|
---|
71 | final double d) {
|
---|
72 | this.q0 = a;
|
---|
73 | this.q1 = b;
|
---|
74 | this.q2 = c;
|
---|
75 | this.q3 = d;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Builds a quaternion from scalar and vector parts.
|
---|
80 | *
|
---|
81 | * @param scalar Scalar part of the quaternion.
|
---|
82 | * @param v Components of the vector part of the quaternion.
|
---|
83 | *
|
---|
84 | * @throws DimensionMismatchException if the array length is not 3.
|
---|
85 | */
|
---|
86 | public Quaternion(final double scalar,
|
---|
87 | final double[] v)
|
---|
88 | throws DimensionMismatchException {
|
---|
89 | if (v.length != 3) {
|
---|
90 | throw new DimensionMismatchException(v.length, 3);
|
---|
91 | }
|
---|
92 | this.q0 = scalar;
|
---|
93 | this.q1 = v[0];
|
---|
94 | this.q2 = v[1];
|
---|
95 | this.q3 = v[2];
|
---|
96 | }
|
---|
97 |
|
---|
98 | /**
|
---|
99 | * Builds a pure quaternion from a vector (assuming that the scalar
|
---|
100 | * part is zero).
|
---|
101 | *
|
---|
102 | * @param v Components of the vector part of the pure quaternion.
|
---|
103 | */
|
---|
104 | public Quaternion(final double[] v) {
|
---|
105 | this(0, v);
|
---|
106 | }
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Returns the conjugate quaternion of the instance.
|
---|
110 | *
|
---|
111 | * @return the conjugate quaternion
|
---|
112 | */
|
---|
113 | public Quaternion getConjugate() {
|
---|
114 | return new Quaternion(q0, -q1, -q2, -q3);
|
---|
115 | }
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * Returns the Hamilton product of two quaternions.
|
---|
119 | *
|
---|
120 | * @param q1 First quaternion.
|
---|
121 | * @param q2 Second quaternion.
|
---|
122 | * @return the product {@code q1} and {@code q2}, in that order.
|
---|
123 | */
|
---|
124 | public static Quaternion multiply(final Quaternion q1, final Quaternion q2) {
|
---|
125 | // Components of the first quaternion.
|
---|
126 | final double q1a = q1.getQ0();
|
---|
127 | final double q1b = q1.getQ1();
|
---|
128 | final double q1c = q1.getQ2();
|
---|
129 | final double q1d = q1.getQ3();
|
---|
130 |
|
---|
131 | // Components of the second quaternion.
|
---|
132 | final double q2a = q2.getQ0();
|
---|
133 | final double q2b = q2.getQ1();
|
---|
134 | final double q2c = q2.getQ2();
|
---|
135 | final double q2d = q2.getQ3();
|
---|
136 |
|
---|
137 | // Components of the product.
|
---|
138 | final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
|
---|
139 | final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
|
---|
140 | final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
|
---|
141 | final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
|
---|
142 |
|
---|
143 | return new Quaternion(w, x, y, z);
|
---|
144 | }
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * Returns the Hamilton product of the instance by a quaternion.
|
---|
148 | *
|
---|
149 | * @param q Quaternion.
|
---|
150 | * @return the product of this instance with {@code q}, in that order.
|
---|
151 | */
|
---|
152 | public Quaternion multiply(final Quaternion q) {
|
---|
153 | return multiply(this, q);
|
---|
154 | }
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Computes the sum of two quaternions.
|
---|
158 | *
|
---|
159 | * @param q1 Quaternion.
|
---|
160 | * @param q2 Quaternion.
|
---|
161 | * @return the sum of {@code q1} and {@code q2}.
|
---|
162 | */
|
---|
163 | public static Quaternion add(final Quaternion q1,
|
---|
164 | final Quaternion q2) {
|
---|
165 | return new Quaternion(q1.getQ0() + q2.getQ0(),
|
---|
166 | q1.getQ1() + q2.getQ1(),
|
---|
167 | q1.getQ2() + q2.getQ2(),
|
---|
168 | q1.getQ3() + q2.getQ3());
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Computes the sum of the instance and another quaternion.
