1 | package agents.anac.y2019.fsega2019.fsegaoppmodel;
|
---|
2 |
|
---|
3 |
|
---|
4 | import java.io.FileWriter;
|
---|
5 | import java.util.ArrayList;
|
---|
6 | import java.util.Collections;
|
---|
7 | import java.util.List;
|
---|
8 |
|
---|
9 | import genius.core.Bid;
|
---|
10 | import genius.core.Domain;
|
---|
11 | import genius.core.issue.Issue;
|
---|
12 | import genius.core.issue.IssueDiscrete;
|
---|
13 | import genius.core.utility.AbstractUtilitySpace;
|
---|
14 | import genius.core.utility.EvaluatorDiscrete;
|
---|
15 | import genius.core.utility.UtilitySpace;
|
---|
16 |
|
---|
17 |
|
---|
18 |
|
---|
19 | public class MyBayesianOpponentModel extends OpponentModel
|
---|
20 | {
|
---|
21 | private AbstractUtilitySpace uUS;
|
---|
22 | private ArrayList<UtilitySpaceHypothesis> uUSHypothesis;
|
---|
23 | private double previousBidUtility;
|
---|
24 | private double SIGMA = 0.25;
|
---|
25 | private double CONCESSION_STRATEGY = 0.035; //estimated opponent concession strategy
|
---|
26 | private int initialNumberHyps = 0;
|
---|
27 |
|
---|
28 | //scalable
|
---|
29 | private boolean bUseMostProb = true;
|
---|
30 | private ArrayList<UtilitySpaceHypothesis> mostProbHyps;
|
---|
31 |
|
---|
32 | public MyBayesianOpponentModel(AbstractUtilitySpace pUS)
|
---|
33 | {
|
---|
34 | //TODO: for test
|
---|
35 | //System.out.println("Model creation");
|
---|
36 |
|
---|
37 | if(pUS == null)
|
---|
38 | throw new NullPointerException("MyBayesianOpponentModel: utility space = null");
|
---|
39 | uUS = pUS;
|
---|
40 |
|
---|
41 | previousBidUtility = 1;
|
---|
42 | dDomain = pUS.getDomain();
|
---|
43 | //aBiddingHistory = new ArrayList<Bid>();
|
---|
44 |
|
---|
45 | List<Issue> issues = dDomain.getIssues();
|
---|
46 | ArrayList<ArrayList<EvaluatorHypothesis>> aaEvaluatorHypothesis = new ArrayList<ArrayList<EvaluatorHypothesis>> ();
|
---|
47 |
|
---|
48 | int numberOfIssues = issues.size();
|
---|
49 |
|
---|
50 | //generate weight hypothesis ==> <count of issues>! hypothesis
|
---|
51 | WeightHypothesis[] weightHypothesis = new WeightHypothesis[factorial(numberOfIssues)];
|
---|
52 |
|
---|
53 | //create all permutations
|
---|
54 | double[] P = new double[numberOfIssues];
|
---|
55 |
|
---|
56 | //normalize weights
|
---|
57 | for(int i = 0; i < numberOfIssues; i++)
|
---|
58 | P[i] = 2.0 * (i + 1) / (double)(numberOfIssues * (numberOfIssues + 1));
|
---|
59 | weightPermutations(0, weightHypothesis, P, numberOfIssues - 1);
|
---|
60 |
|
---|
61 | //add initial probabilities
|
---|
62 | for(int i = 0; i < weightHypothesis.length; i++)
|
---|
63 | weightHypothesis[i].setProbability(1.0/weightHypothesis.length);
|
---|
64 |
|
---|
65 | //generate evaluator hypotheses
|
---|
66 | for(int i = 0; i < numberOfIssues; i++)
|
---|
67 | {
|
---|
68 | ArrayList<EvaluatorHypothesis> lEvalHyps;
|
---|
69 | // switch(uUS.getEvaluator(issues.get(i).getNumber()).getType())
|
---|
70 | // {
|
---|
71 | // case DISCRETE:
|
---|
72 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
73 | aaEvaluatorHypothesis.add(lEvalHyps);
|
---|
74 | IssueDiscrete lDiscIssue = (IssueDiscrete)(dDomain.getIssues().get(i));
