1 | //package fsegaoppmodel;
|
---|
2 | ////import agents.bayesianopponentmodel.*;
|
---|
3 | //import java.util.ArrayList;
|
---|
4 | //
|
---|
5 | //import genius.core.issue.Issue;
|
---|
6 | //import genius.core.utility.UtilitySpace;
|
---|
7 | //import genius.core.Bid;
|
---|
8 | //import genius.core.BidIterator;
|
---|
9 | //
|
---|
10 | //
|
---|
11 | //public class MyBayesianOpponentModelScalable extends OpponentModel {
|
---|
12 | //
|
---|
13 | //
|
---|
14 | // private UtilitySpace fUS;
|
---|
15 | // private ArrayList<ArrayList<WeightHypothesisScalable>> fWeightHyps;
|
---|
16 | // private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
17 | //// private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
18 | //// public ArrayList<Bid> fBiddingHistory; // previous bids of the opponent, not our bids.
|
---|
19 | //// private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
20 | // private double fPreviousBidUtility;
|
---|
21 | // ArrayList<Issue> issues;
|
---|
22 | // private double[] fExpectedWeights;
|
---|
23 | // double minUtility, maxUtility;
|
---|
24 | //
|
---|
25 | // public MyBayesianOpponentModelScalable(UtilitySpace pUtilitySpace) {
|
---|
26 | // //
|
---|
27 | //
|
---|
28 | // fPreviousBidUtility = 1;
|
---|
29 | // fDomain = pUtilitySpace.getDomain();
|
---|
30 | // issues=(ArrayList<Issue>) fDomain.getIssues();
|
---|
31 | // fUS = pUtilitySpace;
|
---|
32 | // fBiddingHistory = new ArrayList<Bid>();
|
---|
33 | // fExpectedWeights = new double[pUtilitySpace.getDomain().getIssues().size()];
|
---|
34 | // fWeightHyps = new ArrayList<ArrayList<WeightHypothesisScalable>>();
|
---|
35 | //
|
---|
36 | // initWeightHyps();
|
---|
37 | //
|
---|
38 | // //generate all possible hyps of evaluation functions
|
---|
39 | // fEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>> ();
|
---|
40 | // int lTotalTriangularFns = 4;
|
---|
41 | // for(int i =0; i<(() fUS).getNrOfEvaluators();i++) {
|
---|
42 | //// switch(fUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
43 | //// case PRICE:
|
---|
44 | // ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
45 | // fEvaluatorHyps.add(lEvalHyps);
|
---|
46 | //// //EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
47 | //// IssueReal lIssuePrice = (IssueReal)(fDomain.getIssue(i));
|
---|
48 | //// //uphill
|
---|
49 | //// EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
50 | //// lHypEval.setUpperBound(lIssuePrice.getUpperBound());
|
---|
51 | //// lHypEval.setLowerBound(lIssuePrice.getLowerBound());
|
---|
52 | //// lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
53 | //// lHypEval.addParam(1, (double)1/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
54 | //// lHypEval.addParam(0, -lHypEval.getLowerBound()/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
55 | //// EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "uphill");
|
---|
56 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
57 | //// //downhill
|
---|
58 | //// lHypEval = new EvaluatorReal();
|
---|
59 | //// lHypEval.setUpperBound(lIssuePrice.getUpperBound());
|
---|
60 | //// lHypEval.setLowerBound(lIssuePrice.getLowerBound());
|
---|
61 | //// lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
62 | //// lHypEval.addParam(1, -(double)1/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
63 | //// lHypEval.addParam(0, (double)1+lHypEval.getLowerBound()/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
64 | //// lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "downhill");
|
---|
65 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
66 | //// for(int k=1;k<=lTotalTriangularFns;k++) {
|
---|
67 | //// //triangular
|
---|
68 | //// lHypEval = new EvaluatorReal();
|
---|
69 | //// lHypEval.setUpperBound(lIssuePrice.getUpperBound());
|
---|
70 | //// lHypEval.setLowerBound(lIssuePrice.getLowerBound());
|
---|
71 | //// lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
72 | //// lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
73 | //// lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
74 | //// double lMaxPoint = lHypEval.getLowerBound()+(double)k*(lHypEval.getUpperBound()-lHypEval.getLowerBound())/(lTotalTriangularFns+1);
|
---|
75 | //// lHypEval.addParam(2, lMaxPoint);
|
---|
76 | //// lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "triangular " + String.valueOf(lMaxPoint));
