1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.analysis.interpolation;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.analysis.TrivariateFunction;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NoDataException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.NonMonotonicSequenceException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Function that implements the
|
---|
28 | * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation">
|
---|
29 | * tricubic spline interpolation</a>, as proposed in
|
---|
30 | * <blockquote>
|
---|
31 | * Tricubic interpolation in three dimensions,
|
---|
32 | * F. Lekien and J. Marsden,
|
---|
33 | * <em>Int. J. Numer. Meth. Eng</em> 2005; <b>63</b>:455-471
|
---|
34 | * </blockquote>
|
---|
35 | *
|
---|
36 | * @since 3.4.
|
---|
37 | */
|
---|
38 | public class TricubicInterpolatingFunction
|
---|
39 | implements TrivariateFunction {
|
---|
40 | /**
|
---|
41 | * Matrix to compute the spline coefficients from the function values
|
---|
42 | * and function derivatives values
|
---|
43 | */
|
---|
44 | private static final double[][] AINV = {
|
---|
45 | { 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
46 | { 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
47 | { -3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
48 | { 2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
49 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
50 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
51 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
52 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
53 | { -3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
54 | { 0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
55 | { 9,-9,-9,9,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,4,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
56 | { -6,6,6,-6,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
57 | { 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
58 | { 0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
59 | { -6,6,6,-6,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
60 | { 4,-4,-4,4,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
61 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
62 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
63 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
64 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
65 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
66 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
|
---|
67 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0 },
|
---|
68 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0 },
|
---|
69 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
70 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
|
---|
71 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,4,2,2,1,0,0,0,0 },
|
---|
72 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,-2,-2,-1,-1,0,0,0,0 },
|
---|
73 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
74 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0 },
|
---|
75 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,-2,-1,-2,-1,0,0,0,0 },
|
---|
76 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,1,1,1,1,0,0,0,0 },
|
---|
77 | {-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
78 | { 0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
79 | { 9,-9,0,0,-9,9,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,4,2,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
80 | { -6,6,0,0,6,-6,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
81 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
82 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0 },
|
---|
83 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,0,0,-9,9,0,0,0,0,0,0,0,0,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,4,2,0,0,2,1,0,0 },
|
---|
84 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,-2,-2,0,0,-1,-1,0,0 },
|
---|
85 | { 9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0,0,0,0,0,0,0,0,0 },
|
---|
86 | { 0,0,0,0,0,0,0,0,9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0 },
|
---|
87 | { -27,27,27,-27,27,-27,-27,27,-18,-9,18,9,18,9,-18,-9,-18,18,-9,9,18,-18,9,-9,-18,18,18,-18,-9,9,9,-9,-12,-6,-6,-3,12,6,6,3,-12,-6,12,6,-6,-3,6,3,-12,12,-6,6,-6,6,-3,3,-8,-4,-4,-2,-4,-2,-2,-1 },