|
---|
75 |
|
---|
76 | //uphill
|
---|
77 | EvaluatorDiscrete lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
78 | for(int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
79 | lDiscreteEvaluator.addEvaluation(lDiscIssue.getValue(j), 1000 * j + 1);
|
---|
80 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEvaluator, "uphill");
|
---|
81 |
|
---|
82 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
83 |
|
---|
84 | //downhill
|
---|
85 | lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
86 | for(int j=0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
87 | lDiscreteEvaluator.addEvaluation(lDiscIssue.getValue(j), 1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1);
|
---|
88 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEvaluator, "downhill");
|
---|
89 |
|
---|
90 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
91 |
|
---|
92 | //triangular
|
---|
93 | lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
94 | int halfway=lDiscIssue.getNumberOfValues()/2;
|
---|
95 | for(int j=0;j<lDiscIssue.getNumberOfValues();j++)
|
---|
96 | if(j<halfway)
|
---|
97 | lDiscreteEvaluator.addEvaluation(lDiscIssue.getValue(j),1000*j+1);
|
---|
98 | else
|
---|
99 | lDiscreteEvaluator.addEvaluation(lDiscIssue.getValue(j),
|
---|
100 | 1000*(lDiscIssue.getNumberOfValues()-j-1)+1);
|
---|
101 | lEvaluatorHypothesis = new EvaluatorHypothesis (lDiscreteEvaluator, "triangular");
|
---|
102 |
|
---|
103 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
104 | // break;
|
---|
105 | //
|
---|
106 | // //Eval hypothesis for real / price attributes
|
---|
107 | // case PRICE:
|
---|
108 | // case REAL:
|
---|
109 | // lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
110 | // aaEvaluatorHypothesis.add(lEvalHyps);
|
---|
111 | // IssueReal lRealIssue = (IssueReal)(dDomain.getIssue(i));
|
---|
112 | //
|
---|
113 | // //uphill
|
---|
114 | // EvaluatorReal lRealEvaluator = new EvaluatorReal();
|
---|
115 | // lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
116 | // lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
117 | // lRealEvaluator.setType(EVALFUNCTYPE.LINEAR);
|
---|
118 | // lRealEvaluator.addParam(1, 1.0/(lRealEvaluator.getUpperBound()-lRealEvaluator.getLowerBound()));
|
---|
119 | // lRealEvaluator.addParam(0, -lRealEvaluator.getLowerBound()/(lRealEvaluator.getUpperBound()-lRealEvaluator.getLowerBound()));
|
---|
120 | // lEvaluatorHypothesis = new EvaluatorHypothesis(lRealEvaluator, "uphill");
|
---|
121 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
122 | //
|
---|
123 | // //downhill
|
---|
124 | // lRealEvaluator = new EvaluatorReal();
|
---|
125 | // lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
126 | // lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
127 | // lRealEvaluator.setType(EVALFUNCTYPE.LINEAR);
|
---|
128 | // lRealEvaluator.addParam(1, -1.0/(lRealEvaluator.getUpperBound()-lRealEvaluator.getLowerBound()));
|
---|
129 | // lRealEvaluator.addParam(0, 1.0+lRealEvaluator.getLowerBound()/(lRealEvaluator.getUpperBound()-lRealEvaluator.getLowerBound()));
