1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.analysis.differentiation;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 | import java.util.Collections;
|
---|
21 | import java.util.HashMap;
|
---|
22 | import java.util.Map;
|
---|
23 |
|
---|
24 | import agents.anac.y2019.harddealer.math3.Field;
|
---|
25 | import agents.anac.y2019.harddealer.math3.FieldElement;
|
---|
26 | import agents.anac.y2019.harddealer.math3.RealFieldElement;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
29 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
30 | import agents.anac.y2019.harddealer.math3.util.MathUtils;
|
---|
31 | import agents.anac.y2019.harddealer.math3.util.Precision;
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * First derivative computation with large number of variables.
|
---|
35 | * <p>
|
---|
36 | * This class plays a similar role to {@link DerivativeStructure}, with
|
---|
37 | * a focus on efficiency when dealing with large number of independent variables
|
---|
38 | * and most computation depend only on a few of them, and when only first derivative
|
---|
39 | * is desired. When these conditions are met, this class should be much faster than
|
---|
40 | * {@link DerivativeStructure} and use less memory.
|
---|
41 | * </p>
|
---|
42 | *
|
---|
43 | * @since 3.3
|
---|
44 | */
|
---|
45 | public class SparseGradient implements RealFieldElement<SparseGradient>, Serializable {
|
---|
46 |
|
---|
47 | /** Serializable UID. */
|
---|
48 | private static final long serialVersionUID = 20131025L;
|
---|
49 |
|
---|
50 | /** Value of the calculation. */
|
---|
51 | private double value;
|
---|
52 |
|
---|
53 | /** Stored derivative, each key representing a different independent variable. */
|
---|
54 | private final Map<Integer, Double> derivatives;
|
---|
55 |
|
---|
56 | /** Internal constructor.
|
---|
57 | * @param value value of the function
|
---|
58 | * @param derivatives derivatives map, a deep copy will be performed,
|
---|
59 | * so the map given here will remain safe from changes in the new instance,
|
---|
60 | * may be null to create an empty derivatives map, i.e. a constant value
|
---|
61 | */
|
---|
62 | private SparseGradient(final double value, final Map<Integer, Double> derivatives) {
|
---|
63 | this.value = value;
|
---|
64 | this.derivatives = new HashMap<Integer, Double>();
|
---|
65 | if (derivatives != null) {
|
---|
66 | this.derivatives.putAll(derivatives);
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | /** Internal constructor.
|
---|
71 | * @param value value of the function
|
---|
72 | * @param scale scaling factor to apply to all derivatives
|
---|
73 | * @param derivatives derivatives map, a deep copy will be performed,
|
---|
74 | * so the map given here will remain safe from changes in the new instance,
|
---|
75 | * may be null to create an empty derivatives map, i.e. a constant value
|
---|
76 | */
|
---|
77 | private SparseGradient(final double value, final double scale,
|
---|
78 | final Map<Integer, Double> derivatives) {
|
---|
79 | this.value = value;
|
---|
80 | this.derivatives = new HashMap<Integer, Double>();
|
---|
81 | if (derivatives != null) {
|
---|
82 | for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
83 | this.derivatives.put(entry.getKey(), scale * entry.getValue());
|
---|
84 | }
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | /** Factory method creating a constant.
|
---|
89 | * @param value value of the constant
|
---|
90 | * @return a new instance
|
---|
91 | */
|
---|
92 | public static SparseGradient createConstant(final double value) {
|
---|
93 | return new SparseGradient(value, Collections.<Integer, Double> emptyMap());
|
---|
94 | }
|
---|
95 |
|
---|
96 | /** Factory method creating an independent variable.
|
---|
97 | * @param idx index of the variable
|
---|
98 | * @param value value of the variable
|
---|
99 | * @return a new instance
|
---|
100 | */
|
---|
101 | public static SparseGradient createVariable(final int idx, final double value) {
|
---|
102 | return new SparseGradient(value, Collections.singletonMap(idx, 1.0));
|
---|
103 | }
|
---|
104 |
|
---|
105 | /**
|
---|
106 | * Find the number of variables.
|
---|
107 | * @return number of variables
|
---|
108 | */
|
---|
109 | public int numVars() {
|
---|
110 | return derivatives.size();
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Get the derivative with respect to a particular index variable.
|
---|
115 | *
|
---|
116 | * @param index index to differentiate with.
|
---|
117 | * @return derivative with respect to a particular index variable
|
---|
118 | */
|
---|
119 | public double getDerivative(final int index) {
|
---|
120 | final Double out = derivatives.get(index);
|
---|
121 | return (out == null) ? 0.0 : out;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Get the value of the function.
|
---|
126 | * @return value of the function.
