source: src/main/java/agents/anac/y2019/harddealer/math3/analysis/differentiation/GradientFunction.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 2.2 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.analysis.differentiation;
18
19import agents.anac.y2019.harddealer.math3.analysis.MultivariateVectorFunction;
20
21/** Class representing the gradient of a multivariate function.
22 * <p>
23 * The vectorial components of the function represent the derivatives
24 * with respect to each function parameters.
25 * </p>
26 * @since 3.1
27 */
28public class GradientFunction implements MultivariateVectorFunction {
29
30 /** Underlying real-valued function. */
31 private final MultivariateDifferentiableFunction f;
32
33 /** Simple constructor.
34 * @param f underlying real-valued function
35 */
36 public GradientFunction(final MultivariateDifferentiableFunction f) {
37 this.f = f;
38 }
39
40 /** {@inheritDoc} */
41 public double[] value(double[] point) {
42
43 // set up parameters
44 final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
45 for (int i = 0; i < point.length; ++i) {
46 dsX[i] = new DerivativeStructure(point.length, 1, i, point[i]);
47 }
48
49 // compute the derivatives
50 final DerivativeStructure dsY = f.value(dsX);
51
52 // extract the gradient
53 final double[] y = new double[point.length];
54 final int[] orders = new int[point.length];
55 for (int i = 0; i < point.length; ++i) {
56 orders[i] = 1;
57 y[i] = dsY.getPartialDerivative(orders);
58 orders[i] = 0;
59 }
60
61 return y;
62
63 }
64
65}
Note: See TracBrowser for help on using the repository browser.