1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.analysis.polynomials;
|
---|
18 |
|
---|
19 | import java.util.ArrayList;
|
---|
20 | import java.util.HashMap;
|
---|
21 | import java.util.List;
|
---|
22 | import java.util.Map;
|
---|
23 |
|
---|
24 | import agents.anac.y2019.harddealer.math3.fraction.BigFraction;
|
---|
25 | import agents.anac.y2019.harddealer.math3.util.CombinatoricsUtils;
|
---|
26 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * A collection of static methods that operate on or return polynomials.
|
---|
30 | *
|
---|
31 | * @since 2.0
|
---|
32 | */
|
---|
33 | public class PolynomialsUtils {
|
---|
34 |
|
---|
35 | /** Coefficients for Chebyshev polynomials. */
|
---|
36 | private static final List<BigFraction> CHEBYSHEV_COEFFICIENTS;
|
---|
37 |
|
---|
38 | /** Coefficients for Hermite polynomials. */
|
---|
39 | private static final List<BigFraction> HERMITE_COEFFICIENTS;
|
---|
40 |
|
---|
41 | /** Coefficients for Laguerre polynomials. */
|
---|
42 | private static final List<BigFraction> LAGUERRE_COEFFICIENTS;
|
---|
43 |
|
---|
44 | /** Coefficients for Legendre polynomials. */
|
---|
45 | private static final List<BigFraction> LEGENDRE_COEFFICIENTS;
|
---|
46 |
|
---|
47 | /** Coefficients for Jacobi polynomials. */
|
---|
48 | private static final Map<JacobiKey, List<BigFraction>> JACOBI_COEFFICIENTS;
|
---|
49 |
|
---|
50 | static {
|
---|
51 |
|
---|
52 | // initialize recurrence for Chebyshev polynomials
|
---|
53 | // T0(X) = 1, T1(X) = 0 + 1 * X
|
---|
54 | CHEBYSHEV_COEFFICIENTS = new ArrayList<BigFraction>();
|
---|
55 | CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);
|
---|
56 | CHEBYSHEV_COEFFICIENTS.add(BigFraction.ZERO);
|
---|
57 | CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);
|
---|
58 |
|
---|
59 | // initialize recurrence for Hermite polynomials
|
---|
60 | // H0(X) = 1, H1(X) = 0 + 2 * X
|
---|
61 | HERMITE_COEFFICIENTS = new ArrayList<BigFraction>();
|
---|
62 | HERMITE_COEFFICIENTS.add(BigFraction.ONE);
|
---|
63 | HERMITE_COEFFICIENTS.add(BigFraction.ZERO);
|
---|
64 | HERMITE_COEFFICIENTS.add(BigFraction.TWO);
|
---|
65 |
|
---|
66 | // initialize recurrence for Laguerre polynomials
|
---|
67 | // L0(X) = 1, L1(X) = 1 - 1 * X
|
---|
68 | LAGUERRE_COEFFICIENTS = new ArrayList<BigFraction>();
|
---|
69 | LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
|
---|
70 | LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
|
---|
71 | LAGUERRE_COEFFICIENTS.add(BigFraction.MINUS_ONE);
|
---|
72 |
|
---|
73 | // initialize recurrence for Legendre polynomials
|
---|
74 | // P0(X) = 1, P1(X) = 0 + 1 * X
|
---|
75 | LEGENDRE_COEFFICIENTS = new ArrayList<BigFraction>();
|
---|
76 | LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);
|
---|
77 | LEGENDRE_COEFFICIENTS.add(BigFraction.ZERO);
|
---|
78 | LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);
|
---|
79 |
|
---|
80 | // initialize map for Jacobi polynomials
|
---|
81 | JACOBI_COEFFICIENTS = new HashMap<JacobiKey, List<BigFraction>>();
|
---|
82 |
|
---|
83 | }
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Private constructor, to prevent instantiation.
|
---|
87 | */
|
---|
88 | private PolynomialsUtils() {
|
---|
89 | }
|
---|
90 |
|
---|
91 | /**
|
---|
92 | * Create a Chebyshev polynomial of the first kind.
|
---|
93 | * <p><a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev
|
---|
94 | * polynomials of the first kind</a> are orthogonal polynomials.
