[200] | 1 | package agents.anac.y2019.garavelagent;
|
---|
| 2 |
|
---|
[207] | 3 | import java.util.List;
|
---|
[200] | 4 |
|
---|
[207] | 5 | import java.util.ArrayList;
|
---|
| 6 | import java.util.Arrays;
|
---|
| 7 | import java.util.Comparator;
|
---|
| 8 | import java.util.Random;
|
---|
| 9 |
|
---|
[200] | 10 | import agents.org.apache.commons.math.stat.regression.OLSMultipleLinearRegression;
|
---|
| 11 | import genius.core.AgentID;
|
---|
| 12 | import genius.core.Bid;
|
---|
| 13 | import genius.core.actions.Accept;
|
---|
| 14 | import genius.core.actions.Action;
|
---|
| 15 | import genius.core.actions.Offer;
|
---|
| 16 | import genius.core.issue.Issue;
|
---|
| 17 | import genius.core.issue.IssueDiscrete;
|
---|
| 18 | import genius.core.issue.ValueDiscrete;
|
---|
| 19 | import genius.core.parties.AbstractNegotiationParty;
|
---|
| 20 | import genius.core.parties.NegotiationInfo;
|
---|
| 21 | import genius.core.uncertainty.AdditiveUtilitySpaceFactory;
|
---|
| 22 | import genius.core.uncertainty.BidRanking;
|
---|
| 23 | import genius.core.utility.AbstractUtilitySpace;
|
---|
| 24 | import javafx.util.Pair;
|
---|
| 25 |
|
---|
| 26 | /**
|
---|
| 27 | * This is your negotiation party.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | public class GaravelAgent extends AbstractNegotiationParty {
|
---|
| 31 |
|
---|
| 32 | private Bid currentBid = null;
|
---|
| 33 | private Bid beforeBid = null;
|
---|
| 34 | private AbstractUtilitySpace utilitySpace = null;
|
---|
| 35 | private double[][] opponentModelValue;
|
---|
| 36 | private double[] opponentModelIssue;
|
---|
| 37 | private int numberOfIssues;
|
---|
| 38 | private ArrayList<Bid> opponentBids;
|
---|
| 39 | private int bidCount = 0;
|
---|
| 40 | double[] estimateUtilities;
|
---|
| 41 | double[] sortedUtils;
|
---|
| 42 |
|
---|
| 43 | List<List<ValueDiscrete>> allIssues = new ArrayList<>();
|
---|
| 44 | int countAll;
|
---|
| 45 | double[][] omValueNormalized;
|
---|
| 46 | OLSMultipleLinearRegression regression;
|
---|
| 47 | ArrayList<Bid> allBidsList;
|
---|
| 48 | double[] utilities;
|
---|
| 49 | List<List<String>> allIssuesAsString;
|
---|
| 50 | List<List<String>> allPossibleBids;
|
---|
| 51 | List<Pair<List<String>, Double>> ourUtilityModel;
|
---|
| 52 | List<Pair<List<String>, Double>> opponentUtilityModel;
|
---|
| 53 | NegotiationInfo info_;
|
---|
| 54 |
|
---|
| 55 | ArrayList<Bid> sortedList;
|
---|
| 56 | double[] allBidPredictions;
|
---|
| 57 | Bid maxBid = null;
|
---|
| 58 | List<List<String>> optimalBids;
|
---|
| 59 | Boolean isRegressionPossible = true;
|
---|
| 60 | List<Bid> bidOrder;
|
---|
| 61 |
|
---|
| 62 | @Override
|
---|
| 63 | public void init(NegotiationInfo info) {
|
---|
| 64 |
|
---|
| 65 | super.init(info);
|
---|
| 66 |
|
---|
| 67 | try {
|
---|
| 68 | List<Issue> issues = info.getUserModel().getDomain().getIssues();
|
---|
| 69 | utils.getIssueDiscrete(issues, allIssues);
|
---|
| 70 | allIssuesAsString = issuesAsString();
|
---|
| 71 | allPossibleBids = utils.generateAllPossibleBids(allIssuesAsString, 0);
|
---|
| 72 | utils.reverse(allPossibleBids);
|
---|
| 73 | countAll = utils.getIssueCount(allIssues);
|
---|
| 74 | info_ = info;
|
---|
| 75 |
|
---|
| 76 | bidOrder = info.getUserModel().getBidRanking().getBidOrder();
|
---|
| 77 | AdditiveUtilitySpaceFactory factory = new AdditiveUtilitySpaceFactory(getDomain());
|
---|
| 78 | BidRanking bidRanking = userModel.getBidRanking();
|
---|
| 79 | factory.estimateUsingBidRanks(bidRanking);
|
---|
| 80 | utilitySpace = getUtilitySpace();
|
---|
| 81 |
|
---|
| 82 | double[][] oneHotEncoded = utils.encodeBids(bidOrder, countAll, allIssues);
|
---|
| 83 | double[][] oneHotEncodedAll = utils.encodeListOfStrings(allPossibleBids, countAll, allIssues);
|
---|
| 84 |
|
---|
| 85 | utilities = new double[bidOrder.size()];
|
---|
| 86 | double highBid = info.getUserModel().getBidRanking().getHighUtility();