|
---|
127 | */
|
---|
128 | public double getValue() {
|
---|
129 | return value;
|
---|
130 | }
|
---|
131 |
|
---|
132 | /** {@inheritDoc} */
|
---|
133 | public double getReal() {
|
---|
134 | return value;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /** {@inheritDoc} */
|
---|
138 | public SparseGradient add(final SparseGradient a) {
|
---|
139 | final SparseGradient out = new SparseGradient(value + a.value, derivatives);
|
---|
140 | for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
141 | final int id = entry.getKey();
|
---|
142 | final Double old = out.derivatives.get(id);
|
---|
143 | if (old == null) {
|
---|
144 | out.derivatives.put(id, entry.getValue());
|
---|
145 | } else {
|
---|
146 | out.derivatives.put(id, old + entry.getValue());
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | return out;
|
---|
151 | }
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Add in place.
|
---|
155 | * <p>
|
---|
156 | * This method is designed to be faster when used multiple times in a loop.
|
---|
157 | * </p>
|
---|
158 | * <p>
|
---|
159 | * The instance is changed here, in order to not change the
|
---|
160 | * instance the {@link #add(SparseGradient)} method should
|
---|
161 | * be used.
|
---|
162 | * </p>
|
---|
163 | * @param a instance to add
|
---|
164 | */
|
---|
165 | public void addInPlace(final SparseGradient a) {
|
---|
166 | value += a.value;
|
---|
167 | for (final Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
168 | final int id = entry.getKey();
|
---|
169 | final Double old = derivatives.get(id);
|
---|
170 | if (old == null) {
|
---|
171 | derivatives.put(id, entry.getValue());
|
---|
172 | } else {
|
---|
173 | derivatives.put(id, old + entry.getValue());
|
---|
174 | }
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | /** {@inheritDoc} */
|
---|
179 | public SparseGradient add(final double c) {
|
---|
180 | final SparseGradient out = new SparseGradient(value + c, derivatives);
|
---|
181 | return out;
|
---|
182 | }
|
---|
183 |
|
---|
184 | /** {@inheritDoc} */
|
---|
185 | public SparseGradient subtract(final SparseGradient a) {
|
---|
186 | final SparseGradient out = new SparseGradient(value - a.value, derivatives);
|
---|
187 | for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
188 | final int id = entry.getKey();
|
---|
189 | final Double old = out.derivatives.get(id);
|
---|
190 | if (old == null) {
|
---|
191 | out.derivatives.put(id, -entry.getValue());
|
---|
192 | } else {
|
---|
193 | out.derivatives.put(id, old - entry.getValue());
|
---|
194 | }
|
---|
195 | }
|
---|
196 | return out;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /** {@inheritDoc} */
|
---|
200 | public SparseGradient subtract(double c) {
|
---|
201 | return new SparseGradient(value - c, derivatives);
|
---|
202 | }
|
---|
203 |
|
---|
204 | /** {@inheritDoc} */
|
---|
205 | public SparseGradient multiply(final SparseGradient a) {
|
---|
206 | final SparseGradient out =
|
---|
207 | new SparseGradient(value * a.value, Collections.<Integer, Double> emptyMap());
|
---|
208 |
|
---|
209 | // Derivatives.
|
---|
210 | for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
211 | out.derivatives.put(entry.getKey(), a.value * entry.getValue());
|
---|
212 | }
|
---|
213 | for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
214 | final int id = entry.getKey();
|
---|
215 | final Double old = out.derivatives.get(id);
|
---|
216 | if (old == null) {
|
---|
217 | out.derivatives.put(id, value * entry.getValue());
|
---|
218 | } else {
|
---|
219 | out.derivatives.put(id, old + value * entry.getValue());
|
---|
220 | }
|
---|
221 | }
|
---|
222 | return out;
|
---|
223 | }
|
---|
224 |
|
---|
225 | /**
|
---|
226 | * Multiply in place.
|
---|
227 | * <p>
|
---|
228 | * This method is designed to be faster when used multiple times in a loop.
|
---|
229 | * </p>
|
---|
230 | * <p>
|
---|
231 | * The instance is changed here, in order to not change the
|
---|
232 | * instance the {@link #add(SparseGradient)} method should
|
---|
233 | * be used.
|
---|
234 | * </p>
|
---|
235 | * @param a instance to multiply
|
---|
236 | */
|
---|
237 | public void multiplyInPlace(final SparseGradient a) {
|
---|
238 | // Derivatives.
