source: src/main/java/agents/anac/y2019/harddealer/math3/analysis/function/Sigmoid.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 7.6 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.anac.y2019.harddealer.math3.analysis.function;
19
20import java.util.Arrays;
21
22import agents.anac.y2019.harddealer.math3.analysis.FunctionUtils;
23import agents.anac.y2019.harddealer.math3.analysis.UnivariateFunction;
24import agents.anac.y2019.harddealer.math3.analysis.DifferentiableUnivariateFunction;
25import agents.anac.y2019.harddealer.math3.analysis.ParametricUnivariateFunction;
26import agents.anac.y2019.harddealer.math3.analysis.differentiation.DerivativeStructure;
27import agents.anac.y2019.harddealer.math3.analysis.differentiation.UnivariateDifferentiableFunction;
28import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
29import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
30import agents.anac.y2019.harddealer.math3.util.FastMath;
31
32/**
33 * <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
34 * Sigmoid</a> function.
35 * It is the inverse of the {@link Logit logit} function.
36 * A more flexible version, the generalised logistic, is implemented
37 * by the {@link Logistic} class.
38 *
39 * @since 3.0
40 */
41public class Sigmoid implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
42 /** Lower asymptote. */
43 private final double lo;
44 /** Higher asymptote. */
45 private final double hi;
46
47 /**
48 * Usual sigmoid function, where the lower asymptote is 0 and the higher
49 * asymptote is 1.
50 */
51 public Sigmoid() {
52 this(0, 1);
53 }
54
55 /**
56 * Sigmoid function.
57 *
58 * @param lo Lower asymptote.
59 * @param hi Higher asymptote.
60 */
61 public Sigmoid(double lo,
62 double hi) {
63 this.lo = lo;
64 this.hi = hi;
65 }
66
67 /** {@inheritDoc}
68 * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
69 */
70 @Deprecated
71 public UnivariateFunction derivative() {
72 return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
73 }
74
75 /** {@inheritDoc} */
76 public double value(double x) {
77 return value(x, lo, hi);
78 }
79
80 /**
81 * Parametric function where the input array contains the parameters of
82 * the {@link Sigmoid#Sigmoid(double,double) sigmoid function}, ordered
83 * as follows:
84 * <ul>
85 * <li>Lower asymptote</li>
86 * <li>Higher asymptote</li>
87 * </ul>
88 */
89 public static class Parametric implements ParametricUnivariateFunction {
90 /**
91 * Computes the value of the sigmoid at {@code x}.
92 *
93 * @param x Value for which the function must be computed.
94 * @param param Values of lower asymptote and higher asymptote.
95 * @return the value of the function.
96 * @throws NullArgumentException if {@code param} is {@code null}.
97 * @throws DimensionMismatchException if the size of {@code param} is
98 * not 2.
99 */
100 public double value(double x, double ... param)
101 throws NullArgumentException,
102 DimensionMismatchException {
103 validateParameters(param);
104 return Sigmoid.value(x, param[0], param[1]);
105 }
106
107 /**
108 * Computes the value of the gradient at {@code x}.
109 * The components of the gradient vector are the partial
110 * derivatives of the function with respect to each of the
111 * <em>parameters</em> (lower asymptote and higher asymptote).
112 *
113 * @param x Value at which the gradient must be computed.
114 * @param param Values for lower asymptote and higher asymptote.
115 * @return the gradient vector at {@code x}.
116 * @throws NullArgumentException if {@code param} is {@code null}.
117 * @throws DimensionMismatchException if the size of {@code param} is
118 * not 2.
119 */
120 public double[] gradient(double x, double ... param)
121 throws NullArgumentException,
122 DimensionMismatchException {
123 validateParameters(param);
124
125 final double invExp1 = 1 / (1 + FastMath.exp(-x));
126
127 return new double[] { 1 - invExp1, invExp1 };
128 }
129
130 /**
131 * Validates parameters to ensure they are appropriate for the evaluation of
132 * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
133 * methods.
134 *
135 * @param param Values for lower and higher asymptotes.
136 * @throws NullArgumentException if {@code param} is {@code null}.
137 * @throws DimensionMismatchException if the size of {@code param} is
138 * not 2.
139 */
140 private void validateParameters(double[] param)
141 throws NullArgumentException,
142 DimensionMismatchException {
143 if (param == null) {
144 throw new NullArgumentException();
145 }
146 if (param.length != 2) {
147 throw new DimensionMismatchException(param.length, 2);
148 }
149 }
150 }
151
152 /**
153 * @param x Value at which to compute the sigmoid.
154 * @param lo Lower asymptote.
155 * @param hi Higher asymptote.
156 * @return the value of the sigmoid function at {@code x}.
157 */
158 private static double value(double x,
159 double lo,
160 double hi) {
161 return lo + (hi - lo) / (1 + FastMath.exp(-x));
162 }
163
164 /** {@inheritDoc}
165 * @since 3.1
166 */
167 public DerivativeStructure value(final DerivativeStructure t)
168 throws DimensionMismatchException {
169
170 double[] f = new double[t.getOrder() + 1];
171 final double exp = FastMath.exp(-t.getValue());
172 if (Double.isInfinite(exp)) {
173
174 // special handling near lower boundary, to avoid NaN
175 f[0] = lo;
176 Arrays.fill(f, 1, f.length, 0.0);
177
178 } else {
179
180 // the nth order derivative of sigmoid has the form:
181 // dn(sigmoid(x)/dxn = P_n(exp(-x)) / (1+exp(-x))^(n+1)
182 // where P_n(t) is a degree n polynomial with normalized higher term
183 // P_0(t) = 1, P_1(t) = t, P_2(t) = t^2 - t, P_3(t) = t^3 - 4 t^2 + t...
184 // the general recurrence relation for P_n is:
185 // P_n(x) = n t P_(n-1)(t) - t (1 + t) P_(n-1)'(t)
186 final double[] p = new double[f.length];
187
188 final double inv = 1 / (1 + exp);
189 double coeff = hi - lo;
190 for (int n = 0; n < f.length; ++n) {
191
192 // update and evaluate polynomial P_n(t)
193 double v = 0;
194 p[n] = 1;
195 for (int k = n; k >= 0; --k) {
196 v = v * exp + p[k];
197 if (k > 1) {
198 p[k - 1] = (n - k + 2) * p[k - 2] - (k - 1) * p[k - 1];
199 } else {
200 p[0] = 0;
201 }
202 }
203
204 coeff *= inv;
205 f[n] = coeff * v;
206
207 }
208
209 // fix function value
210 f[0] += lo;
211
212 }
213
214 return t.compose(f);
215
216 }
217
218}
Note: See TracBrowser for help on using the repository browser.