1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.analysis.function;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.analysis.FunctionUtils;
|
---|
21 | import agents.anac.y2019.harddealer.math3.analysis.UnivariateFunction;
|
---|
22 | import agents.anac.y2019.harddealer.math3.analysis.DifferentiableUnivariateFunction;
|
---|
23 | import agents.anac.y2019.harddealer.math3.analysis.ParametricUnivariateFunction;
|
---|
24 | import agents.anac.y2019.harddealer.math3.analysis.differentiation.DerivativeStructure;
|
---|
25 | import agents.anac.y2019.harddealer.math3.analysis.differentiation.UnivariateDifferentiableFunction;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
29 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * <a href="http://en.wikipedia.org/wiki/Generalised_logistic_function">
|
---|
33 | * Generalised logistic</a> function.
|
---|
34 | *
|
---|
35 | * @since 3.0
|
---|
36 | */
|
---|
37 | public class Logistic implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
|
---|
38 | /** Lower asymptote. */
|
---|
39 | private final double a;
|
---|
40 | /** Upper asymptote. */
|
---|
41 | private final double k;
|
---|
42 | /** Growth rate. */
|
---|
43 | private final double b;
|
---|
44 | /** Parameter that affects near which asymptote maximum growth occurs. */
|
---|
45 | private final double oneOverN;
|
---|
46 | /** Parameter that affects the position of the curve along the ordinate axis. */
|
---|
47 | private final double q;
|
---|
48 | /** Abscissa of maximum growth. */
|
---|
49 | private final double m;
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * @param k If {@code b > 0}, value of the function for x going towards +∞.
|
---|
53 | * If {@code b < 0}, value of the function for x going towards -∞.
|
---|
54 | * @param m Abscissa of maximum growth.
|
---|
55 | * @param b Growth rate.
|
---|
56 | * @param q Parameter that affects the position of the curve along the
|
---|
57 | * ordinate axis.
|
---|
58 | * @param a If {@code b > 0}, value of the function for x going towards -∞.
|
---|
59 | * If {@code b < 0}, value of the function for x going towards +∞.
|
---|
60 | * @param n Parameter that affects near which asymptote the maximum
|
---|
61 | * growth occurs.
|
---|
62 | * @throws NotStrictlyPositiveException if {@code n <= 0}.
|
---|
63 | */
|
---|
64 | public Logistic(double k,
|
---|
65 | double m,
|
---|
66 | double b,
|
---|
67 | double q,
|
---|
68 | double a,
|
---|
69 | double n)
|
---|
70 | throws NotStrictlyPositiveException {
|
---|
71 | if (n <= 0) {
|
---|
72 | throw new NotStrictlyPositiveException(n);
|
---|
73 | }
|
---|
74 |
|
---|
75 | this.k = k;
|
---|
76 | this.m = m;
|
---|
77 | this.b = b;
|
---|
78 | this.q = q;
|
---|
79 | this.a = a;
|
---|
80 | oneOverN = 1 / n;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /** {@inheritDoc} */
|
---|
84 | public double value(double x) {
|
---|
85 | return value(m - x, k, b, q, a, oneOverN);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /** {@inheritDoc}
|
---|
89 | * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
|
---|
90 | */
|
---|
91 | @Deprecated
|
---|
92 | public UnivariateFunction derivative() {
|
---|
93 | return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
|
---|
94 | }
|
---|
95 |
|
---|
96 | /**
|
---|
97 | * Parametric function where the input array contains the parameters of
|
---|
98 | * the {@link Logistic#Logistic(double,double,double,double,double,double)
|
---|
99 | * logistic function}, ordered as follows:
|
---|
100 | * <ul>
|
---|
101 | * <li>k</li>
|
---|
102 | * <li>m</li>
|
---|
103 | * <li>b</li>
|
---|
104 | * <li>q</li>
|
---|
105 | * <li>a</li>
|
---|
106 | * <li>n</li>
|
---|
107 | * </ul>
|
---|
108 | */
|
---|
109 | public static class Parametric implements ParametricUnivariateFunction {
|
---|
110 | /**
|
---|
111 | * Computes the value of the sigmoid at {@code x}.
|
---|
112 | *
|
---|
113 | * @param x Value for which the function must be computed.
|
---|
114 | * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
|
---|
115 | * {@code a} and {@code n}.
|
---|
116 | * @return the value of the function.
|
---|
117 | * @throws NullArgumentException if {@code param} is {@code null}.
|
---|
118 | * @throws DimensionMismatchException if the size of {@code param} is
|
---|
119 | * not 6.
