[341] | 1 | package agents.anac.y2018.yeela;
|
---|
| 2 |
|
---|
| 3 | import java.util.List;
|
---|
| 4 |
|
---|
[343] | 5 | import java.util.HashMap;
|
---|
[341] | 6 | import java.util.Random;
|
---|
| 7 |
|
---|
[343] | 8 | import genius.core.Bid;
|
---|
| 9 | import genius.core.issue.Issue;
|
---|
| 10 | import genius.core.issue.IssueDiscrete;
|
---|
| 11 | import genius.core.issue.Value;
|
---|
| 12 | import genius.core.issue.ValueDiscrete;
|
---|
| 13 | import genius.core.parties.NegotiationInfo;
|
---|
| 14 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 15 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 16 |
|
---|
[341] | 17 | public class Individual implements Comparable<Individual> {
|
---|
| 18 | private Double ALPHA = 0.9; // TODO
|
---|
| 19 |
|
---|
| 20 | private HashMap<Integer, Value> m_gene;
|
---|
| 21 | private Double m_util;
|
---|
| 22 | private NegotiationInfo m_info;
|
---|
| 23 | private Random m_rand;
|
---|
| 24 | private Bid m_opponent;
|
---|
| 25 | private Double m_best;
|
---|
| 26 | private Double m_maxDist;
|
---|
| 27 |
|
---|
| 28 | public Individual(Bid b, NegotiationInfo info)
|
---|
| 29 | {
|
---|
| 30 | m_gene = b.getValues();
|
---|
| 31 | m_info = info;
|
---|
| 32 | m_util = CalcUtility();
|
---|
| 33 | m_rand = new Random();
|
---|
| 34 |
|
---|
| 35 | try
|
---|
| 36 | {
|
---|
| 37 | Bid best = m_info.getUtilitySpace().getMaxUtilityBid();
|
---|
| 38 | m_best = m_info.getUtilitySpace().getUtility(best);
|
---|
| 39 | m_maxDist = Dist(
|
---|
| 40 | best.getValues(),
|
---|
| 41 | m_info.getUtilitySpace().getMinUtilityBid().getValues());
|
---|
| 42 | }
|
---|
| 43 | catch (Exception e)
|
---|
| 44 | {
|
---|
| 45 | m_maxDist = Double.MIN_VALUE;
|
---|
| 46 | e.printStackTrace();
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | @Override
|
---|
| 51 | public int compareTo(Individual other)
|
---|
| 52 | {
|
---|
| 53 | try
|
---|
| 54 | {
|
---|
| 55 | return (int) java.lang.Math.signum(this.GetFitness() - other.GetFitness());
|
---|
| 56 | }
|
---|
| 57 | catch (Exception e)
|
---|
| 58 | {
|
---|
| 59 | e.printStackTrace();
|
---|
| 60 | return 0;
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public Value GetValue(Integer key)
|
---|
| 65 | {
|
---|
| 66 | return m_gene.get(key);
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | public void SetValue(Integer key, Value value)
|
---|
| 70 | {
|
---|
| 71 | m_gene.put(key, value);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | private Double TP()
|
---|
| 75 | {
|
---|
| 76 | // TODO
|
---|
| 77 | return 1.0;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | private Double Dist(HashMap<Integer, Value> v1, HashMap<Integer, Value> v2)
|
---|
| 81 | {
|
---|
| 82 | Double d = 0.0;
|
---|
| 83 |
|
---|
| 84 | AdditiveUtilitySpace additiveUtilitySpace = (AdditiveUtilitySpace) m_info.getUtilitySpace();
|
---|
| 85 | List<Issue> issues = additiveUtilitySpace.getDomain().getIssues();
|
---|
| 86 |
|
---|
| 87 | for (Issue issue : issues)
|
---|
| 88 | {
|
---|
| 89 | int issueNumber = issue.getNumber();
|
---|
| 90 | Double weight = additiveUtilitySpace.getWeight(issueNumber);
|
---|
| 91 |
|
---|
| 92 | // Assuming that issues are discrete only
|
---|
| 93 | EvaluatorDiscrete evaluatorDiscrete = (EvaluatorDiscrete) additiveUtilitySpace.getEvaluator(issueNumber);
|
---|
| 94 |
|
---|
| 95 | try
|
---|
| 96 | {
|
---|
| 97 | Double evaluation1 = evaluatorDiscrete.getEvaluation((ValueDiscrete)v1.get(issueNumber));
|
---|
| 98 | Double evaluation2 = evaluatorDiscrete.getEvaluation((ValueDiscrete)v2.get(issueNumber));
|
---|
| 99 |
|
---|
| 100 | d += (weight * Math.pow(evaluation1 - evaluation2, 2));
|
---|
| 101 | }
|
---|
| 102 | catch (Exception e)
|
---|
| 103 | {
|
---|
| 104 | d = Double.POSITIVE_INFINITY;
|
---|
| 105 | e.printStackTrace();
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | return Math.sqrt(d);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public void UpdateOpponent(Bid opponent)
|
---|
| 113 | {
|
---|
| 114 | m_opponent = opponent;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | public Double GetFitness()
|
---|
| 118 | {
|
---|
| 119 | Double otherSide = (1 - ALPHA) * TP() * (1 - (Dist(m_gene, m_opponent.getValues()) / m_maxDist));
|
---|
| 120 | Double ourSide = ALPHA * TP() * (this.GetUtility() / m_best);
|
---|
| 121 | return ourSide + otherSide;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | public Double GetUtility()