|
---|
88 | { 18,-18,-18,18,-18,18,18,-18,9,9,-9,-9,-9,-9,9,9,12,-12,6,-6,-12,12,-6,6,12,-12,-12,12,6,-6,-6,6,6,6,3,3,-6,-6,-3,-3,6,6,-6,-6,3,3,-3,-3,8,-8,4,-4,4,-4,2,-2,4,4,2,2,2,2,1,1 },
|
---|
89 | { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0,0,0,0,0,0,0,0,0 },
|
---|
90 | { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0 },
|
---|
91 | { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,9,-9,9,-9,-9,9,-9,9,12,-12,-12,12,6,-6,-6,6,6,3,6,3,-6,-3,-6,-3,8,4,-8,-4,4,2,-4,-2,6,-6,6,-6,3,-3,3,-3,4,2,4,2,2,1,2,1 },
|
---|
92 | { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-6,6,-6,6,6,-6,6,-6,-8,8,8,-8,-4,4,4,-4,-3,-3,-3,-3,3,3,3,3,-4,-4,4,4,-2,-2,2,2,-4,4,-4,4,-2,2,-2,2,-2,-2,-2,-2,-1,-1,-1,-1 },
|
---|
93 | { 2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
94 | { 0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
95 | { -6,6,0,0,6,-6,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
96 | { 4,-4,0,0,-4,4,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
97 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
|
---|
98 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0 },
|
---|
99 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,-2,-1,0,0,-2,-1,0,0 },
|
---|
100 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,1,1,0,0,1,1,0,0 },
|
---|
101 | { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0,0,0,0,0,0,0,0,0 },
|
---|
102 | { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0 },
|
---|
103 | { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,12,-12,6,-6,-12,12,-6,6,9,-9,-9,9,9,-9,-9,9,8,4,4,2,-8,-4,-4,-2,6,3,-6,-3,6,3,-6,-3,6,-6,3,-3,6,-6,3,-3,4,2,2,1,4,2,2,1 },
|
---|
104 | { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-8,8,-4,4,8,-8,4,-4,-6,6,6,-6,-6,6,6,-6,-4,-4,-2,-2,4,4,2,2,-3,-3,3,3,-3,-3,3,3,-4,4,-2,2,-4,4,-2,2,-2,-2,-1,-1,-2,-2,-1,-1 },
|
---|
105 | { 4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0 },
|
---|
106 | { 0,0,0,0,0,0,0,0,4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0 },
|
---|
107 | { -12,12,12,-12,12,-12,-12,12,-8,-4,8,4,8,4,-8,-4,-6,6,-6,6,6,-6,6,-6,-6,6,6,-6,-6,6,6,-6,-4,-2,-4,-2,4,2,4,2,-4,-2,4,2,-4,-2,4,2,-3,3,-3,3,-3,3,-3,3,-2,-1,-2,-1,-2,-1,-2,-1 },
|
---|
108 | { 8,-8,-8,8,-8,8,8,-8,4,4,-4,-4,-4,-4,4,4,4,-4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,-4,4,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,1,1,1,1,1,1,1,1 }
|
---|
109 | };
|
---|
110 |
|
---|
111 | /** Samples x-coordinates */
|
---|
112 | private final double[] xval;
|
---|
113 | /** Samples y-coordinates */
|
---|
114 | private final double[] yval;
|
---|
115 | /** Samples z-coordinates */
|
---|
116 | private final double[] zval;
|
---|
117 | /** Set of cubic splines patching the whole data grid */
|
---|
118 | private final TricubicFunction[][][] splines;
|
---|
119 |
|
---|
120 | /**
|
---|
121 | * @param x Sample values of the x-coordinate, in increasing order.
|
---|
122 | * @param y Sample values of the y-coordinate, in increasing order.
|
---|
123 | * @param z Sample values of the y-coordinate, in increasing order.
|
---|
124 | * @param f Values of the function on every grid point.
|
---|
125 | * @param dFdX Values of the partial derivative of function with respect to x on every grid point.
|
---|
126 | * @param dFdY Values of the partial derivative of function with respect to y on every grid point.
|
---|
127 | * @param dFdZ Values of the partial derivative of function with respect to z on every grid point.
|
---|
128 | * @param d2FdXdY Values of the cross partial derivative of function on every grid point.
|
---|
129 | * @param d2FdXdZ Values of the cross partial derivative of function on every grid point.
|
---|
130 | * @param d2FdYdZ Values of the cross partial derivative of function on every grid point.
|
---|
131 | * @param d3FdXdYdZ Values of the cross partial derivative of function on every grid point.
|
---|
132 | * @throws NoDataException if any of the arrays has zero length.
|
---|
133 | * @throws DimensionMismatchException if the various arrays do not contain the expected number of elements.
|
---|
134 | * @throws NonMonotonicSequenceException if {@code x}, {@code y} or {@code z} are not strictly increasing.