|
---|
77 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
78 | //// }
|
---|
79 | //// for(int k=0;k<lEvalHyps.size();k++) {
|
---|
80 | //// lEvalHyps.get(k).setProbability((double)1/lEvalHyps.size());
|
---|
81 | //// }
|
---|
82 | ////
|
---|
83 | //// break;
|
---|
84 | ////
|
---|
85 | //// case REAL:
|
---|
86 | //// lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
87 | //// fEvaluatorHyps.add(lEvalHyps);
|
---|
88 | //// //EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
89 | //// IssueReal lIssue = (IssueReal)(fDomain.getIssue(i));
|
---|
90 | //// //uphill
|
---|
91 | //// lHypEval = new EvaluatorReal();
|
---|
92 | //// lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
93 | //// lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
94 | //// lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
95 | //// lHypEval.addParam(1, (double)1/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
96 | //// lHypEval.addParam(0, -lHypEval.getLowerBound()/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
97 | //// lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "uphill");
|
---|
98 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
99 | //// //downhill
|
---|
100 | //// lHypEval = new EvaluatorReal();
|
---|
101 | //// lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
102 | //// lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
103 | //// lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
104 | //// lHypEval.addParam(1, -(double)1/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
105 | //// lHypEval.addParam(0, (double)1+ lHypEval.getLowerBound()/(lHypEval.getUpperBound()-lHypEval.getLowerBound()));
|
---|
106 | //// lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "downhill");
|
---|
107 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
108 | //// for(int k=1;k<=lTotalTriangularFns;k++) {
|
---|
109 | //// //triangular
|
---|
110 | //// lHypEval = new EvaluatorReal();
|
---|
111 | //// lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
112 | //// lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
113 | //// lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
114 | //// lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
115 | //// lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
116 | //// double lMaxPoint = lHypEval.getLowerBound()+(double)k*(lHypEval.getUpperBound()-lHypEval.getLowerBound())/(lTotalTriangularFns+1);
|
---|
117 | //// lHypEval.addParam(2, lMaxPoint);
|
---|
118 | //// lEvaluatorHypothesis = new EvaluatorHypothesis (lHypEval, "triangular " + String.format("%1.2f", lMaxPoint));
|
---|
119 | //// lEvalHyps.add(lEvaluatorHypothesis);
|
---|
120 | //// }
|
---|
121 | //// for(int k=0;k<lEvalHyps.size();k++) {
|
---|
122 | //// lEvalHyps.get(k).setProbability((double)1/lEvalHyps.size());
|
---|
123 | //// }
|
---|
124 | ////
|
---|
125 | //// break;
|
---|
126 | //// case DISCRETE:
|
---|
127 | // lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
128 | // fEvaluatorHyps.add(lEvalHyps);
|
---|
129 | // //EvaluatorReal lEval = (EvaluatorReal)(fUS.getEvaluator(i));
|
---|
130 | // IssueDiscrete lDiscIssue = (IssueDiscrete)(fDomain.getIssue(i));
|
---|
131 | // //uphill
|
---|
132 | // EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
133 | // for(int j=0;j<lDiscIssue.getNumberOfValues();j++)
|
---|
134 | // lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000*j+1);
|
---|
135 | // lEvaluatorHypothesis = new EvaluatorHypothesis (lDiscreteEval, "uphill");
|
---|
136 | // lEvaluatorHypothesis.setProbability((double)1/3);
|
---|
137 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
138 | // // downhill
|
---|
139 | // lDiscreteEval = new EvaluatorDiscrete();
|
---|
140 | // for(int j=0;j<lDiscIssue.getNumberOfValues();j++)
|
---|
141 | // lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000*(lDiscIssue.getNumberOfValues()-j-1)+1);
|
---|
142 | // lEvaluatorHypothesis = new EvaluatorHypothesis (lDiscreteEval, "downhill");
|
---|
143 | // lEvaluatorHypothesis.setProbability((double)1/3);
|
---|
144 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
145 | // if(lDiscIssue.getNumberOfValues()>2) {
|
---|
146 | // lTotalTriangularFns = lDiscIssue.getNumberOfValues()-1;
|
---|
147 | // for(int k=1;k<lTotalTriangularFns;k++) {
|
---|
148 | // // triangular. Wouter: we need to CHECK this.