|
---|
| 125 | {
|
---|
| 126 | return m_util;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | private Double CalcUtility()
|
---|
| 130 | {
|
---|
| 131 | // TODO maybe simply call utilitySpace.getUtility(randomBid); see https://github.com/tdgunes/ExampleAgent/wiki/Generating-a-random-bid-with-a-utility-threshold
|
---|
| 132 | Double util = 0.0;
|
---|
| 133 |
|
---|
| 134 | AdditiveUtilitySpace additiveUtilitySpace = (AdditiveUtilitySpace) m_info.getUtilitySpace();
|
---|
| 135 | List<Issue> issues = additiveUtilitySpace.getDomain().getIssues();
|
---|
| 136 |
|
---|
| 137 | for (Issue issue : issues)
|
---|
| 138 | {
|
---|
| 139 | int issueNumber = issue.getNumber();
|
---|
| 140 | Double weight = additiveUtilitySpace.getWeight(issueNumber);
|
---|
| 141 |
|
---|
| 142 | // Assuming that issues are discrete only
|
---|
| 143 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
| 144 | EvaluatorDiscrete evaluatorDiscrete = (EvaluatorDiscrete) additiveUtilitySpace.getEvaluator(issueNumber);
|
---|
| 145 | Double evaluation = 0.0;
|
---|
| 146 |
|
---|
| 147 | for (ValueDiscrete valueDiscrete : issueDiscrete.getValues())
|
---|
| 148 | {
|
---|
| 149 | if (0 == valueDiscrete.getValue().compareTo(m_gene.get(issueNumber).toString()))
|
---|
| 150 | {
|
---|
| 151 | try
|
---|
| 152 | {
|
---|
| 153 | evaluation = evaluatorDiscrete.getEvaluation(valueDiscrete);
|
---|
| 154 | util += (weight * evaluation);
|
---|
| 155 | }
|
---|
| 156 | catch (Exception e)
|
---|
| 157 | {
|
---|
| 158 | e.printStackTrace();
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | return util;
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | public Individual Clone()
|
---|
| 167 | {
|
---|
| 168 | Bid randomBid = m_info.getUtilitySpace().getDomain().getRandomBid(m_rand);
|
---|
| 169 |
|
---|
| 170 | try
|
---|
| 171 | {
|
---|
| 172 | for (Integer key : m_gene.keySet())
|
---|
| 173 | {
|
---|
| 174 | randomBid.putValue(key, m_gene.get(key));
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | catch (Exception e)
|
---|
| 178 | {
|
---|
| 179 | e.printStackTrace();
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | Individual ind = new Individual(randomBid, m_info);
|
---|
| 183 | ind.UpdateOpponent(m_opponent);
|
---|
| 184 | return ind;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | public void Mutate()
|
---|
| 188 | {
|
---|
| 189 | try
|
---|
| 190 | {
|
---|
| 191 | AdditiveUtilitySpace additiveUtilitySpace = (AdditiveUtilitySpace) m_info.getUtilitySpace();
|
---|
| 192 | List<Issue> issues = additiveUtilitySpace.getDomain().getIssues();
|
---|
| 193 |
|
---|
| 194 | int randomNum = m_rand.nextInt(issues.size());
|
---|
| 195 | Issue issue = issues.get(randomNum);
|
---|
| 196 |
|
---|
| 197 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
| 198 | int issueNumber = issue.getNumber();
|
---|
| 199 | randomNum = issueNumber;
|
---|
| 200 | while (randomNum == issueNumber)
|
---|
| 201 | {
|
---|
| 202 | randomNum = m_rand.nextInt(issueDiscrete.getValues().size());
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | Value newValue = issueDiscrete.getValues().get(randomNum);
|
---|
| 206 | m_gene.put(issueNumber, newValue);
|
---|
| 207 | }
|
---|
| 208 | catch (Exception e)
|
---|
| 209 | {
|
---|
| 210 | e.printStackTrace();
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | public void Crossover(Individual other)
|
---|
| 216 | {
|
---|
| 217 | try
|
---|
| 218 | {
|
---|
| 219 | AdditiveUtilitySpace additiveUtilitySpace = (AdditiveUtilitySpace) m_info.getUtilitySpace();
|
---|
| 220 | List<Issue> issues = additiveUtilitySpace.getDomain().getIssues();
|
---|
| 221 |
|
---|
| 222 | if (1 < issues.size()) // otherwise no need to crossover
|
---|
| 223 | {
|
---|
| 224 | int randomNum = m_rand.nextInt(issues.size() - 1) + 1; // minus one since crossover location is in gap between alleles
|
---|
| 225 |
|
---|
| 226 | for (Integer key : m_gene.keySet())
|
---|
| 227 | {
|
---|
| 228 | if (key > randomNum)
|
---|
| 229 | {
|
---|
| 230 | break;
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | Value temp = m_gene.get(key);
|
---|
| 234 | m_gene.put(key, other.GetValue(key));
|
---|
| 235 | other.SetValue(key, temp);
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | }
|
---|
| 239 | catch (Exception e)
|
---|
| 240 | {
|
---|
| 241 | e.printStackTrace();
|
---|
| 242 | }
|
---|
| 243 | }
|
---|
| 244 | }
|
---|