|
---|
173 | *
|
---|
174 | * @param q Quaternion.
|
---|
175 | * @return the sum of this instance and {@code q}
|
---|
176 | */
|
---|
177 | public Quaternion add(final Quaternion q) {
|
---|
178 | return add(this, q);
|
---|
179 | }
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Subtracts two quaternions.
|
---|
183 | *
|
---|
184 | * @param q1 First Quaternion.
|
---|
185 | * @param q2 Second quaternion.
|
---|
186 | * @return the difference between {@code q1} and {@code q2}.
|
---|
187 | */
|
---|
188 | public static Quaternion subtract(final Quaternion q1,
|
---|
189 | final Quaternion q2) {
|
---|
190 | return new Quaternion(q1.getQ0() - q2.getQ0(),
|
---|
191 | q1.getQ1() - q2.getQ1(),
|
---|
192 | q1.getQ2() - q2.getQ2(),
|
---|
193 | q1.getQ3() - q2.getQ3());
|
---|
194 | }
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * Subtracts a quaternion from the instance.
|
---|
198 | *
|
---|
199 | * @param q Quaternion.
|
---|
200 | * @return the difference between this instance and {@code q}.
|
---|
201 | */
|
---|
202 | public Quaternion subtract(final Quaternion q) {
|
---|
203 | return subtract(this, q);
|
---|
204 | }
|
---|
205 |
|
---|
206 | /**
|
---|
207 | * Computes the dot-product of two quaternions.
|
---|
208 | *
|
---|
209 | * @param q1 Quaternion.
|
---|
210 | * @param q2 Quaternion.
|
---|
211 | * @return the dot product of {@code q1} and {@code q2}.
|
---|
212 | */
|
---|
213 | public static double dotProduct(final Quaternion q1,
|
---|
214 | final Quaternion q2) {
|
---|
215 | return q1.getQ0() * q2.getQ0() +
|
---|
216 | q1.getQ1() * q2.getQ1() +
|
---|
217 | q1.getQ2() * q2.getQ2() +
|
---|
218 | q1.getQ3() * q2.getQ3();
|
---|
219 | }
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Computes the dot-product of the instance by a quaternion.
|
---|
223 | *
|
---|
224 | * @param q Quaternion.
|
---|
225 | * @return the dot product of this instance and {@code q}.
|
---|
226 | */
|
---|
227 | public double dotProduct(final Quaternion q) {
|
---|
228 | return dotProduct(this, q);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /**
|
---|
232 | * Computes the norm of the quaternion.
|
---|
233 | *
|
---|
234 | * @return the norm.
|
---|
235 | */
|
---|
236 | public double getNorm() {
|
---|
237 | return FastMath.sqrt(q0 * q0 +
|
---|
238 | q1 * q1 +
|
---|
239 | q2 * q2 +
|
---|
240 | q3 * q3);
|
---|
241 | }
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Computes the normalized quaternion (the versor of the instance).
|
---|
245 | * The norm of the quaternion must not be zero.
|
---|
246 | *
|
---|
247 | * @return a normalized quaternion.
|
---|
248 | * @throws ZeroException if the norm of the quaternion is zero.
|
---|
249 | */
|
---|
250 | public Quaternion normalize() {
|
---|
251 | final double norm = getNorm();
|
---|
252 |
|
---|
253 | if (norm < Precision.SAFE_MIN) {
|
---|
254 | throw new ZeroException(LocalizedFormats.NORM, norm);
|
---|
255 | }
|
---|
256 |
|
---|
257 | return new Quaternion(q0 / norm,
|
---|
258 | q1 / norm,
|
---|
259 | q2 / norm,
|
---|
260 | q3 / norm);
|
---|
261 | }
|
---|
262 |
|
---|
263 | /**
|
---|
264 | * {@inheritDoc}
|
---|
265 | */
|
---|
266 | @Override
|
---|
267 | public boolean equals(Object other) {
|
---|
268 | if (this == other) {
|
---|
269 | return true;
|
---|
270 | }
|
---|
271 | if (other instanceof Quaternion) {
|
---|
272 | final Quaternion q = (Quaternion) other;
|
---|
273 | return q0 == q.getQ0() &&
|
---|
274 | q1 == q.getQ1() &&
|
---|
275 | q2 == q.getQ2() &&
|
---|
276 | q3 == q.getQ3();
|
---|
277 | }
|
---|
278 |
|
---|
279 | return false;
|
---|
280 | }
|
---|
281 |
|
---|
282 | /**
|
---|
283 | * {@inheritDoc}
|
---|
284 | */
|
---|
285 | @Override
|
---|
286 | public int hashCode() {
|
---|
287 | // "Effective Java" (second edition, p. 47).
