1 | package agents.anac.y2019.harddealer;
|
---|
2 |
|
---|
3 | import java.util.List;
|
---|
4 | import java.util.ArrayList;
|
---|
5 | import java.util.Arrays;
|
---|
6 | import java.util.Collection;
|
---|
7 | import java.util.Collections;
|
---|
8 | import java.util.HashMap;
|
---|
9 | import java.util.LinkedHashMap;
|
---|
10 | import java.util.Map;
|
---|
11 |
|
---|
12 | import agents.anac.y2019.harddealer.math3.optimization.GoalType;
|
---|
13 | import agents.anac.y2019.harddealer.math3.optimization.PointValuePair;
|
---|
14 | import agents.anac.y2019.harddealer.math3.optimization.linear.LinearConstraint;
|
---|
15 | import agents.anac.y2019.harddealer.math3.optimization.linear.LinearObjectiveFunction;
|
---|
16 | import agents.anac.y2019.harddealer.math3.optimization.linear.Relationship;
|
---|
17 | import agents.anac.y2019.harddealer.math3.optimization.linear.SimplexSolver;
|
---|
18 | import genius.core.Bid;
|
---|
19 | import genius.core.boaframework.AcceptanceStrategy;
|
---|
20 | import genius.core.boaframework.BoaParty;
|
---|
21 | import genius.core.boaframework.OMStrategy;
|
---|
22 | import genius.core.boaframework.OfferingStrategy;
|
---|
23 | import genius.core.boaframework.OpponentModel;
|
---|
24 | import genius.core.issue.Issue;
|
---|
25 | import genius.core.issue.IssueDiscrete;
|
---|
26 | import genius.core.issue.ValueDiscrete;
|
---|
27 | import genius.core.parties.NegotiationInfo;
|
---|
28 | import genius.core.uncertainty.AdditiveUtilitySpaceFactory;
|
---|
29 | import genius.core.utility.AbstractUtilitySpace;
|
---|
30 |
|
---|
31 |
|
---|
32 | @SuppressWarnings({"serial", "deprecation"})
|
---|
33 | public class HardDealer extends BoaParty
|
---|
34 | {
|
---|
35 | @Override
|
---|
36 | public void init(NegotiationInfo info)
|
---|
37 | {
|
---|
38 | // The choice for each component is made here
|
---|
39 | AcceptanceStrategy ac = new HardDealer_AS();
|
---|
40 | OfferingStrategy os = new HardDealer_BS();
|
---|
41 | OpponentModel om = new HardDealer_OM();
|
---|
42 | OMStrategy oms = new HardDealer_OMS();
|
---|
43 |
|
---|
44 | // All component parameters can be set below.
|
---|
45 | Map<String, Double> noparams = Collections.emptyMap();
|
---|
46 | Map<String, Double> osParams = new HashMap<String, Double>();
|
---|
47 | // Set the concession parameter "e" for the offering strategy to yield Boulware-like behavior
|
---|
48 | osParams.put("e", 1.8 / info.getDeadline().getTimeOrDefaultTimeout());
|
---|
49 |
|
---|
50 | // Initialize all the components of this party to the choices defined above
|
---|
51 | configure(ac, noparams,
|
---|
52 | os, osParams,
|
---|
53 | om, noparams,
|
---|
54 | oms, noparams);
|
---|
55 | super.init(info);
|
---|
56 | }
|
---|
57 |
|
---|
58 | // total number of values
|
---|
59 | private int nValues;
|
---|
60 | // occurrences of the values in bids
|
---|
61 | private Integer[] occurenceCheck;
|
---|
62 |
|
---|
63 | @Override
|
---|
64 | public AbstractUtilitySpace estimateUtilitySpace() {
|
---|
65 | AdditiveUtilitySpaceFactory additiveUtilitySpaceFactory = new AdditiveUtilitySpaceFactory(getDomain());
|
---|
66 | List<IssueDiscrete> issues = additiveUtilitySpaceFactory.getIssues();
|
---|
67 |
|
---|
68 | List<Bid> ranking = userModel.getBidRanking().getBidOrder();
|
---|
69 | double maxUtil = userModel.getBidRanking().getHighUtility();
|
---|
70 | double minUtil = userModel.getBidRanking().getLowUtility();
|
---|
71 |
|
---|
72 | // The linear method estimates the utilities but does nothing with the issue weights.