|
---|
135 | */
|
---|
136 | public TricubicInterpolatingFunction(double[] x,
|
---|
137 | double[] y,
|
---|
138 | double[] z,
|
---|
139 | double[][][] f,
|
---|
140 | double[][][] dFdX,
|
---|
141 | double[][][] dFdY,
|
---|
142 | double[][][] dFdZ,
|
---|
143 | double[][][] d2FdXdY,
|
---|
144 | double[][][] d2FdXdZ,
|
---|
145 | double[][][] d2FdYdZ,
|
---|
146 | double[][][] d3FdXdYdZ)
|
---|
147 | throws NoDataException,
|
---|
148 | DimensionMismatchException,
|
---|
149 | NonMonotonicSequenceException {
|
---|
150 | final int xLen = x.length;
|
---|
151 | final int yLen = y.length;
|
---|
152 | final int zLen = z.length;
|
---|
153 |
|
---|
154 | if (xLen == 0 || yLen == 0 || z.length == 0 || f.length == 0 || f[0].length == 0) {
|
---|
155 | throw new NoDataException();
|
---|
156 | }
|
---|
157 | if (xLen != f.length) {
|
---|
158 | throw new DimensionMismatchException(xLen, f.length);
|
---|
159 | }
|
---|
160 | if (xLen != dFdX.length) {
|
---|
161 | throw new DimensionMismatchException(xLen, dFdX.length);
|
---|
162 | }
|
---|
163 | if (xLen != dFdY.length) {
|
---|
164 | throw new DimensionMismatchException(xLen, dFdY.length);
|
---|
165 | }
|
---|
166 | if (xLen != dFdZ.length) {
|
---|
167 | throw new DimensionMismatchException(xLen, dFdZ.length);
|
---|
168 | }
|
---|
169 | if (xLen != d2FdXdY.length) {
|
---|
170 | throw new DimensionMismatchException(xLen, d2FdXdY.length);
|
---|
171 | }
|
---|
172 | if (xLen != d2FdXdZ.length) {
|
---|
173 | throw new DimensionMismatchException(xLen, d2FdXdZ.length);
|
---|
174 | }
|
---|
175 | if (xLen != d2FdYdZ.length) {
|
---|
176 | throw new DimensionMismatchException(xLen, d2FdYdZ.length);
|
---|
177 | }
|
---|
178 | if (xLen != d3FdXdYdZ.length) {
|
---|
179 | throw new DimensionMismatchException(xLen, d3FdXdYdZ.length);
|
---|
180 | }
|
---|
181 |
|
---|
182 | MathArrays.checkOrder(x);
|
---|
183 | MathArrays.checkOrder(y);
|
---|
184 | MathArrays.checkOrder(z);
|
---|
185 |
|
---|
186 | xval = x.clone();
|
---|
187 | yval = y.clone();
|
---|
188 | zval = z.clone();
|
---|
189 |
|
---|
190 | final int lastI = xLen - 1;
|
---|
191 | final int lastJ = yLen - 1;
|
---|
192 | final int lastK = zLen - 1;
|
---|
193 | splines = new TricubicFunction[lastI][lastJ][lastK];
|
---|
194 |
|
---|
195 | for (int i = 0; i < lastI; i++) {
|
---|
196 | if (f[i].length != yLen) {
|
---|
197 | throw new DimensionMismatchException(f[i].length, yLen);
|
---|
198 | }
|
---|
199 | if (dFdX[i].length != yLen) {
|
---|
200 | throw new DimensionMismatchException(dFdX[i].length, yLen);
|
---|
201 | }
|
---|
202 | if (dFdY[i].length != yLen) {
|
---|
203 | throw new DimensionMismatchException(dFdY[i].length, yLen);
|
---|
204 | }
|
---|
205 | if (dFdZ[i].length != yLen) {
|
---|
206 | throw new DimensionMismatchException(dFdZ[i].length, yLen);
|
---|
207 | }
|
---|
208 | if (d2FdXdY[i].length != yLen) {
|
---|