|
---|
130 | // lEvaluatorHypothesis = new EvaluatorHypothesis(lRealEvaluator, "downhill");
|
---|
131 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
132 | //
|
---|
133 | // //triangular
|
---|
134 | // int lTotalTriangularFns = 1;
|
---|
135 | // for(int k=1;k<=lTotalTriangularFns;k++)
|
---|
136 | // {
|
---|
137 | // lRealEvaluator = new EvaluatorReal();
|
---|
138 | // lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
139 | // lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
140 | // lRealEvaluator.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
141 | // lRealEvaluator.addParam(0, lRealEvaluator.getLowerBound());
|
---|
142 | // lRealEvaluator.addParam(1, lRealEvaluator.getUpperBound());
|
---|
143 | // lRealEvaluator.addParam(2, lRealEvaluator.getLowerBound()+(double)k*(lRealEvaluator.getUpperBound()-lRealEvaluator.getLowerBound())/(lTotalTriangularFns+1));
|
---|
144 | // lEvaluatorHypothesis = new EvaluatorHypothesis(lRealEvaluator, "triangular");
|
---|
145 | // lEvaluatorHypothesis.setProbability((double)1/3);
|
---|
146 | // lEvalHyps.add(lEvaluatorHypothesis);
|
---|
147 | // }
|
---|
148 | // for(int k=0;k<lEvalHyps.size();k++) {
|
---|
149 | // lEvalHyps.get(k).setProbability((double)1/lEvalHyps.size());
|
---|
150 | // }
|
---|
151 | //
|
---|
152 | // break;
|
---|
153 | //
|
---|
154 | // default:
|
---|
155 | // throw new NullPointerException("Evaluator type not implemented: eval type - " + uUS.getEvaluator(issues.get(i).getNumber()).getType());
|
---|
156 | }
|
---|
157 | //}
|
---|
158 |
|
---|
159 | //build evaluation hypothesis
|
---|
160 | ArrayList<EvaluatorHypothesis[]> evalHypothesis = new ArrayList<EvaluatorHypothesis[]>();
|
---|
161 | // uUS.getDomain().getIssues().size()
|
---|
162 |
|
---|
163 | EvaluatorHypothesis[] ehTmp = new EvaluatorHypothesis[uUS.getDomain().getIssues().size()];
|
---|
164 |
|
---|
165 |
|
---|
166 | buildEvaluationHypothesis(evalHypothesis, ehTmp, uUS.getDomain().getIssues().size() - 1, aaEvaluatorHypothesis);
|
---|
167 |
|
---|
168 | //build user space hypothesis
|
---|
169 | buildUtilitySpaceHypothesis(weightHypothesis, evalHypothesis);
|
---|
170 |
|
---|
171 | // HOSOKAWA: removed this part
|
---|
172 | // try
|
---|
173 | // {
|
---|
174 | // FileWriter fw = new FileWriter("E:\\Hyopothesis.txt");
|
---|
175 | // fw.write(uUSHypothesis.toString());
|
---|
176 | // fw.flush();
|
---|
177 | // fw.close();
|
---|
178 | // }
|
---|
179 | // catch(Exception e)
|
---|
180 | // { }
|
---|
181 | initialNumberHyps = uUSHypothesis.size();
|
---|
182 | }
|
---|
183 |
|
---|
184 | private void buildEvaluationHypothesis(ArrayList<EvaluatorHypothesis[]> pHyps, EvaluatorHypothesis[] pEval, int m, ArrayList<ArrayList<EvaluatorHypothesis>> paaEval)
|
---|
185 | {
|
---|
186 | if(m==0)
|
---|
187 | {
|
---|
188 | ArrayList<EvaluatorHypothesis> lEvalHyps = paaEval.get(uUS.getDomain().getIssues().size()-1);
|
---|
189 | for (int i=0;i<lEvalHyps.size();i++)
|
---|
190 | {
|
---|
191 | pEval[uUS.getDomain().getIssues().size()-1] = lEvalHyps.get(i);
|
---|