|
---|
95 | * They can be defined by the following recurrence relations:</p><p>
|
---|
96 | * \(
|
---|
97 | * T_0(x) = 1 \\
|
---|
98 | * T_1(x) = x \\
|
---|
99 | * T_{k+1}(x) = 2x T_k(x) - T_{k-1}(x)
|
---|
100 | * \)
|
---|
101 | * </p>
|
---|
102 | * @param degree degree of the polynomial
|
---|
103 | * @return Chebyshev polynomial of specified degree
|
---|
104 | */
|
---|
105 | public static PolynomialFunction createChebyshevPolynomial(final int degree) {
|
---|
106 | return buildPolynomial(degree, CHEBYSHEV_COEFFICIENTS,
|
---|
107 | new RecurrenceCoefficientsGenerator() {
|
---|
108 | /** Fixed recurrence coefficients. */
|
---|
109 | private final BigFraction[] coeffs = { BigFraction.ZERO, BigFraction.TWO, BigFraction.ONE };
|
---|
110 | /** {@inheritDoc} */
|
---|
111 | public BigFraction[] generate(int k) {
|
---|
112 | return coeffs;
|
---|
113 | }
|
---|
114 | });
|
---|
115 | }
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * Create a Hermite polynomial.
|
---|
119 | * <p><a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite
|
---|
120 | * polynomials</a> are orthogonal polynomials.
|
---|
121 | * They can be defined by the following recurrence relations:</p><p>
|
---|
122 | * \(
|
---|
123 | * H_0(x) = 1 \\
|
---|
124 | * H_1(x) = 2x \\
|
---|
125 | * H_{k+1}(x) = 2x H_k(X) - 2k H_{k-1}(x)
|
---|
126 | * \)
|
---|
127 | * </p>
|
---|
128 |
|
---|
129 | * @param degree degree of the polynomial
|
---|
130 | * @return Hermite polynomial of specified degree
|
---|
131 | */
|
---|
132 | public static PolynomialFunction createHermitePolynomial(final int degree) {
|
---|
133 | return buildPolynomial(degree, HERMITE_COEFFICIENTS,
|
---|
134 | new RecurrenceCoefficientsGenerator() {
|
---|
135 | /** {@inheritDoc} */
|
---|
136 | public BigFraction[] generate(int k) {
|
---|
137 | return new BigFraction[] {
|
---|
138 | BigFraction.ZERO,
|
---|
139 | BigFraction.TWO,
|
---|
140 | new BigFraction(2 * k)};
|
---|
141 | }
|
---|
142 | });
|
---|
143 | }
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * Create a Laguerre polynomial.
|
---|
147 | * <p><a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre
|
---|
148 | * polynomials</a> are orthogonal polynomials.
|
---|
149 | * They can be defined by the following recurrence relations:</p><p>
|
---|
150 | * \(
|
---|
151 | * L_0(x) = 1 \\
|
---|
152 | * L_1(x) = 1 - x \\
|
---|
153 | * (k+1) L_{k+1}(x) = (2k + 1 - x) L_k(x) - k L_{k-1}(x)
|
---|
154 | * \)
|
---|
155 | * </p>
|
---|
156 | * @param degree degree of the polynomial
|
---|
157 | * @return Laguerre polynomial of specified degree
|
---|
158 | */
|
---|
159 | public static PolynomialFunction createLaguerrePolynomial(final int degree) {
|
---|
160 | return buildPolynomial(degree, LAGUERRE_COEFFICIENTS,
|
---|
161 | new RecurrenceCoefficientsGenerator() {
|
---|
162 | /** {@inheritDoc} */
|
---|
163 | public BigFraction[] generate(int k) {
|
---|
164 | final int kP1 = k + 1;
|
---|
165 | return new BigFraction[] {
|
---|
166 | new BigFraction(2 * k + 1, kP1),
|
---|
167 | new BigFraction(-1, kP1),
|
---|
168 | new BigFraction(k, kP1)};
|
---|
169 | }
|
---|
170 | });
|
---|
171 | }
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * Create a Legendre polynomial.
|
---|
175 | * <p><a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre
|
---|
176 | * polynomials</a> are orthogonal polynomials.