|
---|
120 | * @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
|
---|
121 | */
|
---|
122 | public double value(double x, double ... param)
|
---|
123 | throws NullArgumentException,
|
---|
124 | DimensionMismatchException,
|
---|
125 | NotStrictlyPositiveException {
|
---|
126 | validateParameters(param);
|
---|
127 | return Logistic.value(param[1] - x, param[0],
|
---|
128 | param[2], param[3],
|
---|
129 | param[4], 1 / param[5]);
|
---|
130 | }
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Computes the value of the gradient at {@code x}.
|
---|
134 | * The components of the gradient vector are the partial
|
---|
135 | * derivatives of the function with respect to each of the
|
---|
136 | * <em>parameters</em>.
|
---|
137 | *
|
---|
138 | * @param x Value at which the gradient must be computed.
|
---|
139 | * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
|
---|
140 | * {@code a} and {@code n}.
|
---|
141 | * @return the gradient vector at {@code x}.
|
---|
142 | * @throws NullArgumentException if {@code param} is {@code null}.
|
---|
143 | * @throws DimensionMismatchException if the size of {@code param} is
|
---|
144 | * not 6.
|
---|
145 | * @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
|
---|
146 | */
|
---|
147 | public double[] gradient(double x, double ... param)
|
---|
148 | throws NullArgumentException,
|
---|
149 | DimensionMismatchException,
|
---|
150 | NotStrictlyPositiveException {
|
---|
151 | validateParameters(param);
|
---|
152 |
|
---|
153 | final double b = param[2];
|
---|
154 | final double q = param[3];
|
---|
155 |
|
---|
156 | final double mMinusX = param[1] - x;
|
---|
157 | final double oneOverN = 1 / param[5];
|
---|
158 | final double exp = FastMath.exp(b * mMinusX);
|
---|
159 | final double qExp = q * exp;
|
---|
160 | final double qExp1 = qExp + 1;
|
---|
161 | final double factor1 = (param[0] - param[4]) * oneOverN / FastMath.pow(qExp1, oneOverN);
|
---|
162 | final double factor2 = -factor1 / qExp1;
|
---|
163 |
|
---|
164 | // Components of the gradient.
|
---|
165 | final double gk = Logistic.value(mMinusX, 1, b, q, 0, oneOverN);
|
---|
166 | final double gm = factor2 * b * qExp;
|
---|
167 | final double gb = factor2 * mMinusX * qExp;
|
---|
168 | final double gq = factor2 * exp;
|
---|
169 | final double ga = Logistic.value(mMinusX, 0, b, q, 1, oneOverN);
|
---|
170 | final double gn = factor1 * FastMath.log(qExp1) * oneOverN;
|
---|
171 |
|
---|
172 | return new double[] { gk, gm, gb, gq, ga, gn };
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Validates parameters to ensure they are appropriate for the evaluation of
|
---|
177 | * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
|
---|
178 | * methods.
|
---|
179 | *
|
---|
180 | * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
|
---|
181 | * {@code a} and {@code n}.
|
---|
182 | * @throws NullArgumentException if {@code param} is {@code null}.
|
---|
183 | * @throws DimensionMismatchException if the size of {@code param} is
|
---|
184 | * not 6.
|
---|
185 | * @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
|
---|
186 | */
|
---|
187 | private void validateParameters(double[] param)
|
---|
188 | throws NullArgumentException,
|
---|
189 | DimensionMismatchException,
|
---|
190 | NotStrictlyPositiveException {
|
---|
191 | if (param == null) {
|
---|
192 | throw new NullArgumentException();
|
---|
193 | }
|
---|
194 | if (param.length != 6) {
|
---|
195 | throw new DimensionMismatchException(param.length, 6);
|
---|
196 | }
|
---|
197 | if (param[5] <= 0) {
|
---|
198 | throw new NotStrictlyPositiveException(param[5]);
|
---|
199 | }
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * @param mMinusX {@code m - x}.
|
---|
205 | * @param k {@code k}.
|
---|
206 | * @param b {@code b}.
|
---|
207 | * @param q {@code q}.
|
---|
208 | * @param a {@code a}.
|
---|
209 | * @param oneOverN {@code 1 / n}.
|
---|
210 | * @return the value of the function.
|
---|
211 | */
|
---|
212 | private static double value(double mMinusX,
|
---|
213 | double k,
|
---|
214 | double b,
|
---|
215 | double q,
|
---|
216 | double a,
|
---|
217 | double oneOverN) {
|
---|
218 | return a + (k - a) / FastMath.pow(1 + q * FastMath.exp(b * mMinusX), oneOverN);
|
---|
219 | }
|
---|
220 |
|
---|
221 | /** {@inheritDoc}
|
---|
222 | * @since 3.1
|
---|
223 | */
|
---|
224 | public DerivativeStructure value(final DerivativeStructure t) {
|
---|
225 | return t.negate().add(m).multiply(b).exp().multiply(q).add(1).pow(oneOverN).reciprocal().multiply(k - a).add(a);
|
---|
226 | }
|
---|
227 |
|
---|
228 | }
|
---|