192 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[uUS.getDomain().getIssues().size()];
|
---|
193 | //copy to temporary array
|
---|
194 | for(int j =0;j<lTmp.length;j++)
|
---|
195 | lTmp[j] = pEval[j];
|
---|
196 | pHyps.add(lTmp);
|
---|
197 | }
|
---|
198 | }
|
---|
199 | else
|
---|
200 | {
|
---|
201 | ArrayList<EvaluatorHypothesis> lEvalHyps = paaEval.get(uUS.getDomain().getIssues().size()-m-1);
|
---|
202 | for (int i=0;i<lEvalHyps.size();i++)
|
---|
203 | {
|
---|
204 | pEval[uUS.getDomain().getIssues().size()-m-1] = lEvalHyps.get(i);
|
---|
205 | buildEvaluationHypothesis(pHyps, pEval, m-1, paaEval);
|
---|
206 | }
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | private void buildUtilitySpaceHypothesis(WeightHypothesis[] pWeightHypothesis, ArrayList<EvaluatorHypothesis[]> pEvalHypothesis)
|
---|
211 | {
|
---|
212 | uUSHypothesis = new ArrayList<UtilitySpaceHypothesis>();
|
---|
213 | for(int i = 0; i < pWeightHypothesis.length; i++)
|
---|
214 | {
|
---|
215 | for(int j=0; j < pEvalHypothesis.size(); j++) {
|
---|
216 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(dDomain, uUS, pWeightHypothesis[i], pEvalHypothesis.get(j));
|
---|
217 | uUSHypothesis.add(lUSHyp);
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | //set initial probability for all hyps
|
---|
222 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
223 | {
|
---|
224 | uUSHypothesis.get(i).setProbability(1.0/(double)(uUSHypothesis.size()));
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | private Integer weightPermutations(Integer index, WeightHypothesis[] hyps, double[] P, int m) {
|
---|
229 | if(m == 0) {
|
---|
230 | WeightHypothesis lWH = new WeightHypothesis(dDomain);
|
---|
231 | for(int i = 0; i < P.length; i++) lWH.setWeight(i, P[i]);
|
---|
232 | hyps[index] = lWH;
|
---|
233 | index++;
|
---|
234 | } else {
|
---|
235 | for(int i = 0; i <= m; i++) {
|
---|
236 | index = weightPermutations(index, hyps, P, m-1);
|
---|
237 | if(i<m) {
|
---|
238 | //swap elements i and m
|
---|
239 | double tmp = P[i];
|
---|
240 | P[i]=P[m];
|
---|
241 | P[m] = tmp;
|
---|
242 | reverse(P, m - 1);
|
---|
243 | } //if
|
---|
244 | }
|
---|
245 | }
|
---|
246 | return index;
|
---|
247 | }
|
---|
248 |
|
---|
249 | private void reverse(double[] array, int size)
|
---|
250 | {
|
---|
251 | int i=0, j=size;
|
---|
252 | while(i < j)
|
---|
253 | {
|
---|
254 | //swap i <-> j
|
---|
255 | double tmp = array[i];
|
---|
256 | array[i] = array[j];
|
---|
257 | array[j] = tmp;
|
---|
258 | i++;
|
---|
259 | j--;
|
---|
260 | }
|
---|
261 | }
|
---|
262 |
|
---|
263 | private int factorial(int n)
|
---|
264 | {
|
---|
265 | int result = 1;
|
---|
266 | for(; n > 1; n--)
|
---|
267 | {
|
---|
268 | result *= n;
|
---|
269 | }
|
---|
270 | return result;
|
---|
271 | }
|
---|
272 |
|
---|
273 | public void updateBeliefs(Bid pBid) throws Exception
|
---|
274 | {
|
---|
275 | //TODO: this variable counts the number of excludes
|
---|
276 | int iExcludeCnt = 0;
|
---|
277 |
|
---|
278 | //calculate probability for the given bid
|
---|
279 | double lProbSum = 0;
|
---|
280 | double lMaxProb = 0;
|
---|