|
---|
239 | for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
240 | derivatives.put(entry.getKey(), a.value * entry.getValue());
|
---|
241 | }
|
---|
242 | for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
243 | final int id = entry.getKey();
|
---|
244 | final Double old = derivatives.get(id);
|
---|
245 | if (old == null) {
|
---|
246 | derivatives.put(id, value * entry.getValue());
|
---|
247 | } else {
|
---|
248 | derivatives.put(id, old + value * entry.getValue());
|
---|
249 | }
|
---|
250 | }
|
---|
251 | value *= a.value;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /** {@inheritDoc} */
|
---|
255 | public SparseGradient multiply(final double c) {
|
---|
256 | return new SparseGradient(value * c, c, derivatives);
|
---|
257 | }
|
---|
258 |
|
---|
259 | /** {@inheritDoc} */
|
---|
260 | public SparseGradient multiply(final int n) {
|
---|
261 | return new SparseGradient(value * n, n, derivatives);
|
---|
262 | }
|
---|
263 |
|
---|
264 | /** {@inheritDoc} */
|
---|
265 | public SparseGradient divide(final SparseGradient a) {
|
---|
266 | final SparseGradient out = new SparseGradient(value / a.value, Collections.<Integer, Double> emptyMap());
|
---|
267 |
|
---|
268 | // Derivatives.
|
---|
269 | for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
270 | out.derivatives.put(entry.getKey(), entry.getValue() / a.value);
|
---|
271 | }
|
---|
272 | for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
|
---|
273 | final int id = entry.getKey();
|
---|
274 | final Double old = out.derivatives.get(id);
|
---|
275 | if (old == null) {
|
---|
276 | out.derivatives.put(id, -out.value / a.value * entry.getValue());
|
---|
277 | } else {
|
---|
278 | out.derivatives.put(id, old - out.value / a.value * entry.getValue());
|
---|
279 | }
|
---|
280 | }
|
---|
281 | return out;
|
---|
282 | }
|
---|
283 |
|
---|
284 | /** {@inheritDoc} */
|
---|
285 | public SparseGradient divide(final double c) {
|
---|
286 | return new SparseGradient(value / c, 1.0 / c, derivatives);
|
---|
287 | }
|
---|
288 |
|
---|
289 | /** {@inheritDoc} */
|
---|
290 | public SparseGradient negate() {
|
---|
291 | return new SparseGradient(-value, -1.0, derivatives);
|
---|
292 | }
|
---|
293 |
|
---|
294 | /** {@inheritDoc} */
|
---|
295 | public Field<SparseGradient> getField() {
|
---|
296 | return new Field<SparseGradient>() {
|
---|
297 |
|
---|
298 | /** {@inheritDoc} */
|
---|
299 | public SparseGradient getZero() {
|
---|
300 | return createConstant(0);
|
---|
301 | }
|
---|
302 |
|
---|
303 | /** {@inheritDoc} */
|
---|
304 | public SparseGradient getOne() {
|
---|
305 | return createConstant(1);
|
---|
306 | }
|
---|
307 |
|
---|
308 | /** {@inheritDoc} */
|
---|
309 | public Class<? extends FieldElement<SparseGradient>> getRuntimeClass() {
|
---|
310 | return SparseGradient.class;
|
---|
311 | }
|
---|
312 |
|
---|
313 | };
|
---|
314 | }
|
---|
315 |
|
---|
316 | /** {@inheritDoc} */
|
---|
317 | public SparseGradient remainder(final double a) {
|
---|
318 | return new SparseGradient(FastMath.IEEEremainder(value, a), derivatives);
|
---|
319 | }
|
---|
320 |
|
---|
321 | /** {@inheritDoc} */
|
---|
322 | public SparseGradient remainder(final SparseGradient a) {
|
---|
323 |
|
---|
324 | // compute k such that lhs % rhs = lhs - k rhs
|
---|
325 | final double rem = FastMath.IEEEremainder(value, a.value);
|
---|
326 | final double k = FastMath.rint((value - rem) / a.value);
|
---|
327 |
|
---|
328 | return subtract(a.multiply(k));
|
---|
329 |
|
---|
330 | }
|
---|
331 |
|
---|
332 | /** {@inheritDoc} */
|
---|
333 | public SparseGradient abs() {
|
---|
334 | if (Double.doubleToLongBits(value) < 0) {
|
---|
335 | // we use the bits representation to also handle -0.0
|
---|
336 | return negate();
|
---|
337 | } else {
|
---|
338 | return this;
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 | /** {@inheritDoc} */
|
---|
343 | public SparseGradient ceil() {
|
---|
344 | return createConstant(FastMath.ceil(value));
|
---|
345 | }
|
---|
346 |
|
---|
347 | /** {@inheritDoc} */
|
---|
348 | public SparseGradient floor() {
|
---|
349 | return createConstant(FastMath.floor(value));
|
---|
350 | }
|
---|
351 |
|
---|
352 | /** {@inheritDoc} */
|