|
---|
177 | * They can be defined by the following recurrence relations:</p><p>
|
---|
178 | * \(
|
---|
179 | * P_0(x) = 1 \\
|
---|
180 | * P_1(x) = x \\
|
---|
181 | * (k+1) P_{k+1}(x) = (2k+1) x P_k(x) - k P_{k-1}(x)
|
---|
182 | * \)
|
---|
183 | * </p>
|
---|
184 | * @param degree degree of the polynomial
|
---|
185 | * @return Legendre polynomial of specified degree
|
---|
186 | */
|
---|
187 | public static PolynomialFunction createLegendrePolynomial(final int degree) {
|
---|
188 | return buildPolynomial(degree, LEGENDRE_COEFFICIENTS,
|
---|
189 | new RecurrenceCoefficientsGenerator() {
|
---|
190 | /** {@inheritDoc} */
|
---|
191 | public BigFraction[] generate(int k) {
|
---|
192 | final int kP1 = k + 1;
|
---|
193 | return new BigFraction[] {
|
---|
194 | BigFraction.ZERO,
|
---|
195 | new BigFraction(k + kP1, kP1),
|
---|
196 | new BigFraction(k, kP1)};
|
---|
197 | }
|
---|
198 | });
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Create a Jacobi polynomial.
|
---|
203 | * <p><a href="http://mathworld.wolfram.com/JacobiPolynomial.html">Jacobi
|
---|
204 | * polynomials</a> are orthogonal polynomials.
|
---|
205 | * They can be defined by the following recurrence relations:</p><p>
|
---|
206 | * \(
|
---|
207 | * P_0^{vw}(x) = 1 \\
|
---|
208 | * P_{-1}^{vw}(x) = 0 \\
|
---|
209 | * 2k(k + v + w)(2k + v + w - 2) P_k^{vw}(x) = \\
|
---|
210 | * (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) x + v^2 - w^2] P_{k-1}^{vw}(x) \\
|
---|
211 | * - 2(k + v - 1)(k + w - 1)(2k + v + w) P_{k-2}^{vw}(x)
|
---|
212 | * \)
|
---|
213 | * </p>
|
---|
214 | * @param degree degree of the polynomial
|
---|
215 | * @param v first exponent
|
---|
216 | * @param w second exponent
|
---|
217 | * @return Jacobi polynomial of specified degree
|
---|
218 | */
|
---|
219 | public static PolynomialFunction createJacobiPolynomial(final int degree, final int v, final int w) {
|
---|
220 |
|
---|
221 | // select the appropriate list
|
---|
222 | final JacobiKey key = new JacobiKey(v, w);
|
---|
223 |
|
---|
224 | if (!JACOBI_COEFFICIENTS.containsKey(key)) {
|
---|
225 |
|
---|
226 | // allocate a new list for v, w
|
---|
227 | final List<BigFraction> list = new ArrayList<BigFraction>();
|
---|
228 | JACOBI_COEFFICIENTS.put(key, list);
|
---|
229 |
|
---|
230 | // Pv,w,0(x) = 1;
|
---|
231 | list.add(BigFraction.ONE);
|
---|
232 |
|
---|
233 | // P1(x) = (v - w) / 2 + (2 + v + w) * X / 2
|
---|
234 | list.add(new BigFraction(v - w, 2));
|
---|
235 | list.add(new BigFraction(2 + v + w, 2));
|
---|
236 |
|
---|
237 | }
|
---|
238 |
|
---|
239 | return buildPolynomial(degree, JACOBI_COEFFICIENTS.get(key),
|
---|
240 | new RecurrenceCoefficientsGenerator() {
|
---|
241 | /** {@inheritDoc} */
|
---|
242 | public BigFraction[] generate(int k) {
|
---|
243 | k++;
|
---|
244 | final int kvw = k + v + w;
|
---|
245 | final int twoKvw = kvw + k;
|
---|
246 | final int twoKvwM1 = twoKvw - 1;
|
---|
247 | final int twoKvwM2 = twoKvw - 2;
|
---|
248 | final int den = 2 * k * kvw * twoKvwM2;
|
---|
249 |
|
---|
250 | return new BigFraction[] {
|
---|
251 | new BigFraction(twoKvwM1 * (v * v - w * w), den),
|
---|
252 | new BigFraction(twoKvwM1 * twoKvw * twoKvwM2, den),
|
---|
253 | new BigFraction(2 * (k + v - 1) * (k + w - 1) * twoKvw, den)
|
---|
254 | };
|
---|
255 | }
|
---|
256 | });
|
---|
257 |
|
---|
258 | }
|
---|
259 |
|
---|
260 | /** Inner class for Jacobi polynomials keys. */
|
---|
261 | private static class JacobiKey {
|
---|
262 |
|
---|
263 | /** First exponent. */
|
---|
264 | private final int v;
|
---|
265 |
|
---|
266 | /** Second exponent. */
|
---|
267 | private final int w;
|
---|
268 |
|
---|
269 | /** Simple constructor.