|
---|
73 | // We use a variance and spread based method to estimate these issue weights.
|
---|
74 | List<Bid> bidOrder = userModel.getBidRanking().getBidOrder();
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * Create a custom issue weight
|
---|
78 | * Iterate over all values in all bids to build up the issue weights.
|
---|
79 | */
|
---|
80 |
|
---|
81 | int bidOrderSize = bidOrder.size();
|
---|
82 | int numberOfIssues = 0;
|
---|
83 | // Initialize dictionaries in which we will store information we will extract from the bidranking.
|
---|
84 | // Information for the Values
|
---|
85 | // v1. Store at which index each value occurs in the bidranking
|
---|
86 | // v2. Store the mean index in the ranking of each value
|
---|
87 | // v3. Store the variance for each value
|
---|
88 | Map<String, ArrayList<Integer>> valueIndicesListDict = new HashMap<String, ArrayList<Integer>>();
|
---|
89 | Map<String, Double> valueMeanIndexDict = new HashMap<String, Double>();
|
---|
90 | Map<String, Double> valueVarianceDict = new HashMap<String, Double>();
|
---|
91 |
|
---|
92 | // Information for the Issues
|
---|
93 | // i1. Store the variance for each issue (combined value variance)
|
---|
94 | // i2. Store the spread of each issue (how far apart are the mean indices of its values)
|
---|
95 | // i3. Store the Weight of the Issues
|
---|
96 | Map<Issue, Double> issueVarianceDict = new HashMap<Issue, Double>();
|
---|
97 | Map<Issue, Double> issueSpreadDict = new HashMap<Issue, Double>();
|
---|
98 | Map<Issue, Double> issueWeightDict = new HashMap<Issue, Double>();
|
---|
99 |
|
---|
100 | // Variable that can be tweaked:
|
---|
101 | // Tweaks how much the weights are shifted when converting from variance to partial issue weight.
|
---|
102 | double inverseShiftVariable = 2;
|
---|
103 |
|
---|
104 | // Tweaks the ratio between the usage of the variance and the spread of the means within an issue to build the issue weight.
|
---|
105 | // This variable is scaled automatically dependinng on the size of the bidordering.
|
---|
106 | // The transition value of 40 bids in the bidranking has been chosen trough extensive testing.
|
---|
107 | double blendVariable = 1-(Math.min(bidOrderSize/40,1));
|
---|
108 |
|
---|
109 | // Create a list of all issuevalue strings. This is used for looping over all values in the dictionary.
|
---|
110 | // Initialize the valueIndicesListDict with all the values and initialize empty ArrayLists.
|
---|
111 | ArrayList<String> listOfAllIssueValues = new ArrayList<String>();
|
---|
112 | for (Issue i : issues)
|
---|
113 | {
|
---|
114 | List<ValueDiscrete> values = ((IssueDiscrete) i).getValues();
|
---|
115 | for (ValueDiscrete v : values)
|
---|
116 | {
|
---|
117 | ArrayList<Integer> indicesList = new ArrayList<Integer>();
|
---|
118 | String IssueValueString = i.getName() +v.toString();
|
---|
119 |
|
---|
120 | valueIndicesListDict.put(IssueValueString , indicesList);
|
---|
121 | listOfAllIssueValues.add(IssueValueString);
|
---|
122 | }
|
---|
123 | numberOfIssues += 1;
|
---|
124 | }
|
---|
125 |
|
---|
126 | // 1. Build up the double representation of the issue weights by using the variance and the spread.