|
---|
288 | int result = 17;
|
---|
289 | for (double comp : new double[] { q0, q1, q2, q3 }) {
|
---|
290 | final int c = MathUtils.hash(comp);
|
---|
291 | result = 31 * result + c;
|
---|
292 | }
|
---|
293 | return result;
|
---|
294 | }
|
---|
295 |
|
---|
296 | /**
|
---|
297 | * Checks whether this instance is equal to another quaternion
|
---|
298 | * within a given tolerance.
|
---|
299 | *
|
---|
300 | * @param q Quaternion with which to compare the current quaternion.
|
---|
301 | * @param eps Tolerance.
|
---|
302 | * @return {@code true} if the each of the components are equal
|
---|
303 | * within the allowed absolute error.
|
---|
304 | */
|
---|
305 | public boolean equals(final Quaternion q,
|
---|
306 | final double eps) {
|
---|
307 | return Precision.equals(q0, q.getQ0(), eps) &&
|
---|
308 | Precision.equals(q1, q.getQ1(), eps) &&
|
---|
309 | Precision.equals(q2, q.getQ2(), eps) &&
|
---|
310 | Precision.equals(q3, q.getQ3(), eps);
|
---|
311 | }
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * Checks whether the instance is a unit quaternion within a given
|
---|
315 | * tolerance.
|
---|
316 | *
|
---|
317 | * @param eps Tolerance (absolute error).
|
---|
318 | * @return {@code true} if the norm is 1 within the given tolerance,
|
---|
319 | * {@code false} otherwise
|
---|
320 | */
|
---|
321 | public boolean isUnitQuaternion(double eps) {
|
---|
322 | return Precision.equals(getNorm(), 1d, eps);
|
---|
323 | }
|
---|
324 |
|
---|
325 | /**
|
---|
326 | * Checks whether the instance is a pure quaternion within a given
|
---|
327 | * tolerance.
|
---|
328 | *
|
---|
329 | * @param eps Tolerance (absolute error).
|
---|
330 | * @return {@code true} if the scalar part of the quaternion is zero.
|
---|
331 | */
|
---|
332 | public boolean isPureQuaternion(double eps) {
|
---|
333 | return FastMath.abs(getQ0()) <= eps;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /**
|
---|
337 | * Returns the polar form of the quaternion.
|
---|
338 | *
|
---|
339 | * @return the unit quaternion with positive scalar part.
|
---|
340 | */
|
---|
341 | public Quaternion getPositivePolarForm() {
|
---|
342 | if (getQ0() < 0) {
|
---|
343 | final Quaternion unitQ = normalize();
|
---|
344 | // The quaternion of rotation (normalized quaternion) q and -q
|
---|
345 | // are equivalent (i.e. represent the same rotation).
|
---|
346 | return new Quaternion(-unitQ.getQ0(),
|
---|
347 | -unitQ.getQ1(),
|
---|
348 | -unitQ.getQ2(),
|
---|
349 | -unitQ.getQ3());
|
---|
350 | } else {
|
---|
351 | return this.normalize();
|
---|
352 | }
|
---|
353 | }
|
---|
354 |
|
---|
355 | /**
|
---|
356 | * Returns the inverse of this instance.
|
---|
357 | * The norm of the quaternion must not be zero.
|
---|
358 | *
|
---|
359 | * @return the inverse.
|
---|
360 | * @throws ZeroException if the norm (squared) of the quaternion is zero.