|
---|
270 | * @param v first exponent
|
---|
271 | * @param w second exponent
|
---|
272 | */
|
---|
273 | JacobiKey(final int v, final int w) {
|
---|
274 | this.v = v;
|
---|
275 | this.w = w;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /** Get hash code.
|
---|
279 | * @return hash code
|
---|
280 | */
|
---|
281 | @Override
|
---|
282 | public int hashCode() {
|
---|
283 | return (v << 16) ^ w;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /** Check if the instance represent the same key as another instance.
|
---|
287 | * @param key other key
|
---|
288 | * @return true if the instance and the other key refer to the same polynomial
|
---|
289 | */
|
---|
290 | @Override
|
---|
291 | public boolean equals(final Object key) {
|
---|
292 |
|
---|
293 | if ((key == null) || !(key instanceof JacobiKey)) {
|
---|
294 | return false;
|
---|
295 | }
|
---|
296 |
|
---|
297 | final JacobiKey otherK = (JacobiKey) key;
|
---|
298 | return (v == otherK.v) && (w == otherK.w);
|
---|
299 |
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Compute the coefficients of the polynomial \(P_s(x)\)
|
---|
305 | * whose values at point {@code x} will be the same as the those from the
|
---|
306 | * original polynomial \(P(x)\) when computed at {@code x + shift}.
|
---|
307 | * <p>
|
---|
308 | * More precisely, let \(\Delta = \) {@code shift} and let
|
---|
309 | * \(P_s(x) = P(x + \Delta)\). The returned array
|
---|
310 | * consists of the coefficients of \(P_s\). So if \(a_0, ..., a_{n-1}\)
|
---|
311 | * are the coefficients of \(P\), then the returned array
|
---|
312 | * \(b_0, ..., b_{n-1}\) satisfies the identity
|
---|
313 | * \(\sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i (x + \Delta)^i\) for all \(x\).
|
---|
314 | *
|
---|
315 | * @param coefficients Coefficients of the original polynomial.
|
---|
316 | * @param shift Shift value.
|
---|
317 | * @return the coefficients \(b_i\) of the shifted
|
---|
318 | * polynomial.
|
---|
319 | */
|
---|
320 | public static double[] shift(final double[] coefficients,
|
---|
321 | final double shift) {
|
---|
322 | final int dp1 = coefficients.length;
|
---|
323 | final double[] newCoefficients = new double[dp1];
|
---|
324 |
|
---|
325 | // Pascal triangle.
|
---|
326 | final int[][] coeff = new int[dp1][dp1];
|
---|
327 | for (int i = 0; i < dp1; i++){
|
---|
328 | for(int j = 0; j <= i; j++){
|
---|
329 | coeff[i][j] = (int) CombinatoricsUtils.binomialCoefficient(i, j);
|
---|
330 | }
|
---|
331 | }
|
---|
332 |
|
---|
333 | // First polynomial coefficient.
|
---|
334 | for (int i = 0; i < dp1; i++){
|
---|
335 | newCoefficients[0] += coefficients[i] * FastMath.pow(shift, i);
|
---|
336 | }
|
---|
337 |
|
---|
338 | // Superior order.
|
---|
339 | final int d = dp1 - 1;
|
---|
340 | for (int i = 0; i < d; i++) {
|
---|
341 | for (int j = i; j < d; j++){
|
---|
342 | newCoefficients[i + 1] += coeff[j + 1][j - i] *
|
---|
343 | coefficients[j + 1] * FastMath.pow(shift, j - i);
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | return newCoefficients;
|
---|
348 | }
|
---|
349 |
|
---|
350 |
|
---|
351 | /** Get the coefficients array for a given degree.