209 | throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
|
---|
210 | }
|
---|
211 | if (d2FdXdZ[i].length != yLen) {
|
---|
212 | throw new DimensionMismatchException(d2FdXdZ[i].length, yLen);
|
---|
213 | }
|
---|
214 | if (d2FdYdZ[i].length != yLen) {
|
---|
215 | throw new DimensionMismatchException(d2FdYdZ[i].length, yLen);
|
---|
216 | }
|
---|
217 | if (d3FdXdYdZ[i].length != yLen) {
|
---|
218 | throw new DimensionMismatchException(d3FdXdYdZ[i].length, yLen);
|
---|
219 | }
|
---|
220 |
|
---|
221 | final int ip1 = i + 1;
|
---|
222 | final double xR = xval[ip1] - xval[i];
|
---|
223 | for (int j = 0; j < lastJ; j++) {
|
---|
224 | if (f[i][j].length != zLen) {
|
---|
225 | throw new DimensionMismatchException(f[i][j].length, zLen);
|
---|
226 | }
|
---|
227 | if (dFdX[i][j].length != zLen) {
|
---|
228 | throw new DimensionMismatchException(dFdX[i][j].length, zLen);
|
---|
229 | }
|
---|
230 | if (dFdY[i][j].length != zLen) {
|
---|
231 | throw new DimensionMismatchException(dFdY[i][j].length, zLen);
|
---|
232 | }
|
---|
233 | if (dFdZ[i][j].length != zLen) {
|
---|
234 | throw new DimensionMismatchException(dFdZ[i][j].length, zLen);
|
---|
235 | }
|
---|
236 | if (d2FdXdY[i][j].length != zLen) {
|
---|
237 | throw new DimensionMismatchException(d2FdXdY[i][j].length, zLen);
|
---|
238 | }
|
---|
239 | if (d2FdXdZ[i][j].length != zLen) {
|
---|
240 | throw new DimensionMismatchException(d2FdXdZ[i][j].length, zLen);
|
---|
241 | }
|
---|
242 | if (d2FdYdZ[i][j].length != zLen) {
|
---|
243 | throw new DimensionMismatchException(d2FdYdZ[i][j].length, zLen);
|
---|
244 | }
|
---|
245 | if (d3FdXdYdZ[i][j].length != zLen) {
|
---|
246 | throw new DimensionMismatchException(d3FdXdYdZ[i][j].length, zLen);
|
---|
247 | }
|
---|
248 |
|
---|
249 | final int jp1 = j + 1;
|
---|
250 | final double yR = yval[jp1] - yval[j];
|
---|
251 | final double xRyR = xR * yR;
|
---|
252 | for (int k = 0; k < lastK; k++) {
|
---|
253 | final int kp1 = k + 1;
|
---|
254 | final double zR = zval[kp1] - zval[k];
|
---|
255 | final double xRzR = xR * zR;
|
---|
256 | final double yRzR = yR * zR;
|
---|
257 | final double xRyRzR = xR * yRzR;
|
---|
258 |
|
---|
259 | final double[] beta = new double[] {
|
---|
260 | f[i][j][k], f[ip1][j][k],
|
---|
261 | f[i][jp1][k], f[ip1][jp1][k],
|
---|
262 | f[i][j][kp1], f[ip1][j][kp1],
|
---|
263 | f[i][jp1][kp1], f[ip1][jp1][kp1],
|
---|
264 |
|
---|
265 | dFdX[i][j][k] * xR, dFdX[ip1][j][k] * xR,
|
---|
266 | dFdX[i][jp1][k] * xR, dFdX[ip1][jp1][k] * xR,
|
---|
267 | dFdX[i][j][kp1] * xR, dFdX[ip1][j][kp1] * xR,
|
---|
268 | dFdX[i][jp1][kp1] * xR, dFdX[ip1][jp1][kp1] * xR,
|
---|
269 |
|
---|
270 | dFdY[i][j][k] * yR, dFdY[ip1][j][k] * yR,
|
---|
271 | dFdY[i][jp1][k] * yR, dFdY[ip1][jp1][k] * yR,
|
---|
272 | dFdY[i][j][kp1] * yR, dFdY[ip1][j][kp1] * yR,
|
---|
273 | dFdY[i][jp1][kp1] * yR, dFdY[ip1][jp1][kp1] * yR,