|
---|
127 | // Build the valueIndicesListDict by iterating trough all bids and storing the location of the values.
|
---|
128 | int bidIndex = 0;
|
---|
129 | for (Bid bid : bidOrder)
|
---|
130 | {
|
---|
131 | for (Issue i : issues)
|
---|
132 | {
|
---|
133 | // Fill the valueIndicesListDict with the indices at which these values occur.
|
---|
134 | int no = i.getNumber();
|
---|
135 | ValueDiscrete value = (ValueDiscrete) bid.getValue(no);
|
---|
136 | String IssueValueString = i.getName() +value.toString();
|
---|
137 | ArrayList<Integer> indicesList = valueIndicesListDict.get(IssueValueString);
|
---|
138 | indicesList.add(bidIndex);
|
---|
139 | valueIndicesListDict.replace(IssueValueString,indicesList);
|
---|
140 | }
|
---|
141 | // Setup for the next bid in the loop
|
---|
142 | bidIndex += 1;
|
---|
143 | }
|
---|
144 |
|
---|
145 | // Calculate variance for each value.
|
---|
146 | for (String key : listOfAllIssueValues)
|
---|
147 | {
|
---|
148 | ArrayList<Integer> indicesList = valueIndicesListDict.get(key);
|
---|
149 | int sumOfIndices = indicesList.stream().mapToInt(Integer::intValue).sum();
|
---|
150 | double mu;
|
---|
151 | if (sumOfIndices == 0)
|
---|
152 | {
|
---|
153 | mu = bidOrderSize/2;
|
---|
154 | }
|
---|
155 | else
|
---|
156 | {
|
---|
157 | mu = sumOfIndices / indicesList.size();
|
---|
158 | }
|
---|
159 | valueMeanIndexDict.put(key,mu);
|
---|
160 | double P = ((double) 1) / indicesList.size();
|
---|
161 |
|
---|
162 | ArrayList<Double> listOfPartialVariance = new ArrayList<Double>();
|
---|
163 | for (int index : indicesList)
|
---|
164 | {
|
---|
165 | double partialVariance = Math.pow((index - mu),2.0) * P;
|
---|
166 | listOfPartialVariance.add(partialVariance);
|
---|
167 | }
|
---|
168 |
|
---|
169 | double variance = listOfPartialVariance.stream().reduce(0.0, Double::sum);
|
---|
170 | valueVarianceDict.put(key,variance);
|
---|
171 | }
|
---|
172 |
|
---|
173 | // Add the variances of the values together to get issue variances.
|
---|
174 | // Determine the spread of the mean values within the issues.
|
---|
175 | for (Issue i : issues)
|
---|
176 | {
|
---|
177 | double issueVariance = 0;
|
---|
178 | double issueSpread = 0;
|
---|
179 | List<ValueDiscrete> values = ((IssueDiscrete) i).getValues();
|
---|
180 | for (ValueDiscrete v : values)
|
---|
181 | {
|
---|
182 | String IssueValueString = i.getName()+v.toString();
|
---|
183 | double middleIndex = bidOrderSize/2;
|
---|
184 | double meanIndex = valueMeanIndexDict.get(IssueValueString);
|
---|
185 | double distanceFromMiddleIndex = Math.abs(meanIndex - middleIndex);
|
---|
186 | issueSpread += distanceFromMiddleIndex;
|
---|
187 | issueVariance += valueVarianceDict.get(IssueValueString);
|
---|
188 | }
|
---|
189 | issueSpreadDict.put(i, issueSpread);
|
---|
190 | issueVarianceDict.put(i,issueVariance);
|
---|
191 | }
|
---|
192 |
|
---|
193 | // Normalize the spread
|
---|
194 | double totalSpread = 0;
|
---|
195 | for (Issue i : issues)
|
---|
196 | {
|
---|
197 | totalSpread += issueSpreadDict.get(i);
|
---|
198 | }
|
---|
199 | for (Issue i : issues)
|
---|
200 | {
|
---|
201 | double spread = issueSpreadDict.get(i);
|
---|
202 | double normalizedSpread = spread/totalSpread;
|
---|
203 | issueSpreadDict.replace(i,normalizedSpread);
|
---|
204 | }
|
---|
205 |
|
---|
206 | // Calculate the max variance
|
---|
207 | double oldValue = 0;
|
---|
208 | double maxVariance = 0;
|
---|
209 | for (Issue i : issues)
|
---|
210 | {
|
---|
211 | double newValue = issueVarianceDict.get(i);
|
---|