|
---|
149 | // lDiscreteEval = new EvaluatorDiscrete();
|
---|
150 | // for(int j=0;j<lDiscIssue.getNumberOfValues();j++)
|
---|
151 | // if(j<k) {
|
---|
152 | // lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000*j/k);
|
---|
153 | // } else {
|
---|
154 | // //lEval = (1.0-(double)(j-k)/(lDiscIssue.getNumberOfValues()-1.0-k));
|
---|
155 | // lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
156 | // 1000*(lDiscIssue.getNumberOfValues()-j-1)/(lDiscIssue.getNumberOfValues()-k-1)+1);
|
---|
157 | // }
|
---|
158 | // lEvaluatorHypothesis = new EvaluatorHypothesis (lDiscreteEval, "triangular " + String.valueOf(k));
|
---|
159 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
160 | // }//for
|
---|
161 | // }//if
|
---|
162 | // for(int k=0;k<lEvalHyps.size();k++) {
|
---|
163 | // lEvalHyps.get(k).setProbability((double)1/lEvalHyps.size());
|
---|
164 | // }
|
---|
165 | // // break;
|
---|
166 | //
|
---|
167 | // }//switch
|
---|
168 | // }
|
---|
169 | // for(int i=0;i<fExpectedWeights.length;i++)
|
---|
170 | // fExpectedWeights[i] = getExpectedWeight(i);
|
---|
171 | //
|
---|
172 | // //printEvalsDistribution();
|
---|
173 | // }
|
---|
174 | // final void initWeightHyps()
|
---|
175 | // {
|
---|
176 | // int lWeightHypsNumber = 11;
|
---|
177 | // for(int i=0;i<fUS.getDomain().getIssues().size();i++)
|
---|
178 | // {
|
---|
179 | // ArrayList<WeightHypothesisScalable> lWeightHyps = new ArrayList<WeightHypothesisScalable>();
|
---|
180 | // for(int j=0;j<lWeightHypsNumber;j++)
|
---|
181 | // {
|
---|
182 | // WeightHypothesisScalable lHyp = new WeightHypothesisScalable();
|
---|
183 | // lHyp.setProbability((1.0-((double)j+1.0)/lWeightHypsNumber)*(1.0-((double)j+1.0)/lWeightHypsNumber)*(1.0-((double)j+1.0)/lWeightHypsNumber));
|
---|
184 | // lHyp.setWeight((double)j/(lWeightHypsNumber-1));
|
---|
185 | // lWeightHyps.add(lHyp);
|
---|
186 | // }
|
---|
187 | // double lN=0;
|
---|
188 | // for(int j=0;j<lWeightHypsNumber;j++) {
|
---|
189 | // lN+=lWeightHyps.get(j).getProbability();
|
---|
190 | // }
|
---|
191 | // for(int j=0;j<lWeightHypsNumber;j++) {
|
---|
192 | // lWeightHyps.get(j).setProbability(lWeightHyps.get(j).getProbability()/lN);
|
---|
193 | // }
|
---|
194 | //
|
---|
195 | // fWeightHyps.add(lWeightHyps);
|
---|
196 | // }
|
---|
197 | // }
|
---|
198 | // private double conditionalDistribution(double pUtility, double pPreviousBidUtility)
|
---|
199 | // {
|
---|
200 | // double lSigma = 0.25;
|
---|
201 | // double x = (pPreviousBidUtility - pUtility)/pPreviousBidUtility ;
|
---|
202 | // double lResult = 1.0/(lSigma*Math.sqrt(2.0*Math.PI)) *Math.exp(-(x*x)/(2.0*lSigma*lSigma));
|
---|
203 | // return lResult;
|
---|
204 | // }
|
---|
205 | // public double getExpectedEvaluationValue(Bid pBid, int pIssueNumber) throws Exception
|
---|
206 | // {
|
---|
207 | // double lExpectedEval = 0;
|
---|
208 | // for(int j=0;j<fEvaluatorHyps.get(pIssueNumber).size();j++) {
|
---|
209 | // lExpectedEval = lExpectedEval + fEvaluatorHyps.get(pIssueNumber).get(j).getProbability() *
|
---|
210 | // fEvaluatorHyps.get(pIssueNumber).get(j).getEvaluator().getEvaluation(fUS, pBid,issues.get(pIssueNumber).getNumber());
|
---|
211 | // }
|
---|
212 | // return lExpectedEval;
|
---|
213 | //
|
---|
214 | // }
|
---|
215 | // public final double getExpectedWeight(int pIssueNumber) {