|
---|
| 87 | double lowBid = info.getUserModel().getBidRanking().getLowUtility();
|
---|
| 88 | utilities[0] = lowBid;
|
---|
| 89 | utilities[utilities.length - 1] = highBid;
|
---|
| 90 |
|
---|
| 91 | double delta = highBid - lowBid;
|
---|
| 92 | double decrementAmount = delta / (utilities.length - 1);
|
---|
| 93 |
|
---|
| 94 |
|
---|
| 95 | for (int i = 1; i < utilities.length - 1; i++) {
|
---|
| 96 | utilities[i] = utilities[i - 1] + decrementAmount;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | regression = new OLSMultipleLinearRegression();
|
---|
| 100 | regression.newSampleData(utilities, oneHotEncoded);
|
---|
| 101 |
|
---|
| 102 | allBidPredictions = new double[oneHotEncodedAll.length];
|
---|
| 103 |
|
---|
| 104 | for (int i = 0; i < oneHotEncodedAll.length; i++) {
|
---|
| 105 | allBidPredictions[i] = utils.predict(regression, oneHotEncodedAll[i]);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | double max = Arrays.stream(allBidPredictions).max().getAsDouble();
|
---|
| 109 |
|
---|
| 110 | for (int i = 0; i < oneHotEncodedAll.length; i++) {
|
---|
| 111 | if (allBidPredictions[i] > 0.9) {
|
---|
| 112 | allBidPredictions[i] = utils.scale(allBidPredictions[i], 0.9, max);
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | Bid sampleBid = generateRandomBid();
|
---|
| 117 | numberOfIssues = sampleBid.getIssues().size();
|
---|
| 118 | // Array to keep issueWeights we plan to sample
|
---|
| 119 | opponentModelIssue = new double[numberOfIssues];
|
---|
| 120 |
|
---|
| 121 | // Array to keep valueWeights we plan to sample
|
---|
| 122 | opponentModelValue = new double[numberOfIssues][];
|
---|
| 123 | opponentBids = new ArrayList<>();
|
---|
| 124 |
|
---|
| 125 | // Creating the 2d array by initializing non-fixed size rows
|
---|
| 126 | for (int i = 0; i < numberOfIssues; i++) {
|
---|
| 127 | opponentModelIssue[i] = (double) 1 / numberOfIssues;
|
---|
| 128 | IssueDiscrete issueDiscrete = (IssueDiscrete) sampleBid.getIssues().get(i);
|
---|
| 129 | opponentModelValue[i] = new double[issueDiscrete.getValues().size()];
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | allBidsList = new ArrayList<>();
|
---|
| 133 | for (int i = 0; i < allPossibleBids.size(); i++) {
|
---|
| 134 | allBidsList.add(utils.asBid(info.getUserModel().getDomain(), convertToStringArray(allPossibleBids.get(i).toArray())));
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | final List<Bid> allBidsCopy = allBidsList;
|
---|
| 138 | sortedList = new ArrayList<>(allBidsCopy);
|
---|
| 139 | sortedList.sort(Comparator.comparing(s -> allBidPredictions[allBidsCopy.indexOf(s)]));
|
---|
| 140 | sortedUtils = Arrays.stream(allBidPredictions).sorted().toArray();
|
---|
| 141 |
|
---|
| 142 | ourUtilityModel = new ArrayList<>();
|
---|
| 143 | for (int i = 0; i < sortedList.size(); i++) {
|
---|
| 144 | ourUtilityModel.add(new Pair<>(utils.bidToListOfString(sortedList.get(i)), sortedUtils[i]));
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | } catch (Exception e) {
|
---|
| 148 | isRegressionPossible = false;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | private static String[] convertToStringArray(Object[] array) {
|
---|
| 154 | String[] result = new String[array.length];
|
---|
| 155 | for (int i = 0; i < array.length; i++) {
|
---|
| 156 | result[i] = array[i].toString();
|
---|
| 157 | }
|
---|
| 158 | return result;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | private List<List<String>> issuesAsString() {
|
---|
| 162 | List<List<String>> allIssuesAsString = new ArrayList<>();
|
---|
| 163 | for (int i = 0; i < allIssues.size(); i++) {
|
---|
| 164 | List<String> current = new ArrayList<>();
|
---|
| 165 | for (int j = 0; j < allIssues.get(i).size(); j++) {
|
---|
| 166 | current.add(allIssues.get(i).get(j).toString());
|
---|
| 167 | }
|
---|
| 168 | allIssuesAsString.add(current);
|
---|
| 169 | }
|
---|