212 | maxVariance = Math.max(newValue,oldValue);
|
---|
213 | oldValue = newValue;
|
---|
214 | }
|
---|
215 |
|
---|
216 | // Normalize the variance and translate it to a partial issueWeight
|
---|
217 | double totalIssueWeight = 0;
|
---|
218 | for (Issue i : issues)
|
---|
219 | {
|
---|
220 | double oldVariance = issueVarianceDict.get(i);
|
---|
221 | double partialIssueWeight = Math.abs(inverseShiftVariable - oldVariance/maxVariance);
|
---|
222 | totalIssueWeight += partialIssueWeight;
|
---|
223 | issueWeightDict.put(i,partialIssueWeight);
|
---|
224 | }
|
---|
225 |
|
---|
226 | // Normalize the partial Issue weights
|
---|
227 | for (Issue i: issues)
|
---|
228 | {
|
---|
229 | double oldWeight = issueWeightDict.get(i);
|
---|
230 | double newWeight = oldWeight/totalIssueWeight;
|
---|
231 | issueWeightDict.replace(i,newWeight);
|
---|
232 | }
|
---|
233 | // Combine spread and variance into one issue weight and load into Genius. Use a blendVariable to adjust their ratio
|
---|
234 | for (Issue i : issues)
|
---|
235 | {
|
---|
236 | double finalIssueWeight = (issueWeightDict.get(i) * blendVariable) + (issueSpreadDict.get(i) * (1 - blendVariable));
|
---|
237 | issueWeightDict.replace(i, finalIssueWeight);
|
---|
238 | additiveUtilitySpaceFactory.setWeight(i, finalIssueWeight);
|
---|
239 | }
|
---|
240 |
|
---|
241 | // The issue weights are now constructed, now we are going to generate the weights of the values trough linear programming.
|
---|
242 | // All values are collected in a LinkedHashMap
|
---|
243 | LinkedHashMap<IssueDiscrete, List<ValueDiscrete>> valuesMap = new LinkedHashMap<>();
|
---|
244 |
|
---|
245 | nValues = 0;
|
---|
246 | for (IssueDiscrete issue : issues) {
|
---|
247 | valuesMap.put(issue, issue.getValues());
|
---|
248 | nValues += issue.getValues().size();
|
---|
249 | }
|
---|
250 |
|
---|
251 | occurenceCheck = new Integer[nValues];
|
---|
252 | Arrays.fill(occurenceCheck,0);
|
---|
253 |
|
---|
254 | int nSlackVariables = ranking.size()-1;
|
---|
255 | // The number of variables needed for the linear optimization
|
---|
256 | int nVariables = nSlackVariables + nValues;
|
---|
257 |
|
---|
258 | // The objective function is to minimize all slack variables
|
---|
259 | // Therefore, all the slack variables should have a coefficient of 1, and all the other should have a coefficient of 0
|
---|
260 | double[] functionList = new double[nVariables];
|
---|
261 | Arrays.fill(functionList, 0);
|
---|
262 |
|
---|
263 | for (int i = 0; i < nSlackVariables; i++) {
|
---|
264 | functionList[i] = 1;
|
---|
265 | }
|
---|
266 |
|
---|
267 | LinearObjectiveFunction f = new LinearObjectiveFunction(functionList, 0);
|
---|
268 |
|
---|
269 | // A collection with all constraints
|
---|
270 | Collection<LinearConstraint> constraints = new ArrayList<>();
|
---|
271 | createVarGEQ0Constraints(constraints, functionList, nSlackVariables);
|
---|
272 | createSlackComparisonGEQ0Constraints(constraints, functionList, nSlackVariables, valuesMap, ranking);
|
---|
273 | createMaxMinConstraints(constraints, valuesMap, ranking, nSlackVariables, maxUtil, minUtil);
|
---|
274 |
|
---|
275 |
|
---|
276 | // Use a Simplex solver to solve f
|
---|
277 | SimplexSolver solver = new SimplexSolver();
|
---|
278 | solver.setMaxIterations(Integer.MAX_VALUE);
|
---|
279 | PointValuePair solution = solver.optimize(f, constraints, GoalType.MINIMIZE, true);
|
---|
280 |
|
---|
281 | // The average utility of a value is estimated based on the max utility, min utility and the variance within the bid ranking.