281 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
282 | {
|
---|
283 |
|
---|
284 | UtilitySpaceHypothesis hyp = uUSHypothesis.get(i);
|
---|
285 | double condDistrib = hyp.getProbability() * conditionalDistribution(uUSHypothesis.get(i).getUtility(pBid), previousBidUtility);
|
---|
286 | lProbSum += condDistrib;
|
---|
287 | if(condDistrib > lMaxProb)
|
---|
288 | lMaxProb = condDistrib;
|
---|
289 | hyp.setProbability(condDistrib);
|
---|
290 |
|
---|
291 |
|
---|
292 | }
|
---|
293 |
|
---|
294 | if(bUseMostProb)
|
---|
295 | mostProbHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
296 |
|
---|
297 | double mostProbHypSum = 0;
|
---|
298 |
|
---|
299 |
|
---|
300 | //update the weights hyps and evaluators hyps
|
---|
301 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
302 | {
|
---|
303 |
|
---|
304 | UtilitySpaceHypothesis hyp = uUSHypothesis.get(i);
|
---|
305 | double normalizedProbability = hyp.getProbability() / lProbSum;
|
---|
306 |
|
---|
307 | if(bUseMostProb)
|
---|
308 | if(normalizedProbability > lMaxProb * 0.95 / lProbSum) {
|
---|
309 | mostProbHyps.add(hyp);
|
---|
310 | mostProbHypSum += normalizedProbability;
|
---|
311 | }
|
---|
312 |
|
---|
313 | //exclude if probability is 0
|
---|
314 | if(normalizedProbability > 0)
|
---|
315 | hyp.setProbability(normalizedProbability);
|
---|
316 | else
|
---|
317 | {
|
---|
318 | iExcludeCnt++;
|
---|
319 | uUSHypothesis.remove(i);
|
---|
320 | }
|
---|
321 | // --- end exclude hyps with prob. around 0
|
---|
322 | }
|
---|
323 |
|
---|
324 | //normalize most probable hypothesis
|
---|
325 | if(bUseMostProb) {
|
---|
326 |
|
---|
327 | for(int i=0;i<mostProbHyps.size();i++) {
|
---|
328 | UtilitySpaceHypothesis tmpHyp = mostProbHyps.get(i);
|
---|
329 | double normalizedProbability = tmpHyp.getProbability() / mostProbHypSum;
|
---|
330 | tmpHyp.setProbability(normalizedProbability);
|
---|
331 | }
|
---|
332 | }
|
---|
333 |
|
---|
334 | //TODO: print excluded hypothesis count - with 0
|
---|
335 | //System.out.println("Excluded hypothesis with 0: " + iExcludeCnt);
|
---|
336 |
|
---|
337 | if(uUSHypothesis.size() / initialNumberHyps >= 0.15)
|
---|
338 | {
|
---|
339 |
|
---|
340 | //calculate utility of the next partner's bid according to the concession functions
|
---|
341 | previousBidUtility = previousBidUtility - CONCESSION_STRATEGY;
|
---|
342 |
|
---|
343 | //sort hypotesis by probability
|
---|
344 |
|
---|
345 | Collections.sort(uUSHypothesis);
|
---|
346 |
|
---|
347 |
|
---|
348 | //exclude bids with sum under 0.95
|
---|
349 | int cutPoint = Integer.MAX_VALUE;
|
---|
350 |
|
---|
351 | double cummulativeSum = 0;
|
---|
352 |
|
---|
353 | //get cutPoint
|
---|
354 | //and cumulative sum for normalization
|
---|
355 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
356 | {
|
---|
357 | cummulativeSum += uUSHypothesis.get(i).getProbability();
|
---|
358 | if(cummulativeSum > 0.95)
|
---|
359 | {
|
---|
360 | cutPoint = i;
|
---|
361 | break;
|
---|
362 | }
|
---|
363 | }
|
---|
364 | //System.out.println("Cumulative sum: " + cummulativeSum);
|
---|
365 |
|
---|