| 170 | return allIssuesAsString;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | @Override
|
---|
| 174 | public Action chooseAction(List<Class<? extends Action>> validActions) {
|
---|
| 175 |
|
---|
| 176 | if (isRegressionPossible) {
|
---|
| 177 | try {
|
---|
| 178 |
|
---|
| 179 | if (maxBid == null)
|
---|
| 180 | maxBid = currentBid;
|
---|
| 181 |
|
---|
| 182 | if (allBidsList.indexOf(currentBid) < allBidsList.indexOf(maxBid))
|
---|
| 183 | maxBid = currentBid;
|
---|
| 184 |
|
---|
| 185 | if (currentBid == null || !validActions.contains(Accept.class)) {
|
---|
| 186 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | if (timeline.getCurrentTime() == 998) {
|
---|
| 190 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 191 | } else if (timeline.getCurrentTime() == 999) {
|
---|
| 192 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 193 | } else if (timeline.getCurrentTime() == 1000) {
|
---|
| 194 | if (0.84 <= utils.predict(regression, utils.encodeBid(maxBid, countAll, allIssues))) {
|
---|
| 195 | return new Offer(getPartyId(), maxBid);
|
---|
| 196 | } else {
|
---|
| 197 | try {
|
---|
| 198 | Random r = new Random();
|
---|
| 199 | Bid lastBid = utils.asBid(info_.getUserModel().getDomain(), toStringArray(optimalBids.get(r.nextInt(optimalBids.size()))));
|
---|
| 200 | if (0.70 <= utils.predict(regression, utils.encodeBid(lastBid, countAll, allIssues))) {
|
---|
| 201 | return new Offer(getPartyId(), lastBid);
|
---|
| 202 | } else {
|
---|
| 203 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 204 | }
|
---|
| 205 | } catch (Exception e) {
|
---|
| 206 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | if (0.92 <= utils.predict(regression, utils.encodeBid(currentBid, countAll, allIssues))) {
|
---|
| 213 | System.out.println("accepted");
|
---|
| 214 | return new Accept(getPartyId(), currentBid);
|
---|
| 215 | } else {
|
---|
| 216 | try {
|
---|
| 217 | if (timeline.getCurrentTime() >= 200) {
|
---|
| 218 | Random r = new Random();
|
---|
| 219 | return new Offer(getPartyId(), utils.asBid(info_.getUserModel().getDomain(), toStringArray(optimalBids.get(r.nextInt(optimalBids.size())))));
|
---|
| 220 | }
|
---|
| 221 | } catch (Exception e) {
|
---|
| 222 | System.out.println("freq failed");
|
---|
| 223 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 224 | }
|
---|
| 225 | return new Offer(getPartyId(), getUtilitySpace().getMaxUtilityBid());
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | } catch (Exception e) {
|
---|
| 229 | e.printStackTrace();
|
---|
| 230 | return new Offer(getPartyId(), generateRandomBid());
|
---|
| 231 | } finally {
|
---|
| 232 | if (currentBid != null) {
|
---|
| 233 | beforeBid = currentBid;
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | } else {
|
---|
| 237 | if (timeline.getCurrentTime() == 995) {
|
---|
| 238 | return new Offer(getPartyId(), bidOrder.get(bidOrder.size() - 1));
|
---|
| 239 | }else{
|
---|
| 240 | return new Offer(getPartyId(), bidOrder.get(bidOrder.size() - 1));
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | private void updateWeights() {
|
---|
| 246 | for (int i = 0; i < numberOfIssues; i++) {
|
---|
| 247 | ValueDiscrete currentBidValue = (ValueDiscrete) (currentBid.getValue(i + 1));
|
---|
| 248 | int currentBidValueIndex = utils.getIndexOfValueInIssue(i, currentBidValue.getValue(), currentBid);
|
---|
| 249 |
|
---|
| 250 | ValueDiscrete beforeBidValue = (ValueDiscrete) (beforeBid.getValue(i + 1));
|
---|
| 251 | int beforeBidValueIndex = utils.getIndexOfValueInIssue(i, beforeBidValue.getValue(), currentBid);
|
---|
| 252 |
|
---|
| 253 | if (currentBidValueIndex == beforeBidValueIndex) {
|
---|
| 254 | opponentModelIssue[i] += ((double) 1 / numberOfIssues);
|
---|
| 255 | }
|
---|
| 256 | opponentModelValue[i][currentBidValueIndex] += 1;
|
---|
| 257 | }
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | // If we hold 2 bids, update the weights with it!