|
---|
282 | double functionIndex = totalIssueWeight/numberOfIssues;
|
---|
283 | double exponent = 5 - (4/(1+Math.exp(-50*(functionIndex-1))));
|
---|
284 | double yScale = maxUtil - minUtil;
|
---|
285 |
|
---|
286 | double average = minUtil + yScale*Math.pow(0.5, exponent);
|
---|
287 | // Initialization of new utilities
|
---|
288 | // The utilities of the actual values are stored at indices after the slack variables,
|
---|
289 | // so start iterating after nSlackVariables
|
---|
290 | int iterator = nSlackVariables;
|
---|
291 | for (IssueDiscrete issue : issues) {
|
---|
292 | // In case there is not much information about the value (0, 1 or 2 occurrences), it also takes the average into consideration
|
---|
293 | for (int v = 0; v < issue.getNumberOfValues(); v++) {
|
---|
294 | if(occurenceCheck[iterator - nSlackVariables] < 3) {
|
---|
295 | int occ = occurenceCheck[iterator - nSlackVariables];
|
---|
296 | double util = ((occ * solution.getPoint()[iterator]) + average) / (occ + 1);
|
---|
297 | additiveUtilitySpaceFactory.setUtility(issue, issue.getValue(v), util);
|
---|
298 | }
|
---|
299 | else {
|
---|
300 | additiveUtilitySpaceFactory.setUtility(issue, issue.getValue(v), solution.getPoint()[iterator]);
|
---|
301 | }
|
---|
302 |
|
---|
303 | iterator++;
|
---|
304 | }
|
---|
305 | }
|
---|
306 | // Normalize the weights
|
---|
307 | additiveUtilitySpaceFactory.normalizeWeights();
|
---|
308 |
|
---|
309 | // The factory is done with setting all parameters, now return the estimated utility space
|
---|
310 | return additiveUtilitySpaceFactory.getUtilitySpace();
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | // Transforms a bid into a double list of 0's and 1's representing it values
|
---|
315 | private double[] valuesFunctionList(Bid bid, LinkedHashMap<IssueDiscrete, List<ValueDiscrete>> values, int nSlackValues) {
|
---|
316 | double[] linear = new double[nSlackValues + nValues];
|
---|
317 | Arrays.fill(linear, 0);
|
---|
318 |
|
---|
319 | int count = 0;
|
---|
320 |
|
---|
321 | // A 1 is placed at the corresponding value position
|
---|
322 | for (int i = 0; i < bid.getIssues().size(); i++) {
|
---|
323 | ValueDiscrete v = (ValueDiscrete) bid.getValue(i+1);
|
---|
324 |
|
---|
325 | for (int val = 0; val < values.get(bid.getIssues().get(i)).size(); val++) {
|
---|
326 | ValueDiscrete v2 = values.get(bid.getIssues().get(i)).get(val);
|
---|
327 | if (v.equals(v2)) {
|
---|
328 | linear[count + nSlackValues] = 1;
|
---|
329 | occurenceCheck[count] += 1;
|
---|
330 | }
|
---|
331 | count++;
|
---|
332 | }
|
---|
333 | }
|
---|
334 | return linear;
|
---|
335 | }
|
---|
336 |
|
---|
337 | // Creates a 'variable is greater or equal than 0' constraint for all slack and value variables
|
---|
338 | private void createVarGEQ0Constraints(Collection<LinearConstraint> constraints, double[] functionList, int nSlackVariables) {
|
---|
339 | for (int i = 0; i < functionList.length; i++) {
|
---|