|
---|
274 |
|
---|
275 | dFdZ[i][j][k] * zR, dFdZ[ip1][j][k] * zR,
|
---|
276 | dFdZ[i][jp1][k] * zR, dFdZ[ip1][jp1][k] * zR,
|
---|
277 | dFdZ[i][j][kp1] * zR, dFdZ[ip1][j][kp1] * zR,
|
---|
278 | dFdZ[i][jp1][kp1] * zR, dFdZ[ip1][jp1][kp1] * zR,
|
---|
279 |
|
---|
280 | d2FdXdY[i][j][k] * xRyR, d2FdXdY[ip1][j][k] * xRyR,
|
---|
281 | d2FdXdY[i][jp1][k] * xRyR, d2FdXdY[ip1][jp1][k] * xRyR,
|
---|
282 | d2FdXdY[i][j][kp1] * xRyR, d2FdXdY[ip1][j][kp1] * xRyR,
|
---|
283 | d2FdXdY[i][jp1][kp1] * xRyR, d2FdXdY[ip1][jp1][kp1] * xRyR,
|
---|
284 |
|
---|
285 | d2FdXdZ[i][j][k] * xRzR, d2FdXdZ[ip1][j][k] * xRzR,
|
---|
286 | d2FdXdZ[i][jp1][k] * xRzR, d2FdXdZ[ip1][jp1][k] * xRzR,
|
---|
287 | d2FdXdZ[i][j][kp1] * xRzR, d2FdXdZ[ip1][j][kp1] * xRzR,
|
---|
288 | d2FdXdZ[i][jp1][kp1] * xRzR, d2FdXdZ[ip1][jp1][kp1] * xRzR,
|
---|
289 |
|
---|
290 | d2FdYdZ[i][j][k] * yRzR, d2FdYdZ[ip1][j][k] * yRzR,
|
---|
291 | d2FdYdZ[i][jp1][k] * yRzR, d2FdYdZ[ip1][jp1][k] * yRzR,
|
---|
292 | d2FdYdZ[i][j][kp1] * yRzR, d2FdYdZ[ip1][j][kp1] * yRzR,
|
---|
293 | d2FdYdZ[i][jp1][kp1] * yRzR, d2FdYdZ[ip1][jp1][kp1] * yRzR,
|
---|
294 |
|
---|
295 | d3FdXdYdZ[i][j][k] * xRyRzR, d3FdXdYdZ[ip1][j][k] * xRyRzR,
|
---|
296 | d3FdXdYdZ[i][jp1][k] * xRyRzR, d3FdXdYdZ[ip1][jp1][k] * xRyRzR,
|
---|
297 | d3FdXdYdZ[i][j][kp1] * xRyRzR, d3FdXdYdZ[ip1][j][kp1] * xRyRzR,
|
---|
298 | d3FdXdYdZ[i][jp1][kp1] * xRyRzR, d3FdXdYdZ[ip1][jp1][kp1] * xRyRzR,
|
---|
299 | };
|
---|
300 |
|
---|
301 | splines[i][j][k] = new TricubicFunction(computeCoefficients(beta));
|
---|
302 | }
|
---|
303 | }
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | /**
|
---|
308 | * {@inheritDoc}
|
---|
309 | *
|
---|
310 | * @throws OutOfRangeException if any of the variables is outside its interpolation range.
|
---|
311 | */
|
---|
312 | public double value(double x, double y, double z)
|
---|
313 | throws OutOfRangeException {
|
---|
314 | final int i = searchIndex(x, xval);
|
---|
315 | if (i == -1) {
|
---|
316 | throw new OutOfRangeException(x, xval[0], xval[xval.length - 1]);
|
---|
317 | }
|
---|
318 | final int j = searchIndex(y, yval);
|
---|
319 | if (j == -1) {
|
---|
320 | throw new OutOfRangeException(y, yval[0], yval[yval.length - 1]);
|
---|
321 | }
|
---|
322 | final int k = searchIndex(z, zval);
|
---|
323 | if (k == -1) {
|
---|
324 | throw new OutOfRangeException(z, zval[0], zval[zval.length - 1]);
|
---|
325 | }
|
---|
326 |
|
---|
327 | final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
|
---|
328 | final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
|
---|
329 | final double zN = (z - zval[k]) / (zval[k + 1] - zval[k]);
|
---|
330 |
|
---|
331 | return splines[i][j][k].value(xN, yN, zN);
|
---|
332 | }
|
---|
333 |
|
---|
334 | /**
|
---|
335 | * Indicates whether a point is within the interpolation range.
|
---|
336 | *
|
---|
337 | * @param x First coordinate.