---|
353 | public SparseGradient rint() {
|
---|
354 | return createConstant(FastMath.rint(value));
|
---|
355 | }
|
---|
356 |
|
---|
357 | /** {@inheritDoc} */
|
---|
358 | public long round() {
|
---|
359 | return FastMath.round(value);
|
---|
360 | }
|
---|
361 |
|
---|
362 | /** {@inheritDoc} */
|
---|
363 | public SparseGradient signum() {
|
---|
364 | return createConstant(FastMath.signum(value));
|
---|
365 | }
|
---|
366 |
|
---|
367 | /** {@inheritDoc} */
|
---|
368 | public SparseGradient copySign(final SparseGradient sign) {
|
---|
369 | final long m = Double.doubleToLongBits(value);
|
---|
370 | final long s = Double.doubleToLongBits(sign.value);
|
---|
371 | if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
|
---|
372 | return this;
|
---|
373 | }
|
---|
374 | return negate(); // flip sign
|
---|
375 | }
|
---|
376 |
|
---|
377 | /** {@inheritDoc} */
|
---|
378 | public SparseGradient copySign(final double sign) {
|
---|
379 | final long m = Double.doubleToLongBits(value);
|
---|
380 | final long s = Double.doubleToLongBits(sign);
|
---|
381 | if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
|
---|
382 | return this;
|
---|
383 | }
|
---|
384 | return negate(); // flip sign
|
---|
385 | }
|
---|
386 |
|
---|
387 | /** {@inheritDoc} */
|
---|
388 | public SparseGradient scalb(final int n) {
|
---|
389 | final SparseGradient out = new SparseGradient(FastMath.scalb(value, n), Collections.<Integer, Double> emptyMap());
|
---|
390 | for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
391 | out.derivatives.put(entry.getKey(), FastMath.scalb(entry.getValue(), n));
|
---|
392 | }
|
---|
393 | return out;
|
---|
394 | }
|
---|
395 |
|
---|
396 | /** {@inheritDoc} */
|
---|
397 | public SparseGradient hypot(final SparseGradient y) {
|
---|
398 | if (Double.isInfinite(value) || Double.isInfinite(y.value)) {
|
---|
399 | return createConstant(Double.POSITIVE_INFINITY);
|
---|
400 | } else if (Double.isNaN(value) || Double.isNaN(y.value)) {
|
---|
401 | return createConstant(Double.NaN);
|
---|
402 | } else {
|
---|
403 |
|
---|
404 | final int expX = FastMath.getExponent(value);
|
---|
405 | final int expY = FastMath.getExponent(y.value);
|
---|
406 | if (expX > expY + 27) {
|
---|
407 | // y is negligible with respect to x
|
---|
408 | return abs();
|
---|
409 | } else if (expY > expX + 27) {
|
---|
410 | // x is negligible with respect to y
|
---|
411 | return y.abs();
|
---|
412 | } else {
|
---|
413 |
|
---|
414 | // find an intermediate scale to avoid both overflow and underflow
|
---|
415 | final int middleExp = (expX + expY) / 2;
|
---|
416 |
|
---|
417 | // scale parameters without losing precision
|
---|
418 | final SparseGradient scaledX = scalb(-middleExp);
|
---|
419 | final SparseGradient scaledY = y.scalb(-middleExp);
|
---|
420 |
|
---|
421 | // compute scaled hypotenuse
|
---|
422 | final SparseGradient scaledH =
|
---|
423 | scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();
|
---|
424 |
|
---|
425 | // remove scaling
|
---|
426 | return scaledH.scalb(middleExp);
|
---|
427 |
|
---|
428 | }
|
---|
429 |
|
---|
430 | }
|
---|
431 | }
|
---|
432 |
|
---|
433 | /**
|
---|
434 | * Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
|
---|
435 | * - sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
---|
436 | * avoiding intermediate overflow or underflow.
|
---|
437 | *
|
---|
438 | * <ul>
|
---|
439 | * <li> If either argument is infinite, then the result is positive infinity.</li>
|
---|
440 | * <li> else, if either argument is NaN then the result is NaN.</li>
|
---|
441 | * </ul>
|
---|
442 | *
|
---|
443 | * @param x a value
|
---|
444 | * @param y a value
|
---|
445 | * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
---|
446 | */
|
---|
447 | public static SparseGradient hypot(final SparseGradient x, final SparseGradient y) {
|
---|
448 | return x.hypot(y);
|
---|
449 | }
|
---|
450 |
|
---|
451 | /** {@inheritDoc} */
|
---|
452 | public SparseGradient reciprocal() {
|
---|
453 | return new SparseGradient(1.0 / value, -1.0 / (value * value), derivatives);
|
---|
454 | }
|
---|
455 |
|
---|
456 | /** {@inheritDoc} */
|
---|
457 | public SparseGradient sqrt() {
|
---|
458 | final double sqrt = FastMath.sqrt(value);