366 | //eliminate from cutPoint to last item
|
---|
367 | if(cutPoint != Integer.MAX_VALUE)
|
---|
368 | {
|
---|
369 | for(int i = uUSHypothesis.size() - 1; i >= cutPoint; i--)
|
---|
370 | {
|
---|
371 | iExcludeCnt++;
|
---|
372 | uUSHypothesis.remove(i);
|
---|
373 | }
|
---|
374 | }
|
---|
375 |
|
---|
376 | double normalizedUtilSum = 0;
|
---|
377 |
|
---|
378 | //normalize remained hypothesis probability
|
---|
379 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
380 | {
|
---|
381 | UtilitySpaceHypothesis currentHyp = uUSHypothesis.get(i);
|
---|
382 | double newProbability = currentHyp.getProbability() / cummulativeSum;
|
---|
383 | currentHyp.setProbability(newProbability);
|
---|
384 | normalizedUtilSum += newProbability;
|
---|
385 | }
|
---|
386 | //TODO: print info about excludes
|
---|
387 | System.out.println("Excluded hypothesis at this step: " + iExcludeCnt);
|
---|
388 | System.out.println("Count of remained Hyps: " + uUSHypothesis.size());
|
---|
389 | System.out.println("NormSum: " + normalizedUtilSum);
|
---|
390 | }
|
---|
391 | }
|
---|
392 |
|
---|
393 | private double conditionalDistribution(double pUtility, double pPreviousBidUtility)
|
---|
394 | {
|
---|
395 | if(pPreviousBidUtility < pUtility)
|
---|
396 | return 0;
|
---|
397 | else
|
---|
398 | {
|
---|
399 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
400 | double distribution = (1 / (SIGMA * Math.sqrt(2 * Math.PI)) * Math.exp(-(x * x) / (2 * SIGMA * SIGMA)));
|
---|
401 | return distribution;
|
---|
402 | }
|
---|
403 | }
|
---|
404 |
|
---|
405 | public double getExpectedUtility(Bid pBid) throws Exception
|
---|
406 | {
|
---|
407 | double lExpectedUtility = 0;
|
---|
408 |
|
---|
409 | if(bUseMostProb &&(mostProbHyps != null)) {
|
---|
410 | for(int i=0; i < mostProbHyps.size(); i++) {
|
---|
411 | UtilitySpaceHypothesis tmpUSHypothesis = mostProbHyps.get(i);
|
---|
412 | double p = tmpUSHypothesis.getProbability();
|
---|
413 | double u = tmpUSHypothesis.getUtility(pBid);
|
---|
414 | lExpectedUtility += p * u;
|
---|
415 | }
|
---|
416 | }
|
---|
417 | else
|
---|
418 | {
|
---|
419 | for(int i = 0; i < uUSHypothesis.size(); i++)
|
---|
420 | {
|
---|
421 | UtilitySpaceHypothesis tmpUSHypothesis = uUSHypothesis.get(i);
|
---|
422 | double p = tmpUSHypothesis.getProbability();
|
---|
423 | double u = tmpUSHypothesis.getUtility(pBid);
|
---|
424 | lExpectedUtility += p * u;
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 | //TODO: for test
|
---|
429 | //System.out.println("utility: " + lExpectedUtility + "for bid: " + pBid);
|
---|
430 |
|
---|
431 | return lExpectedUtility;
|
---|
432 | }
|
---|
433 |
|
---|
434 | public double getExpectedWeight(int pIssueNumber)
|
---|
435 | {
|
---|
436 | double lExpectedWeight = 0;
|
---|
437 | for(int i=0; i < uUSHypothesis.size(); i++) {
|
---|
438 | UtilitySpaceHypothesis lUSHyp = uUSHypothesis.get(i);
|
---|
439 | double p = lUSHyp.getProbability();
|
---|
440 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
441 | lExpectedWeight += p * u;
|
---|
442 | }
|
---|
443 | return lExpectedWeight;
|
---|
444 | }
|
---|
445 | }
|
---|