340 | // reset all coefficients to 0
|
---|
341 | Arrays.fill(functionList, 0);
|
---|
342 | // set the coefficient for variable i to 1
|
---|
343 | functionList[i] = 1;
|
---|
344 | // create the greater or equal constraint
|
---|
345 | constraints.add(new LinearConstraint(functionList, Relationship.GEQ, 0));
|
---|
346 | }
|
---|
347 | }
|
---|
348 |
|
---|
349 | // Creates the 'slack + comparison variable is greater or equal than 0' constraints for every slack and corresponding comparison variable
|
---|
350 | private void createSlackComparisonGEQ0Constraints(Collection<LinearConstraint> constraints, double[] functionList, int nSlackVariables, LinkedHashMap<IssueDiscrete, List<ValueDiscrete>> values, List<Bid> ranking) {
|
---|
351 | for (int i = 0; i < nSlackVariables; i++) {
|
---|
352 | // reset all coefficients to 0
|
---|
353 | Arrays.fill(functionList, 0);
|
---|
354 | // get bid o
|
---|
355 | Bid o = ranking.get(i);
|
---|
356 | // get bid o'
|
---|
357 | Bid oPrime = ranking.get(i+1);
|
---|
358 | // create a function list for o
|
---|
359 | double[] oList = valuesFunctionList(o, values, nSlackVariables);
|
---|
360 | // create a function list for o'
|
---|
361 | double[] oPrimeList = valuesFunctionList(oPrime, values, nSlackVariables);
|
---|
362 | // create the delta u as values of o - values of o'
|
---|
363 | for(int j = 0; j < functionList.length; j++) {
|
---|
364 | functionList[j] = oPrimeList[j] - oList[j];
|
---|
365 | }
|
---|
366 | // set the coefficient of slack variable i to 1
|
---|
367 | functionList[i] = 1;
|
---|
368 | constraints.add(new LinearConstraint(functionList, Relationship.GEQ, 0));
|
---|
369 | }
|
---|
370 | }
|
---|
371 |
|
---|
372 | // Creates the constraints which represent the max and min utility
|
---|
373 | private void createMaxMinConstraints(Collection<LinearConstraint> constraints,
|
---|
374 | LinkedHashMap<IssueDiscrete, List<ValueDiscrete>> values, List<Bid> ranking, int nSlackVariables, double maxU, double minU) {
|
---|
375 |
|
---|
376 | Bid strongestBid = ranking.get(ranking.size()-1);
|
---|
377 | double[] functionList = valuesFunctionList(strongestBid, values, nSlackVariables);
|
---|
378 | // The comparison strongest bid == maxU is added
|
---|
379 | constraints.add(new LinearConstraint(functionList, Relationship.EQ, maxU));
|
---|
380 |
|
---|
381 | Bid weakestBid = ranking.get(0);
|
---|
382 | functionList = valuesFunctionList(weakestBid, values, nSlackVariables);
|
---|
383 | // The comparison strongest bid == maxU is added
|
---|
384 | constraints.add(new LinearConstraint(functionList, Relationship.EQ, minU));
|
---|
385 |
|
---|
386 | }
|
---|
387 |
|
---|
388 |
|
---|
389 | @Override
|
---|
390 | public String getDescription()
|
---|
391 | {
|
---|
392 | return "Hardheaded but concedes at the very end to make a deal.";
|
---|
393 | }
|
---|
394 | // All the rest of the agent functionality is defined by the components selected above, using the BOA framework
|
---|
395 | }
|
---|