1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.analysis.solvers;
|
---|
18 |
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NoBracketingException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.TooManyEvaluationsException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.Precision;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * This class implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
|
---|
28 | * Brent algorithm</a> for finding zeros of real univariate functions.
|
---|
29 | * The function should be continuous but not necessarily smooth.
|
---|
30 | * The {@code solve} method returns a zero {@code x} of the function {@code f}
|
---|
31 | * in the given interval {@code [a, b]} to within a tolerance
|
---|
32 | * {@code 2 eps abs(x) + t} where {@code eps} is the relative accuracy and
|
---|
33 | * {@code t} is the absolute accuracy.
|
---|
34 | * <p>The given interval must bracket the root.</p>
|
---|
35 | * <p>
|
---|
36 | * The reference implementation is given in chapter 4 of
|
---|
37 | * <blockquote>
|
---|
38 | * <b>Algorithms for Minimization Without Derivatives</b>,
|
---|
39 | * <em>Richard P. Brent</em>,
|
---|
40 | * Dover, 2002
|
---|
41 | * </blockquote>
|
---|
42 | *
|
---|
43 | * @see BaseAbstractUnivariateSolver
|
---|
44 | */
|
---|
45 | public class BrentSolver extends AbstractUnivariateSolver {
|
---|
46 |
|
---|
47 | /** Default absolute accuracy. */
|
---|
48 | private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * Construct a solver with default absolute accuracy (1e-6).
|
---|
52 | */
|
---|
53 | public BrentSolver() {
|
---|
54 | this(DEFAULT_ABSOLUTE_ACCURACY);
|
---|
55 | }
|
---|
56 | /**
|
---|
57 | * Construct a solver.
|
---|
58 | *
|
---|
59 | * @param absoluteAccuracy Absolute accuracy.
|
---|
60 | */
|
---|
61 | public BrentSolver(double absoluteAccuracy) {
|
---|
62 | super(absoluteAccuracy);
|
---|
63 | }
|
---|
64 | /**
|
---|
65 | * Construct a solver.
|
---|
66 | *
|
---|
67 | * @param relativeAccuracy Relative accuracy.
|
---|
68 | * @param absoluteAccuracy Absolute accuracy.
|
---|
69 | */
|
---|
70 | public BrentSolver(double relativeAccuracy,
|
---|
71 | double absoluteAccuracy) {
|
---|
72 | super(relativeAccuracy, absoluteAccuracy);
|
---|
73 | }
|
---|
74 | /**
|
---|
75 | * Construct a solver.
|
---|
76 | *
|
---|
77 | * @param relativeAccuracy Relative accuracy.
|
---|
78 | * @param absoluteAccuracy Absolute accuracy.
|
---|
79 | * @param functionValueAccuracy Function value accuracy.
|
---|
80 | *
|
---|
81 | * @see BaseAbstractUnivariateSolver#BaseAbstractUnivariateSolver(double,double,double)
|
---|
82 | */
|
---|
83 | public BrentSolver(double relativeAccuracy,
|
---|
84 | double absoluteAccuracy,
|
---|
85 | double functionValueAccuracy) {
|
---|
86 | super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy);
|
---|
87 | }
|
---|
88 |
|
---|
89 | /**
|
---|
90 | * {@inheritDoc}
|
---|
91 | */
|
---|
92 | @Override
|
---|
93 | protected double doSolve()
|
---|
94 | throws NoBracketingException,
|
---|
95 | TooManyEvaluationsException,
|
---|
96 | NumberIsTooLargeException {
|
---|
97 | double min = getMin();
|
---|
98 | double max = getMax();
|
---|
99 | final double initial = getStartValue();
|
---|
100 | final double functionValueAccuracy = getFunctionValueAccuracy();
|
---|
101 |
|
---|
102 | verifySequence(min, initial, max);
|
---|
103 |
|
---|
104 | // Return the initial guess if it is good enough.
|
---|
105 | double yInitial = computeObjectiveValue(initial);
|
---|
106 | if (FastMath.abs(yInitial) <= functionValueAccuracy) {
|
---|
107 | return initial;
|
---|
108 | }
|
---|
109 |
|
---|
110 | // Return the first endpoint if it is good enough.
|
---|
111 | double yMin = computeObjectiveValue(min);
|
---|
112 | if (FastMath.abs(yMin) <= functionValueAccuracy) {
|
---|
113 | return min;
|
---|
114 | }
|
---|
115 |
|
---|
116 | // Reduce interval if min and initial bracket the root.
|
---|
117 | if (yInitial * yMin < 0) {
|
---|
118 | return brent(min, initial, yMin, yInitial);
|
---|
119 | }
|
---|
120 |
|
---|
121 | // Return the second endpoint if it is good enough.
|
---|
122 | double yMax = computeObjectiveValue(max);
|
---|
123 | if (FastMath.abs(yMax) <= functionValueAccuracy) {
|
---|
124 | return max;
|
---|
125 | }
|
---|
126 |
|
---|
127 | // Reduce interval if initial and max bracket the root.