|
---|
216 | // double lExpectedWeight = 0;
|
---|
217 | // for(int i=0;i<fWeightHyps.get(pIssueNumber).size();i++) {
|
---|
218 | // lExpectedWeight += fWeightHyps.get(pIssueNumber).get(i).getProbability()*fWeightHyps.get(pIssueNumber).get(i).getWeight();
|
---|
219 | // }
|
---|
220 | // return lExpectedWeight;
|
---|
221 | // }
|
---|
222 | // private double getPartialUtility(Bid pBid, int pIssueIndex) throws Exception
|
---|
223 | // {
|
---|
224 | // //calculate partial utility w/o issue pIssueIndex
|
---|
225 | // double u = 0;
|
---|
226 | // for(int j=0;j<fDomain.getIssues().size();j++) {
|
---|
227 | // if(pIssueIndex==j) continue;
|
---|
228 | // //calculate expected weight of the issue
|
---|
229 | // double w = 0 ;
|
---|
230 | // for(int k=0;k<fWeightHyps.get(j).size();k++)
|
---|
231 | // w += fWeightHyps.get(j).get(k).getProbability()*fWeightHyps.get(j).get(k).getWeight();
|
---|
232 | // u = u + w*getExpectedEvaluationValue(pBid, j);
|
---|
233 | // }
|
---|
234 | // return u;
|
---|
235 | // }
|
---|
236 | // public void updateWeights() throws Exception
|
---|
237 | // {
|
---|
238 | // //Bid lPreviousBid = fBiddingHistory.get(fBiddingHistory.size()-2);
|
---|
239 | // Bid lBid = fBiddingHistory.get(fBiddingHistory.size()-1);
|
---|
240 | // ArrayList<ArrayList<WeightHypothesisScalable>> lWeightHyps = new ArrayList<ArrayList<WeightHypothesisScalable>>();
|
---|
241 | // //make new hyps array
|
---|
242 | // for(int i=0;i<fWeightHyps.size();i++) {
|
---|
243 | // ArrayList<WeightHypothesisScalable> lTmp = new ArrayList<WeightHypothesisScalable>();
|
---|
244 | // for(int j=0;j<fWeightHyps.get(i).size();j++) {
|
---|
245 | // WeightHypothesisScalable lHyp = new WeightHypothesisScalable();
|
---|
246 | // lHyp.setWeight(fWeightHyps.get(i).get(j).getWeight());
|
---|
247 | // lHyp.setProbability(fWeightHyps.get(i).get(j).getProbability());
|
---|
248 | // lTmp.add(lHyp);
|
---|
249 | // }
|
---|
250 | // lWeightHyps.add(lTmp);
|
---|
251 | // }
|
---|
252 | //
|
---|
253 | // for(int j=0;j<fDomain.getIssues().size();j++)
|
---|
254 | // {
|
---|
255 | // double lN = 0;
|
---|
256 | // double lUtility = 0;
|
---|
257 | // for(int i=0;i<fWeightHyps.get(j).size();i++)
|
---|
258 | // {
|
---|
259 | // lUtility = fWeightHyps.get(j).get(i).getWeight()*getExpectedEvaluationValue(lBid, j) + getPartialUtility(lBid, j);
|
---|
260 | // lN += fWeightHyps.get(j).get(i).getProbability()*conditionalDistribution(lUtility, fPreviousBidUtility);
|
---|
261 | // }
|
---|
262 | // //2. update probabilities
|
---|
263 | // for(int i=0;i<fWeightHyps.get(j).size();i++)
|
---|
264 | // {
|
---|
265 | // lUtility = fWeightHyps.get(j).get(i).getWeight()*getExpectedEvaluationValue(lBid, j) + getPartialUtility(lBid, j);
|
---|
266 | // lWeightHyps.get(j).get(i).setProbability(fWeightHyps.get(j).get(i).getProbability()*conditionalDistribution(lUtility, fPreviousBidUtility)/lN);
|
---|
267 | // }
|
---|
268 | // }
|
---|
269 | // // }
|
---|
270 | // fWeightHyps = lWeightHyps;
|
---|
271 | // }
|
---|
272 | //
|
---|
273 | // public void updateEvaluationFns() throws Exception
|
---|
274 | // {
|
---|
275 | // Bid lBid = fBiddingHistory.get(fBiddingHistory.size()-1);
|
---|
276 | // //make new hyps array
|
---|
277 | //// for(int k=0;k<5;k++){
|
---|
278 | // ArrayList<ArrayList<EvaluatorHypothesis>> lEvaluatorHyps = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