|
---|
352 | * @param degree degree of the polynomial
|
---|
353 | * @param coefficients list where the computed coefficients are stored
|
---|
354 | * @param generator recurrence coefficients generator
|
---|
355 | * @return coefficients array
|
---|
356 | */
|
---|
357 | private static PolynomialFunction buildPolynomial(final int degree,
|
---|
358 | final List<BigFraction> coefficients,
|
---|
359 | final RecurrenceCoefficientsGenerator generator) {
|
---|
360 | synchronized (coefficients) {
|
---|
361 | final int maxDegree = (int) FastMath.floor(FastMath.sqrt(2 * coefficients.size())) - 1;
|
---|
362 | if (degree > maxDegree) {
|
---|
363 | computeUpToDegree(degree, maxDegree, generator, coefficients);
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | // coefficient for polynomial 0 is l [0]
|
---|
368 | // coefficients for polynomial 1 are l [1] ... l [2] (degrees 0 ... 1)
|
---|
369 | // coefficients for polynomial 2 are l [3] ... l [5] (degrees 0 ... 2)
|
---|
370 | // coefficients for polynomial 3 are l [6] ... l [9] (degrees 0 ... 3)
|
---|
371 | // coefficients for polynomial 4 are l[10] ... l[14] (degrees 0 ... 4)
|
---|
372 | // coefficients for polynomial 5 are l[15] ... l[20] (degrees 0 ... 5)
|
---|
373 | // coefficients for polynomial 6 are l[21] ... l[27] (degrees 0 ... 6)
|
---|
374 | // ...
|
---|
375 | final int start = degree * (degree + 1) / 2;
|
---|
376 |
|
---|
377 | final double[] a = new double[degree + 1];
|
---|
378 | for (int i = 0; i <= degree; ++i) {
|
---|
379 | a[i] = coefficients.get(start + i).doubleValue();
|
---|
380 | }
|
---|
381 |
|
---|
382 | // build the polynomial
|
---|
383 | return new PolynomialFunction(a);
|
---|
384 |
|
---|
385 | }
|
---|
386 |
|
---|
387 | /** Compute polynomial coefficients up to a given degree.
|
---|
388 | * @param degree maximal degree
|
---|
389 | * @param maxDegree current maximal degree
|
---|
390 | * @param generator recurrence coefficients generator
|
---|
391 | * @param coefficients list where the computed coefficients should be appended
|
---|
392 | */
|
---|
393 | private static void computeUpToDegree(final int degree, final int maxDegree,
|
---|
394 | final RecurrenceCoefficientsGenerator generator,
|
---|
395 | final List<BigFraction> coefficients) {
|
---|
396 |
|
---|
397 | int startK = (maxDegree - 1) * maxDegree / 2;
|
---|
398 | for (int k = maxDegree; k < degree; ++k) {
|
---|
399 |
|
---|
400 | // start indices of two previous polynomials Pk(X) and Pk-1(X)
|
---|
401 | int startKm1 = startK;
|
---|
402 | startK += k;
|
---|
403 |
|
---|
404 | // Pk+1(X) = (a[0] + a[1] X) Pk(X) - a[2] Pk-1(X)
|
---|
405 | BigFraction[] ai = generator.generate(k);
|
---|
406 |
|
---|
407 | BigFraction ck = coefficients.get(startK);
|
---|
408 | BigFraction ckm1 = coefficients.get(startKm1);
|
---|
409 |
|
---|
410 | // degree 0 coefficient
|
---|
411 | coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2])));
|
---|
412 |
|
---|
413 | // degree 1 to degree k-1 coefficients
|
---|
414 | for (int i = 1; i < k; ++i) {
|
---|
415 | final BigFraction ckPrev = ck;
|
---|
416 | ck = coefficients.get(startK + i);
|
---|
417 | ckm1 = coefficients.get(startKm1 + i);
|
---|
418 | coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])).subtract(ckm1.multiply(ai[2])));
|
---|
419 | }
|
---|
420 |
|
---|
421 | // degree k coefficient
|
---|
422 | final BigFraction ckPrev = ck;
|
---|
423 | ck = coefficients.get(startK + k);
|
---|
424 | coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])));
|
---|
425 |
|
---|
426 | // degree k+1 coefficient
|
---|
427 | coefficients.add(ck.multiply(ai[1]));
|
---|
428 |
|
---|
429 | }
|
---|
430 |
|
---|
431 | }
|
---|
432 |
|
---|
433 | /** Interface for recurrence coefficients generation. */
|
---|
434 | private interface RecurrenceCoefficientsGenerator {
|
---|
435 | /**
|
---|
436 | * Generate recurrence coefficients.
|
---|
437 | * @param k highest degree of the polynomials used in the recurrence
|
---|
438 | * @return an array of three coefficients such that
|
---|
439 | * \( P_{k+1}(x) = (a[0] + a[1] x) P_k(x) - a[2] P_{k-1}(x) \)
|
---|
440 | */
|
---|
441 | BigFraction[] generate(int k);
|
---|
442 | }
|
---|
443 |
|
---|
444 | }
|
---|