|
---|
128 | if (yInitial * yMax < 0) {
|
---|
129 | return brent(initial, max, yInitial, yMax);
|
---|
130 | }
|
---|
131 |
|
---|
132 | throw new NoBracketingException(min, max, yMin, yMax);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * Search for a zero inside the provided interval.
|
---|
137 | * This implementation is based on the algorithm described at page 58 of
|
---|
138 | * the book
|
---|
139 | * <blockquote>
|
---|
140 | * <b>Algorithms for Minimization Without Derivatives</b>,
|
---|
141 | * <it>Richard P. Brent</it>,
|
---|
142 | * Dover 0-486-41998-3
|
---|
143 | * </blockquote>
|
---|
144 | *
|
---|
145 | * @param lo Lower bound of the search interval.
|
---|
146 | * @param hi Higher bound of the search interval.
|
---|
147 | * @param fLo Function value at the lower bound of the search interval.
|
---|
148 | * @param fHi Function value at the higher bound of the search interval.
|
---|
149 | * @return the value where the function is zero.
|
---|
150 | */
|
---|
151 | private double brent(double lo, double hi,
|
---|
152 | double fLo, double fHi) {
|
---|
153 | double a = lo;
|
---|
154 | double fa = fLo;
|
---|
155 | double b = hi;
|
---|
156 | double fb = fHi;
|
---|
157 | double c = a;
|
---|
158 | double fc = fa;
|
---|
159 | double d = b - a;
|
---|
160 | double e = d;
|
---|
161 |
|
---|
162 | final double t = getAbsoluteAccuracy();
|
---|
163 | final double eps = getRelativeAccuracy();
|
---|
164 |
|
---|
165 | while (true) {
|
---|
166 | if (FastMath.abs(fc) < FastMath.abs(fb)) {
|
---|
167 | a = b;
|
---|
168 | b = c;
|
---|
169 | c = a;
|
---|
170 | fa = fb;
|
---|
171 | fb = fc;
|
---|
172 | fc = fa;
|
---|
173 | }
|
---|
174 |
|
---|
175 | final double tol = 2 * eps * FastMath.abs(b) + t;
|
---|
176 | final double m = 0.5 * (c - b);
|
---|
177 |
|
---|
178 | if (FastMath.abs(m) <= tol ||
|
---|
179 | Precision.equals(fb, 0)) {
|
---|
180 | return b;
|
---|
181 | }
|
---|
182 | if (FastMath.abs(e) < tol ||
|
---|
183 | FastMath.abs(fa) <= FastMath.abs(fb)) {
|
---|
184 | // Force bisection.
|
---|
185 | d = m;
|
---|
186 | e = d;
|
---|
187 | } else {
|
---|
188 | double s = fb / fa;
|
---|
189 | double p;
|
---|
190 | double q;
|
---|
191 | // The equality test (a == c) is intentional,
|
---|
192 | // it is part of the original Brent's method and
|
---|
193 | // it should NOT be replaced by proximity test.
|
---|
194 | if (a == c) {
|
---|
195 | // Linear interpolation.
|
---|
196 | p = 2 * m * s;
|
---|
197 | q = 1 - s;
|
---|
198 | } else {
|
---|
199 | // Inverse quadratic interpolation.
|
---|
200 | q = fa / fc;
|
---|
201 | final double r = fb / fc;
|
---|
202 | p = s * (2 * m * q * (q - r) - (b - a) * (r - 1));
|
---|
203 | q = (q - 1) * (r - 1) * (s - 1);
|
---|
204 | }
|
---|
205 | if (p > 0) {
|
---|
206 | q = -q;
|
---|
207 | } else {
|
---|
208 | p = -p;
|
---|
209 | }
|
---|
210 | s = e;
|
---|
211 | e = d;
|
---|
212 | if (p >= 1.5 * m * q - FastMath.abs(tol * q) ||
|
---|
213 | p >= FastMath.abs(0.5 * s * q)) {
|
---|
214 | // Inverse quadratic interpolation gives a value
|
---|
215 | // in the wrong direction, or progress is slow.
|
---|
216 | // Fall back to bisection.
|
---|
217 | d = m;
|
---|
218 | e = d;
|
---|
219 | } else {
|
---|
220 | d = p / q;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | a = b;
|
---|
224 | fa = fb;
|
---|
225 |
|
---|
226 | if (FastMath.abs(d) > tol) {
|
---|
227 | b += d;
|
---|
228 | } else if (m > 0) {
|
---|
229 | b += tol;
|
---|
230 | } else {
|
---|
231 | b -= tol;
|
---|
232 | }
|
---|
233 | fb = computeObjectiveValue(b);
|
---|
234 | if ((fb > 0 && fc > 0) ||
|
---|
235 | (fb <= 0 && fc <= 0)) {
|
---|
236 | c = a;
|
---|
237 | fc = fa;
|
---|
238 | d = b - a;
|
---|
239 | e = d;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|
243 | }
|
---|