|
---|
459 | return new SparseGradient(sqrt, 0.5 / sqrt, derivatives);
|
---|
460 | }
|
---|
461 |
|
---|
462 | /** {@inheritDoc} */
|
---|
463 | public SparseGradient cbrt() {
|
---|
464 | final double cbrt = FastMath.cbrt(value);
|
---|
465 | return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives);
|
---|
466 | }
|
---|
467 |
|
---|
468 | /** {@inheritDoc} */
|
---|
469 | public SparseGradient rootN(final int n) {
|
---|
470 | if (n == 2) {
|
---|
471 | return sqrt();
|
---|
472 | } else if (n == 3) {
|
---|
473 | return cbrt();
|
---|
474 | } else {
|
---|
475 | final double root = FastMath.pow(value, 1.0 / n);
|
---|
476 | return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives);
|
---|
477 | }
|
---|
478 | }
|
---|
479 |
|
---|
480 | /** {@inheritDoc} */
|
---|
481 | public SparseGradient pow(final double p) {
|
---|
482 | return new SparseGradient(FastMath.pow(value, p), p * FastMath.pow(value, p - 1), derivatives);
|
---|
483 | }
|
---|
484 |
|
---|
485 | /** {@inheritDoc} */
|
---|
486 | public SparseGradient pow(final int n) {
|
---|
487 | if (n == 0) {
|
---|
488 | return getField().getOne();
|
---|
489 | } else {
|
---|
490 | final double valueNm1 = FastMath.pow(value, n - 1);
|
---|
491 | return new SparseGradient(value * valueNm1, n * valueNm1, derivatives);
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 | /** {@inheritDoc} */
|
---|
496 | public SparseGradient pow(final SparseGradient e) {
|
---|
497 | return log().multiply(e).exp();
|
---|
498 | }
|
---|
499 |
|
---|
500 | /** Compute a<sup>x</sup> where a is a double and x a {@link SparseGradient}
|
---|
501 | * @param a number to exponentiate
|
---|
502 | * @param x power to apply
|
---|
503 | * @return a<sup>x</sup>
|
---|
504 | */
|
---|
505 | public static SparseGradient pow(final double a, final SparseGradient x) {
|
---|
506 | if (a == 0) {
|
---|
507 | if (x.value == 0) {
|
---|
508 | return x.compose(1.0, Double.NEGATIVE_INFINITY);
|
---|
509 | } else if (x.value < 0) {
|
---|
510 | return x.compose(Double.NaN, Double.NaN);
|
---|
511 | } else {
|
---|
512 | return x.getField().getZero();
|
---|
513 | }
|
---|
514 | } else {
|
---|
515 | final double ax = FastMath.pow(a, x.value);
|
---|
516 | return new SparseGradient(ax, ax * FastMath.log(a), x.derivatives);
|
---|
517 | }
|
---|
518 | }
|
---|
519 |
|
---|
520 | /** {@inheritDoc} */
|
---|
521 | public SparseGradient exp() {
|
---|
522 | final double e = FastMath.exp(value);
|
---|
523 | return new SparseGradient(e, e, derivatives);
|
---|
524 | }
|
---|
525 |
|
---|
526 | /** {@inheritDoc} */
|
---|
527 | public SparseGradient expm1() {
|
---|
528 | return new SparseGradient(FastMath.expm1(value), FastMath.exp(value), derivatives);
|
---|
529 | }
|
---|
530 |
|
---|
531 | /** {@inheritDoc} */
|
---|
532 | public SparseGradient log() {
|
---|
533 | return new SparseGradient(FastMath.log(value), 1.0 / value, derivatives);
|
---|
534 | }
|
---|
535 |
|
---|
536 | /** Base 10 logarithm.
|
---|
537 | * @return base 10 logarithm of the instance
|
---|
538 | */
|
---|
539 | public SparseGradient log10() {
|
---|
540 | return new SparseGradient(FastMath.log10(value), 1.0 / (FastMath.log(10.0) * value), derivatives);
|
---|
541 | }
|
---|
542 |
|
---|
543 | /** {@inheritDoc} */
|
---|
544 | public SparseGradient log1p() {
|
---|
545 | return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives);
|
---|
546 | }
|
---|
547 |
|
---|
548 | /** {@inheritDoc} */
|
---|
549 | public SparseGradient cos() {
|
---|
550 | return new SparseGradient(FastMath.cos(value), -FastMath.sin(value), derivatives);
|
---|
551 | }
|
---|
552 |
|
---|
553 | /** {@inheritDoc} */
|
---|
554 | public SparseGradient sin() {
|
---|
555 | return new SparseGradient(FastMath.sin(value), FastMath.cos(value), derivatives);
|
---|
556 | }
|
---|
557 |
|
---|
558 | /** {@inheritDoc} */
|
---|
559 | public SparseGradient tan() {
|
---|
560 | final double t = FastMath.tan(value);
|
---|
561 | return new SparseGradient(t, 1 + t * t, derivatives);
|
---|
562 | }
|
---|
563 |
|
---|
564 | /** {@inheritDoc} */
|
---|
565 | public SparseGradient acos() {
|
---|
566 | return new SparseGradient(FastMath.acos(value), -1.0 / FastMath.sqrt(1 - value * value), derivatives);
