1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.analysis.differentiation;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateVectorFunction;
|
---|
20 |
|
---|
21 | /** Class representing the gradient of a multivariate function.
|
---|
22 | * <p>
|
---|
23 | * The vectorial components of the function represent the derivatives
|
---|
24 | * with respect to each function parameters.
|
---|
25 | * </p>
|
---|
26 | * @since 3.1
|
---|
27 | */
|
---|
28 | public class GradientFunction implements MultivariateVectorFunction {
|
---|
29 |
|
---|
30 | /** Underlying real-valued function. */
|
---|
31 | private final MultivariateDifferentiableFunction f;
|
---|
32 |
|
---|
33 | /** Simple constructor.
|
---|
34 | * @param f underlying real-valued function
|
---|
35 | */
|
---|
36 | public GradientFunction(final MultivariateDifferentiableFunction f) {
|
---|
37 | this.f = f;
|
---|
38 | }
|
---|
39 |
|
---|
40 | /** {@inheritDoc} */
|
---|
41 | public double[] value(double[] point) {
|
---|
42 |
|
---|
43 | // set up parameters
|
---|
44 | final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
|
---|
45 | for (int i = 0; i < point.length; ++i) {
|
---|
46 | dsX[i] = new DerivativeStructure(point.length, 1, i, point[i]);
|
---|
47 | }
|
---|
48 |
|
---|
49 | // compute the derivatives
|
---|
50 | final DerivativeStructure dsY = f.value(dsX);
|
---|
51 |
|
---|
52 | // extract the gradient
|
---|
53 | final double[] y = new double[point.length];
|
---|
54 | final int[] orders = new int[point.length];
|
---|
55 | for (int i = 0; i < point.length; ++i) {
|
---|
56 | orders[i] = 1;
|
---|
57 | y[i] = dsY.getPartialDerivative(orders);
|
---|
58 | orders[i] = 0;
|
---|
59 | }
|
---|
60 |
|
---|
61 | return y;
|
---|
62 |
|
---|
63 | }
|
---|
64 |
|
---|
65 | }
|
---|