279 | // for(int i=0;i<fEvaluatorHyps.size();i++) {
|
---|
280 | // ArrayList<EvaluatorHypothesis> lTmp = new ArrayList<EvaluatorHypothesis>();
|
---|
281 | // for(int j=0;j<fEvaluatorHyps.get(i).size();j++) {
|
---|
282 | // EvaluatorHypothesis lHyp = new EvaluatorHypothesis(fEvaluatorHyps.get(i).get(j).getEvaluator(), "triangular " + fEvaluatorHyps.get(i).get(j).getDescription());
|
---|
283 | // lHyp.setProbability(fEvaluatorHyps.get(i).get(j).getProbability());
|
---|
284 | // lTmp.add(lHyp);
|
---|
285 | // }
|
---|
286 | // lEvaluatorHyps.add(lTmp);
|
---|
287 | // }
|
---|
288 | //
|
---|
289 | // //1. calculate the normalization factor
|
---|
290 | //
|
---|
291 | // for(int i=0;i<fDomain.getIssues().size();i++) {
|
---|
292 | // //1. calculate the normalization factor
|
---|
293 | // double lN = 0;
|
---|
294 | // for(int j=0;j<fEvaluatorHyps.get(i).size();j++) {
|
---|
295 | // EvaluatorHypothesis lHyp =fEvaluatorHyps.get(i).get(j);
|
---|
296 | // lN += lHyp.getProbability()*conditionalDistribution(getPartialUtility(lBid, i)+getExpectedWeight(i)*(lHyp.getEvaluator().getEvaluation(fUS, lBid, issues.get(i).getNumber())), fPreviousBidUtility);
|
---|
297 | // }
|
---|
298 | // //2. update probabilities
|
---|
299 | // for(int j=0;j<fEvaluatorHyps.get(i).size();j++) {
|
---|
300 | // EvaluatorHypothesis lHyp =fEvaluatorHyps.get(i).get(j);
|
---|
301 | // lEvaluatorHyps.get(i).get(j).setProbability(lHyp.getProbability()*conditionalDistribution(getPartialUtility(lBid, i)+getExpectedWeight(i)*(lHyp.getEvaluator().getEvaluation(fUS, lBid, issues.get(i).getNumber())), fPreviousBidUtility)/lN);
|
---|
302 | // }
|
---|
303 | // }
|
---|
304 | // fEvaluatorHyps = lEvaluatorHyps;
|
---|
305 | // // }
|
---|
306 | // printEvalsDistribution();
|
---|
307 | // }
|
---|
308 | // public boolean haveSeenBefore(Bid pBid) {
|
---|
309 | // for(Bid tmpBid : fBiddingHistory) {
|
---|
310 | // if(pBid.equals(tmpBid)) return true;
|
---|
311 | // }
|
---|
312 | // return false;
|
---|
313 | // }
|
---|
314 | // public void updateBeliefs(Bid pBid) throws Exception{
|
---|
315 | // if(haveSeenBefore(pBid)) return;
|
---|
316 | // fBiddingHistory.add(pBid);
|
---|
317 | //
|
---|
318 | // //do not update the bids if it is the first bid
|
---|
319 | // if(fBiddingHistory.size()>1) {
|
---|
320 | //
|
---|
321 | // //update the weights
|
---|
322 | // updateWeights();
|
---|
323 | // //update evaluation functions
|
---|
324 | // updateEvaluationFns();
|
---|
325 | // } else {
|
---|
326 | // //do not update the weights
|
---|
327 | // //update evaluation functions
|
---|
328 | // updateEvaluationFns();
|
---|
329 | // } //if
|
---|
330 | //
|
---|
331 | //// System.out.println(getMaxHyp().toString());
|
---|
332 | // //calculate utility of the next partner's bid according to the concession functions
|
---|
333 | // fPreviousBidUtility = fPreviousBidUtility-0.003;
|
---|
334 | // for(int i=0;i<fExpectedWeights.length;i++)
|
---|
335 | // fExpectedWeights[i] = getExpectedWeight(i);
|
---|
336 | // findMinMaxUtility();
|
---|
337 | // // printBestHyp();
|
---|
338 | // }
|
---|
339 | //
|
---|
340 | // /**
|
---|
341 | // * Plan: cache the results for pBid in a Hash table.
|
---|
342 | // * empty the hash table whenever updateWeights or updateEvaluationFns is called.