|
---|
567 | }
|
---|
568 |
|
---|
569 | /** {@inheritDoc} */
|
---|
570 | public SparseGradient asin() {
|
---|
571 | return new SparseGradient(FastMath.asin(value), 1.0 / FastMath.sqrt(1 - value * value), derivatives);
|
---|
572 | }
|
---|
573 |
|
---|
574 | /** {@inheritDoc} */
|
---|
575 | public SparseGradient atan() {
|
---|
576 | return new SparseGradient(FastMath.atan(value), 1.0 / (1 + value * value), derivatives);
|
---|
577 | }
|
---|
578 |
|
---|
579 | /** {@inheritDoc} */
|
---|
580 | public SparseGradient atan2(final SparseGradient x) {
|
---|
581 |
|
---|
582 | // compute r = sqrt(x^2+y^2)
|
---|
583 | final SparseGradient r = multiply(this).add(x.multiply(x)).sqrt();
|
---|
584 |
|
---|
585 | final SparseGradient a;
|
---|
586 | if (x.value >= 0) {
|
---|
587 |
|
---|
588 | // compute atan2(y, x) = 2 atan(y / (r + x))
|
---|
589 | a = divide(r.add(x)).atan().multiply(2);
|
---|
590 |
|
---|
591 | } else {
|
---|
592 |
|
---|
593 | // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
|
---|
594 | final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2);
|
---|
595 | a = tmp.add(tmp.value <= 0 ? -FastMath.PI : FastMath.PI);
|
---|
596 |
|
---|
597 | }
|
---|
598 |
|
---|
599 | // fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
|
---|
600 | a.value = FastMath.atan2(value, x.value);
|
---|
601 |
|
---|
602 | return a;
|
---|
603 |
|
---|
604 | }
|
---|
605 |
|
---|
606 | /** Two arguments arc tangent operation.
|
---|
607 | * @param y first argument of the arc tangent
|
---|
608 | * @param x second argument of the arc tangent
|
---|
609 | * @return atan2(y, x)
|
---|
610 | */
|
---|
611 | public static SparseGradient atan2(final SparseGradient y, final SparseGradient x) {
|
---|
612 | return y.atan2(x);
|
---|
613 | }
|
---|
614 |
|
---|
615 | /** {@inheritDoc} */
|
---|
616 | public SparseGradient cosh() {
|
---|
617 | return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives);
|
---|
618 | }
|
---|
619 |
|
---|
620 | /** {@inheritDoc} */
|
---|
621 | public SparseGradient sinh() {
|
---|
622 | return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives);
|
---|
623 | }
|
---|
624 |
|
---|
625 | /** {@inheritDoc} */
|
---|
626 | public SparseGradient tanh() {
|
---|
627 | final double t = FastMath.tanh(value);
|
---|
628 | return new SparseGradient(t, 1 - t * t, derivatives);
|
---|
629 | }
|
---|
630 |
|
---|
631 | /** {@inheritDoc} */
|
---|
632 | public SparseGradient acosh() {
|
---|
633 | return new SparseGradient(FastMath.acosh(value), 1.0 / FastMath.sqrt(value * value - 1.0), derivatives);
|
---|
634 | }
|
---|
635 |
|
---|
636 | /** {@inheritDoc} */
|
---|
637 | public SparseGradient asinh() {
|
---|
638 | return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives);
|
---|
639 | }
|
---|
640 |
|
---|
641 | /** {@inheritDoc} */
|
---|
642 | public SparseGradient atanh() {
|
---|
643 | return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
|
---|
644 | }
|
---|
645 |
|
---|
646 | /** Convert radians to degrees, with error of less than 0.5 ULP
|
---|
647 | * @return instance converted into degrees
|
---|
648 | */
|
---|
649 | public SparseGradient toDegrees() {
|
---|
650 | return new SparseGradient(FastMath.toDegrees(value), FastMath.toDegrees(1.0), derivatives);
|
---|
651 | }
|
---|
652 |
|
---|
653 | /** Convert degrees to radians, with error of less than 0.5 ULP
|
---|
654 | * @return instance converted into radians
|
---|
655 | */
|
---|
656 | public SparseGradient toRadians() {
|
---|
657 | return new SparseGradient(FastMath.toRadians(value), FastMath.toRadians(1.0), derivatives);
|
---|
658 | }
|
---|
659 |
|
---|
660 | /** Evaluate Taylor expansion of a sparse gradient.
|
---|
661 | * @param delta parameters offsets (Δx, Δy, ...)
|
---|
662 | * @return value of the Taylor expansion at x + Δx, y + Δy, ...
|
---|
663 | */
|
---|
664 | public double taylor(final double ... delta) {
|
---|
665 | double y = value;
|
---|
666 | for (int i = 0; i < delta.length; ++i) {
|
---|
667 | y += delta[i] * getDerivative(i);
|
---|
668 | }
|
---|
669 | return y;
|
---|
670 | }
|
---|
671 |
|
---|
672 | /** Compute composition of the instance by a univariate function.