|
---|
| 261 | @Override
|
---|
| 262 | public void receiveMessage(AgentID sender, Action action) {
|
---|
| 263 |
|
---|
| 264 | try {
|
---|
| 265 | super.receiveMessage(sender, action);
|
---|
| 266 | if (action instanceof Offer) {
|
---|
| 267 |
|
---|
| 268 | currentBid = ((Offer) action).getBid();
|
---|
| 269 | opponentBids.add(currentBid);
|
---|
| 270 | if (!currentBid.equals(beforeBid) && beforeBid != null) {
|
---|
| 271 | updateWeights();
|
---|
| 272 | updateOMValues();
|
---|
| 273 |
|
---|
| 274 | if (bidCount % 50 == 0) {
|
---|
| 275 | //updateOpponentModel();
|
---|
| 276 | estimateUtilities = estimateOpUtil(allPossibleBids, omValueNormalized);
|
---|
| 277 | opponentUtilityModel = utils.frequencyModelling(opponentBids, allIssuesAsString, opponentModelValue);
|
---|
| 278 |
|
---|
| 279 | //optimal bids to offer are stored below
|
---|
| 280 | optimalBids = utils.getOptimalBids(allPossibleBids, utils.mostWanted, regression, info_.getUserModel().getDomain(), countAll, allIssues);
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 | bidCount++;
|
---|
| 284 | }
|
---|
| 285 | } catch (Exception e) {
|
---|
| 286 | //e.printStackTrace();
|
---|
| 287 | }
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | private String[] toStringArray(List<String> input) {
|
---|
| 291 | String[] result = new String[input.size()];
|
---|
| 292 | for (int i = 0; i < input.size(); i++) {
|
---|
| 293 | result[i] = input.get(i);
|
---|
| 294 | }
|
---|
| 295 | return result;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | private void updateOMValues() {
|
---|
| 299 |
|
---|
| 300 | double sum = 0;
|
---|
| 301 | for (int i = 0; i < opponentModelValue[0].length; i++) {
|
---|
| 302 | sum += opponentModelValue[0][i];
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | omValueNormalized = new double[opponentModelValue.length][opponentModelValue[0].length];
|
---|
| 306 | for (int i = 0; i < omValueNormalized.length; i++)
|
---|
| 307 | omValueNormalized[i] = Arrays.copyOf(opponentModelValue[i], opponentModelValue[i].length);
|
---|
| 308 |
|
---|
| 309 | for (int i = 0; i < opponentModelValue.length; i++) {
|
---|
| 310 | for (int j = 0; j < opponentModelValue[i].length; j++) {
|
---|
| 311 | omValueNormalized[i][j] = opponentModelValue[i][j] / sum;
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | private double[] estimateOpUtil(List<List<String>> allPossibleBids, double[][] omValueNormalized) {
|
---|
| 318 | double[] result = new double[allPossibleBids.size()];
|
---|
| 319 | for (int i = 0; i < allPossibleBids.size(); i++) {
|
---|
| 320 | for (int j = 0; j < allIssuesAsString.size(); j++) {
|
---|
| 321 | for (int k = 0; k < allIssuesAsString.get(j).size(); k++) {
|
---|
| 322 | if (allPossibleBids.get(i).get(j).equals(allIssuesAsString.get(j).get(k))) {
|
---|
| 323 | result[i] += omValueNormalized[j][k];
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 | return result;
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | @Override
|
---|
| 332 | public String getDescription() {
|
---|
| 333 | return "mezgit_soft";
|
---|
| 334 | }
|
---|
| 335 |
|
---|
| 336 | }
|
---|