|
---|
338 | * @param y Second coordinate.
|
---|
339 | * @param z Third coordinate.
|
---|
340 | * @return {@code true} if (x, y, z) is a valid point.
|
---|
341 | */
|
---|
342 | public boolean isValidPoint(double x, double y, double z) {
|
---|
343 | if (x < xval[0] ||
|
---|
344 | x > xval[xval.length - 1] ||
|
---|
345 | y < yval[0] ||
|
---|
346 | y > yval[yval.length - 1] ||
|
---|
347 | z < zval[0] ||
|
---|
348 | z > zval[zval.length - 1]) {
|
---|
349 | return false;
|
---|
350 | } else {
|
---|
351 | return true;
|
---|
352 | }
|
---|
353 | }
|
---|
354 |
|
---|
355 | /**
|
---|
356 | * @param c Coordinate.
|
---|
357 | * @param val Coordinate samples.
|
---|
358 | * @return the index in {@code val} corresponding to the interval containing {@code c}, or {@code -1}
|
---|
359 | * if {@code c} is out of the range defined by the end values of {@code val}.
|
---|
360 | */
|
---|
361 | private int searchIndex(double c, double[] val) {
|
---|
362 | if (c < val[0]) {
|
---|
363 | return -1;
|
---|
364 | }
|
---|
365 |
|
---|
366 | final int max = val.length;
|
---|
367 | for (int i = 1; i < max; i++) {
|
---|
368 | if (c <= val[i]) {
|
---|
369 | return i - 1;
|
---|
370 | }
|
---|
371 | }
|
---|
372 |
|
---|
373 | return -1;
|
---|
374 | }
|
---|
375 |
|
---|
376 | /**
|
---|
377 | * Compute the spline coefficients from the list of function values and
|
---|
378 | * function partial derivatives values at the four corners of a grid
|
---|
379 | * element. They must be specified in the following order:
|
---|
380 | * <ul>
|
---|
381 | * <li>f(0,0,0)</li>
|
---|
382 | * <li>f(1,0,0)</li>
|
---|
383 | * <li>f(0,1,0)</li>
|
---|
384 | * <li>f(1,1,0)</li>
|
---|
385 | * <li>f(0,0,1)</li>
|
---|
386 | * <li>f(1,0,1)</li>
|
---|
387 | * <li>f(0,1,1)</li>
|
---|
388 | * <li>f(1,1,1)</li>
|
---|
389 | *
|
---|
390 | * <li>f<sub>x</sub>(0,0,0)</li>
|
---|
391 | * <li>... <em>(same order as above)</em></li>
|
---|
392 | * <li>f<sub>x</sub>(1,1,1)</li>
|
---|
393 | *
|
---|
394 | * <li>f<sub>y</sub>(0,0,0)</li>
|
---|
395 | * <li>... <em>(same order as above)</em></li>
|
---|
396 | * <li>f<sub>y</sub>(1,1,1)</li>
|
---|
397 | *
|
---|
398 | * <li>f<sub>z</sub>(0,0,0)</li>
|
---|
399 | * <li>... <em>(same order as above)</em></li>
|
---|
400 | * <li>f<sub>z</sub>(1,1,1)</li>
|
---|
401 | *
|
---|
402 | * <li>f<sub>xy</sub>(0,0,0)</li>
|
---|
403 | * <li>... <em>(same order as above)</em></li>
|
---|
404 | * <li>f<sub>xy</sub>(1,1,1)</li>
|
---|
405 | *
|
---|
406 | * <li>f<sub>xz</sub>(0,0,0)</li>
|
---|
407 | * <li>... <em>(same order as above)</em></li>
|
---|
408 | * <li>f<sub>xz</sub>(1,1,1)</li>
|
---|
409 | *
|
---|
410 | * <li>f<sub>yz</sub>(0,0,0)</li>
|
---|
411 | * <li>... <em>(same order as above)</em></li>
|
---|
412 | * <li>f<sub>yz</sub>(1,1,1)</li>
|
---|
413 | *
|
---|
414 | * <li>f<sub>xyz</sub>(0,0,0)</li>
|
---|
415 | * <li>... <em>(same order as above)</em></li>
|
---|
416 | * <li>f<sub>xyz</sub>(1,1,1)</li>
|
---|
417 | * </ul>
|
---|
418 | * where the subscripts indicate the partial derivative with respect to
|
---|
419 | * the corresponding variable(s).