|
---|
673 | * @param f0 value of the function at (i.e. f({@link #getValue()}))
|
---|
674 | * @param f1 first derivative of the function at
|
---|
675 | * the current point (i.e. f'({@link #getValue()}))
|
---|
676 | * @return f(this)
|
---|
677 | */
|
---|
678 | public SparseGradient compose(final double f0, final double f1) {
|
---|
679 | return new SparseGradient(f0, f1, derivatives);
|
---|
680 | }
|
---|
681 |
|
---|
682 | /** {@inheritDoc} */
|
---|
683 | public SparseGradient linearCombination(final SparseGradient[] a,
|
---|
684 | final SparseGradient[] b)
|
---|
685 | throws DimensionMismatchException {
|
---|
686 |
|
---|
687 | // compute a simple value, with all partial derivatives
|
---|
688 | SparseGradient out = a[0].getField().getZero();
|
---|
689 | for (int i = 0; i < a.length; ++i) {
|
---|
690 | out = out.add(a[i].multiply(b[i]));
|
---|
691 | }
|
---|
692 |
|
---|
693 | // recompute an accurate value, taking care of cancellations
|
---|
694 | final double[] aDouble = new double[a.length];
|
---|
695 | for (int i = 0; i < a.length; ++i) {
|
---|
696 | aDouble[i] = a[i].getValue();
|
---|
697 | }
|
---|
698 | final double[] bDouble = new double[b.length];
|
---|
699 | for (int i = 0; i < b.length; ++i) {
|
---|
700 | bDouble[i] = b[i].getValue();
|
---|
701 | }
|
---|
702 | out.value = MathArrays.linearCombination(aDouble, bDouble);
|
---|
703 |
|
---|
704 | return out;
|
---|
705 |
|
---|
706 | }
|
---|
707 |
|
---|
708 | /** {@inheritDoc} */
|
---|
709 | public SparseGradient linearCombination(final double[] a, final SparseGradient[] b) {
|
---|
710 |
|
---|
711 | // compute a simple value, with all partial derivatives
|
---|
712 | SparseGradient out = b[0].getField().getZero();
|
---|
713 | for (int i = 0; i < a.length; ++i) {
|
---|
714 | out = out.add(b[i].multiply(a[i]));
|
---|
715 | }
|
---|
716 |
|
---|
717 | // recompute an accurate value, taking care of cancellations
|
---|
718 | final double[] bDouble = new double[b.length];
|
---|
719 | for (int i = 0; i < b.length; ++i) {
|
---|
720 | bDouble[i] = b[i].getValue();
|
---|
721 | }
|
---|
722 | out.value = MathArrays.linearCombination(a, bDouble);
|
---|
723 |
|
---|
724 | return out;
|
---|
725 |
|
---|
726 | }
|
---|
727 |
|
---|
728 | /** {@inheritDoc} */
|
---|
729 | public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
|
---|
730 | final SparseGradient a2, final SparseGradient b2) {
|
---|
731 |
|
---|
732 | // compute a simple value, with all partial derivatives
|
---|
733 | SparseGradient out = a1.multiply(b1).add(a2.multiply(b2));
|
---|
734 |
|
---|
735 | // recompute an accurate value, taking care of cancellations
|
---|
736 | out.value = MathArrays.linearCombination(a1.value, b1.value, a2.value, b2.value);
|
---|
737 |
|
---|
738 | return out;
|
---|
739 |
|
---|
740 | }
|
---|
741 |
|
---|
742 | /** {@inheritDoc} */
|
---|
743 | public SparseGradient linearCombination(final double a1, final SparseGradient b1,
|
---|
744 | final double a2, final SparseGradient b2) {
|
---|
745 |
|
---|
746 | // compute a simple value, with all partial derivatives
|
---|
747 | SparseGradient out = b1.multiply(a1).add(b2.multiply(a2));
|
---|
748 |
|
---|
749 | // recompute an accurate value, taking care of cancellations
|
---|
750 | out.value = MathArrays.linearCombination(a1, b1.value, a2, b2.value);
|
---|
751 |
|
---|
752 | return out;
|
---|
753 |
|
---|
754 | }
|
---|
755 |
|
---|
756 | /** {@inheritDoc} */
|
---|
757 | public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
|
---|
758 | final SparseGradient a2, final SparseGradient b2,
|
---|
759 | final SparseGradient a3, final SparseGradient b3) {
|
---|
760 |
|
---|
761 | // compute a simple value, with all partial derivatives
|
---|
762 | SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3));
|
---|
763 |
|
---|
764 | // recompute an accurate value, taking care of cancellations
|
---|
765 | out.value = MathArrays.linearCombination(a1.value, b1.value,
|
---|
766 | a2.value, b2.value,
|
---|
767 | a3.value, b3.value);
|
---|
768 |