|
---|
343 | // * @param pBid
|
---|
344 | // * @return weeighted utility where weights represent likelihood of each hypothesis
|
---|
345 | // * @throws Exception
|
---|
346 | // */
|
---|
347 | // public double getExpectedUtility(Bid pBid) throws Exception
|
---|
348 | // {
|
---|
349 | // //calculate expected utility
|
---|
350 | // double u = 0;
|
---|
351 | // for(int j=0;j<fDomain.getIssues().size();j++) {
|
---|
352 | // //calculate expected weight of the issue
|
---|
353 | // double w = fExpectedWeights[j] ;
|
---|
354 | ///* for(int k=0;k<fWeightHyps.get(j).size();k++)
|
---|
355 | // w += fWeightHyps.get(j).get(k).getProbability()*fWeightHyps.get(j).get(k).getWeight();(*/
|
---|
356 | // u = u + w*getExpectedEvaluationValue(pBid, j);
|
---|
357 | // }
|
---|
358 | // return u;
|
---|
359 | // }
|
---|
360 | //
|
---|
361 | //
|
---|
362 | // /*private void printBestHyp() {
|
---|
363 | // double[] lBestWeights = new double[fUS.getDomain().getIssues().size()];
|
---|
364 | // EvaluatorHypothesis[] lBestEvals = new EvaluatorHypothesis[fUS.getDomain().getIssues().size()];
|
---|
365 | // for(int i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
366 | // //find best weight
|
---|
367 | // double lMaxWeightProb = -1;
|
---|
368 | // for(int j=0;j<fWeightHyps.get(i).size();j++){
|
---|
369 | // if(fWeightHyps.get(i).get(j).getProbability()>lMaxWeightProb) {
|
---|
370 | // lMaxWeightProb = fWeightHyps.get(i).get(j).getProbability();
|
---|
371 | // lBestWeights[i] = fWeightHyps.get(i).get(j).getWeight();
|
---|
372 | // }
|
---|
373 | // }
|
---|
374 | // //find best evaluation fn
|
---|
375 | // double lMaxEvalProb = -1;
|
---|
376 | // for(int j=0;j<fEvaluatorHyps.get(i).size();j++){
|
---|
377 | // if(fEvaluatorHyps.get(i).get(j).getProbability()>lMaxEvalProb ) {
|
---|
378 | // lMaxEvalProb = fEvaluatorHyps.get(i).get(j).getProbability();
|
---|
379 | // lBestEvals[i] = fEvaluatorHyps.get(i).get(j);
|
---|
380 | // }
|
---|
381 | // }
|
---|
382 | //
|
---|
383 | // }
|
---|
384 | ///* //print all weights
|
---|
385 | // for(int i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
386 | // System.out.print(String.format("%1.2f", getExpectedWeight(i))+";");
|
---|
387 | // }
|
---|
388 | // //print all Evaluators
|
---|
389 | // for(int i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
390 | // System.out.print(lBestEvals[i].getDesc()+";");
|
---|
391 | // }
|
---|
392 | // System.out.println();
|
---|
393 | // *_/ Dan add _
|
---|
394 | // }*/
|
---|
395 | // void printEvalsDistribution() {
|
---|
396 | ///* for(int i=0;i<fUS.getDomain().getIssues().size();i++) {
|
---|
397 | // for(int j=0;j<fEvaluatorHyps.get(i).size();j++)
|
---|
398 | // System.out.print(String.format("%1.2f", fEvaluatorHyps.get(i).get(j).getProbability())+";");
|
---|
399 | // System.out.println();
|
---|
400 | // }*/
|
---|
401 | //
|
---|
402 | // }
|
---|
403 | //
|
---|
404 | // protected void findMinMaxUtility() throws Exception
|
---|
405 | // {
|
---|
406 | // BidIterator biditer=new BidIterator(fDomain);
|
---|
407 | // minUtility=1.; maxUtility=0.; double u;
|
---|
408 | // int i=0;
|
---|
409 | // while (biditer.hasNext())
|
---|
410 | // {
|
---|
411 | // Bid b=biditer.next();
|
---|
412 | // u=getExpectedUtility(b);
|
---|
413 | //
|
---|
414 | // if (minUtility>u) minUtility=u;
|
---|
415 | // if (maxUtility<u) maxUtility=u;
|
---|
416 | // i++;
|
---|
417 | //// System.out.println(String.valueOf(i));
|
---|
418 | // }
|
---|
419 | // }
|
---|
420 | //
|
---|
421 | //
|
---|
422 | //}
|
---|