|
---|
420 | *
|
---|
421 | * @param beta List of function values and function partial derivatives values.
|
---|
422 | * @return the spline coefficients.
|
---|
423 | */
|
---|
424 | private double[] computeCoefficients(double[] beta) {
|
---|
425 | final int sz = 64;
|
---|
426 | final double[] a = new double[sz];
|
---|
427 |
|
---|
428 | for (int i = 0; i < sz; i++) {
|
---|
429 | double result = 0;
|
---|
430 | final double[] row = AINV[i];
|
---|
431 | for (int j = 0; j < sz; j++) {
|
---|
432 | result += row[j] * beta[j];
|
---|
433 | }
|
---|
434 | a[i] = result;
|
---|
435 | }
|
---|
436 |
|
---|
437 | return a;
|
---|
438 | }
|
---|
439 | }
|
---|
440 |
|
---|
441 | /**
|
---|
442 | * 3D-spline function.
|
---|
443 | *
|
---|
444 | */
|
---|
445 | class TricubicFunction
|
---|
446 | implements TrivariateFunction {
|
---|
447 | /** Number of points. */
|
---|
448 | private static final short N = 4;
|
---|
449 | /** Coefficients */
|
---|
450 | private final double[][][] a = new double[N][N][N];
|
---|
451 |
|
---|
452 | /**
|
---|
453 | * @param aV List of spline coefficients.
|
---|
454 | */
|
---|
455 | TricubicFunction(double[] aV) {
|
---|
456 | for (int i = 0; i < N; i++) {
|
---|
457 | for (int j = 0; j < N; j++) {
|
---|
458 | for (int k = 0; k < N; k++) {
|
---|
459 | a[i][j][k] = aV[i + N * (j + N * k)];
|
---|
460 | }
|
---|
461 | }
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 | /**
|
---|
466 | * @param x x-coordinate of the interpolation point.
|
---|
467 | * @param y y-coordinate of the interpolation point.
|
---|
468 | * @param z z-coordinate of the interpolation point.
|
---|
469 | * @return the interpolated value.
|
---|
470 | * @throws OutOfRangeException if {@code x}, {@code y} or
|
---|
471 | * {@code z} are not in the interval {@code [0, 1]}.
|
---|
472 | */
|
---|
473 | public double value(double x, double y, double z)
|
---|
474 | throws OutOfRangeException {
|
---|
475 | if (x < 0 || x > 1) {
|
---|
476 | throw new OutOfRangeException(x, 0, 1);
|
---|
477 | }
|
---|
478 | if (y < 0 || y > 1) {
|
---|
479 | throw new OutOfRangeException(y, 0, 1);
|
---|
480 | }
|
---|
481 | if (z < 0 || z > 1) {
|
---|
482 | throw new OutOfRangeException(z, 0, 1);
|
---|
483 | }
|
---|
484 |
|
---|
485 | final double x2 = x * x;
|
---|
486 | final double x3 = x2 * x;
|
---|
487 | final double[] pX = { 1, x, x2, x3 };
|
---|
488 |
|
---|
489 | final double y2 = y * y;
|
---|
490 | final double y3 = y2 * y;
|
---|
491 | final double[] pY = { 1, y, y2, y3 };
|
---|
492 |
|
---|
493 | final double z2 = z * z;
|
---|
494 | final double z3 = z2 * z;
|
---|
495 | final double[] pZ = { 1, z, z2, z3 };
|
---|
496 |
|
---|
497 | double result = 0;
|
---|
498 | for (int i = 0; i < N; i++) {
|
---|
499 | for (int j = 0; j < N; j++) {
|
---|
500 | for (int k = 0; k < N; k++) {
|
---|
501 | result += a[i][j][k] * pX[i] * pY[j] * pZ[k];
|
---|
502 | }
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | return result;
|
---|
507 | }
|
---|
508 | }
|
---|