|
---|
361 | */
|
---|
362 | public Quaternion getInverse() {
|
---|
363 | final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3;
|
---|
364 | if (squareNorm < Precision.SAFE_MIN) {
|
---|
365 | throw new ZeroException(LocalizedFormats.NORM, squareNorm);
|
---|
366 | }
|
---|
367 |
|
---|
368 | return new Quaternion(q0 / squareNorm,
|
---|
369 | -q1 / squareNorm,
|
---|
370 | -q2 / squareNorm,
|
---|
371 | -q3 / squareNorm);
|
---|
372 | }
|
---|
373 |
|
---|
374 | /**
|
---|
375 | * Gets the first component of the quaternion (scalar part).
|
---|
376 | *
|
---|
377 | * @return the scalar part.
|
---|
378 | */
|
---|
379 | public double getQ0() {
|
---|
380 | return q0;
|
---|
381 | }
|
---|
382 |
|
---|
383 | /**
|
---|
384 | * Gets the second component of the quaternion (first component
|
---|
385 | * of the vector part).
|
---|
386 | *
|
---|
387 | * @return the first component of the vector part.
|
---|
388 | */
|
---|
389 | public double getQ1() {
|
---|
390 | return q1;
|
---|
391 | }
|
---|
392 |
|
---|
393 | /**
|
---|
394 | * Gets the third component of the quaternion (second component
|
---|
395 | * of the vector part).
|
---|
396 | *
|
---|
397 | * @return the second component of the vector part.
|
---|
398 | */
|
---|
399 | public double getQ2() {
|
---|
400 | return q2;
|
---|
401 | }
|
---|
402 |
|
---|
403 | /**
|
---|
404 | * Gets the fourth component of the quaternion (third component
|
---|
405 | * of the vector part).
|
---|
406 | *
|
---|
407 | * @return the third component of the vector part.
|
---|
408 | */
|
---|
409 | public double getQ3() {
|
---|
410 | return q3;
|
---|
411 | }
|
---|
412 |
|
---|
413 | /**
|
---|
414 | * Gets the scalar part of the quaternion.
|
---|
415 | *
|
---|
416 | * @return the scalar part.
|
---|
417 | * @see #getQ0()
|
---|
418 | */
|
---|
419 | public double getScalarPart() {
|
---|
420 | return getQ0();
|
---|
421 | }
|
---|
422 |
|
---|
423 | /**
|
---|
424 | * Gets the three components of the vector part of the quaternion.
|
---|
425 | *
|
---|
426 | * @return the vector part.
|
---|
427 | * @see #getQ1()
|
---|
428 | * @see #getQ2()
|
---|
429 | * @see #getQ3()
|
---|
430 | */
|
---|
431 | public double[] getVectorPart() {
|
---|
432 | return new double[] { getQ1(), getQ2(), getQ3() };
|
---|
433 | }
|
---|
434 |
|
---|
435 | /**
|
---|
436 | * Multiplies the instance by a scalar.
|
---|
437 | *
|
---|
438 | * @param alpha Scalar factor.
|
---|
439 | * @return a scaled quaternion.
|
---|
440 | */
|
---|
441 | public Quaternion multiply(final double alpha) {
|
---|
442 | return new Quaternion(alpha * q0,
|
---|
443 | alpha * q1,
|
---|
444 | alpha * q2,
|
---|
445 | alpha * q3);
|
---|
446 | }
|
---|
447 |
|
---|
448 | /**
|
---|
449 | * {@inheritDoc}
|
---|
450 | */
|
---|
451 | @Override
|
---|
452 | public String toString() {
|
---|
453 | final String sp = " ";
|
---|
454 | final StringBuilder s = new StringBuilder();
|
---|
455 | s.append("[")
|
---|
456 | .append(q0).append(sp)
|
---|
457 | .append(q1).append(sp)
|
---|
458 | .append(q2).append(sp)
|
---|
459 | .append(q3)
|
---|
460 | .append("]");
|
---|
461 |
|
---|
462 | return s.toString();
|
---|
463 | }
|
---|
464 | }
|
---|