|
---|
769 | return out;
|
---|
770 |
|
---|
771 | }
|
---|
772 |
|
---|
773 | /** {@inheritDoc} */
|
---|
774 | public SparseGradient linearCombination(final double a1, final SparseGradient b1,
|
---|
775 | final double a2, final SparseGradient b2,
|
---|
776 | final double a3, final SparseGradient b3) {
|
---|
777 |
|
---|
778 | // compute a simple value, with all partial derivatives
|
---|
779 | SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3));
|
---|
780 |
|
---|
781 | // recompute an accurate value, taking care of cancellations
|
---|
782 | out.value = MathArrays.linearCombination(a1, b1.value,
|
---|
783 | a2, b2.value,
|
---|
784 | a3, b3.value);
|
---|
785 |
|
---|
786 | return out;
|
---|
787 |
|
---|
788 | }
|
---|
789 |
|
---|
790 | /** {@inheritDoc} */
|
---|
791 | public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
|
---|
792 | final SparseGradient a2, final SparseGradient b2,
|
---|
793 | final SparseGradient a3, final SparseGradient b3,
|
---|
794 | final SparseGradient a4, final SparseGradient b4) {
|
---|
795 |
|
---|
796 | // compute a simple value, with all partial derivatives
|
---|
797 | SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)).add(a4.multiply(b4));
|
---|
798 |
|
---|
799 | // recompute an accurate value, taking care of cancellations
|
---|
800 | out.value = MathArrays.linearCombination(a1.value, b1.value,
|
---|
801 | a2.value, b2.value,
|
---|
802 | a3.value, b3.value,
|
---|
803 | a4.value, b4.value);
|
---|
804 |
|
---|
805 | return out;
|
---|
806 |
|
---|
807 | }
|
---|
808 |
|
---|
809 | /** {@inheritDoc} */
|
---|
810 | public SparseGradient linearCombination(final double a1, final SparseGradient b1,
|
---|
811 | final double a2, final SparseGradient b2,
|
---|
812 | final double a3, final SparseGradient b3,
|
---|
813 | final double a4, final SparseGradient b4) {
|
---|
814 |
|
---|
815 | // compute a simple value, with all partial derivatives
|
---|
816 | SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)).add(b4.multiply(a4));
|
---|
817 |
|
---|
818 | // recompute an accurate value, taking care of cancellations
|
---|
819 | out.value = MathArrays.linearCombination(a1, b1.value,
|
---|
820 | a2, b2.value,
|
---|
821 | a3, b3.value,
|
---|
822 | a4, b4.value);
|
---|
823 |
|
---|
824 | return out;
|
---|
825 |
|
---|
826 | }
|
---|
827 |
|
---|
828 | /**
|
---|
829 | * Test for the equality of two sparse gradients.
|
---|
830 | * <p>
|
---|
831 | * Sparse gradients are considered equal if they have the same value
|
---|
832 | * and the same derivatives.
|
---|
833 | * </p>
|
---|
834 | * @param other Object to test for equality to this
|
---|
835 | * @return true if two sparse gradients are equal
|
---|
836 | */
|
---|
837 | @Override
|
---|
838 | public boolean equals(Object other) {
|
---|
839 |
|
---|
840 | if (this == other) {
|
---|
841 | return true;
|
---|
842 | }
|
---|
843 |
|
---|
844 | if (other instanceof SparseGradient) {
|
---|
845 | final SparseGradient rhs = (SparseGradient)other;
|
---|
846 | if (!Precision.equals(value, rhs.value, 1)) {
|
---|
847 | return false;
|
---|
848 | }
|
---|
849 | if (derivatives.size() != rhs.derivatives.size()) {
|
---|
850 | return false;
|
---|
851 | }
|
---|
852 | for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
|
---|
853 | if (!rhs.derivatives.containsKey(entry.getKey())) {
|
---|
854 | return false;
|
---|
855 | }
|
---|
856 | if (!Precision.equals(entry.getValue(), rhs.derivatives.get(entry.getKey()), 1)) {
|
---|
857 | return false;
|
---|
858 | }
|
---|
859 | }
|
---|
860 | return true;
|
---|
861 | }
|
---|
862 |
|
---|
863 | return false;
|
---|
864 |
|
---|
865 | }
|
---|
866 |
|
---|
867 | /**
|
---|
868 | * Get a hashCode for the derivative structure.
|
---|
869 | * @return a hash code value for this object
|
---|
870 | * @since 3.2
|
---|
871 | */
|
---|
872 | @Override
|
---|
873 | public int hashCode() {
|
---|
874 | return 743 + 809 * MathUtils.hash(value) + 167 * derivatives.hashCode();
|
---|
875 | }
|
---|
876 |
|
---|
877 | }
|
---|