1 | package agents.anac.y2018.condagent;
|
---|
2 |
|
---|
3 | import java.util.List;
|
---|
4 |
|
---|
5 | import java.util.ArrayList;
|
---|
6 |
|
---|
7 | import genius.core.Bid;
|
---|
8 | import genius.core.issue.Issue;
|
---|
9 | import genius.core.issue.IssueDiscrete;
|
---|
10 | import genius.core.issue.IssueReal;
|
---|
11 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
12 | import genius.core.utility.EVALFUNCTYPE;
|
---|
13 | import genius.core.utility.EvaluatorDiscrete;
|
---|
14 | import genius.core.utility.EvaluatorReal;
|
---|
15 |
|
---|
16 |
|
---|
17 |
|
---|
18 |
|
---|
19 |
|
---|
20 |
|
---|
21 | public class BayesianOpponentModel
|
---|
22 | extends OpponentModel
|
---|
23 | {
|
---|
24 | private AdditiveUtilitySpace fUS;
|
---|
25 | private WeightHypothesis[] fWeightHyps;
|
---|
26 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
27 | private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
28 | private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
29 | private boolean fUseMostProbableHypsOnly = false;
|
---|
30 | private ArrayList<UtilitySpaceHypothesis> fMostProbableUSHyps;
|
---|
31 | private double fPreviousBidUtility;
|
---|
32 | private double EXPECTED_CONCESSION_STEP = 0.035D;
|
---|
33 | private double SIGMA = 0.25D;
|
---|
34 | private boolean USE_DOMAIN_KNOWLEDGE = false;
|
---|
35 | List<Issue> issues;
|
---|
36 |
|
---|
37 | public BayesianOpponentModel(AdditiveUtilitySpace pUtilitySpace) {
|
---|
38 | if (pUtilitySpace == null)
|
---|
39 | throw new NullPointerException("pUtilitySpace=null");
|
---|
40 | fDomain = pUtilitySpace.getDomain();
|
---|
41 | fPreviousBidUtility = 1.0D;
|
---|
42 | fUS = pUtilitySpace;
|
---|
43 | fBiddingHistory = new ArrayList();
|
---|
44 | issues = fDomain.getIssues();
|
---|
45 | int lNumberOfHyps = factorial(issues.size());
|
---|
46 | fWeightHyps = new WeightHypothesis[lNumberOfHyps];
|
---|
47 |
|
---|
48 | int index = 0;
|
---|
49 | double[] P = new double[issues.size()];
|
---|
50 |
|
---|
51 | for (int i = 0; i < issues.size(); i++) {
|
---|
52 | P[i] =
|
---|
53 | ((i + 1) / (issues.size() * (fDomain.getIssues().size() + 1) / 2.0D));
|
---|
54 | }
|
---|
55 | antilex(new Integer(index), fWeightHyps, P,
|
---|
56 | fDomain.getIssues().size() - 1);
|
---|
57 |
|
---|
58 |
|
---|
59 |
|
---|
60 |
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 | for (int i = 0; i < fWeightHyps.length; i++) {
|
---|
65 | fWeightHyps[i].setProbability(1.0D / fWeightHyps.length);
|
---|
66 | }
|
---|
67 |
|
---|
68 | fEvaluatorHyps = new ArrayList();
|
---|
69 | int lTotalTriangularFns = 1;
|
---|
70 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
71 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList();
|
---|
72 | lEvalHyps = new ArrayList();
|
---|
73 | fEvaluatorHyps.add(lEvalHyps);
|
---|
74 | switch (fUS.getEvaluator(((Issue)issues.get(i)).getNumber()).getType())
|
---|
75 | {
|
---|
76 |
|
---|
77 | case OBJECTIVE:
|
---|
78 | IssueReal lIssue = (IssueReal)fDomain.getIssues().get(i);
|
---|
79 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
80 |
|
---|
81 | if (USE_DOMAIN_KNOWLEDGE)
|
---|
82 | {
|
---|
83 | lHypEval = new EvaluatorReal();
|
---|
84 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
85 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
86 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
87 | lHypEval.addParam(1,
|
---|
88 | 1.0D / (lHypEval.getUpperBound() - lHypEval
|
---|
89 | .getLowerBound()));
|
---|
90 | lHypEval.addParam(
|
---|
91 | 0,
|
---|
92 | -lHypEval.getLowerBound() / (
|
---|
93 | lHypEval.getUpperBound() - lHypEval
|
---|
94 | .getLowerBound()));
|
---|
95 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
96 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
97 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
98 | }
|
---|
99 | else
|
---|
100 | {
|
---|
101 | lHypEval = new EvaluatorReal();
|
---|
102 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
103 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
104 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
105 | lHypEval.addParam(1,
|
---|
106 | 1.0D / (lHypEval.getUpperBound() - lHypEval
|
---|
107 | .getLowerBound()));
|
---|
108 | lHypEval.addParam(
|
---|
109 | 0,
|
---|
110 | -lHypEval.getLowerBound() / (
|
---|
111 | lHypEval.getUpperBound() - lHypEval
|
---|
112 | .getLowerBound()));
|
---|
113 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
114 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
115 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
116 |
|
---|
117 | lHypEval = new EvaluatorReal();
|
---|
118 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
119 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
120 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
121 | lHypEval.addParam(
|
---|
122 | 1,
|
---|
123 | -1.0D / (
|
---|
124 | lHypEval.getUpperBound() - lHypEval
|
---|
125 | .getLowerBound()));
|
---|
126 | lHypEval.addParam(
|
---|
127 | 0,
|
---|
128 | 1.0D +
|
---|
129 | lHypEval.getLowerBound() / (
|
---|
130 | lHypEval.getUpperBound() - lHypEval
|
---|
131 | .getLowerBound()));
|
---|
132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
133 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
134 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
135 |
|
---|
136 | for (int k = 1; k <= lTotalTriangularFns; k++)
|
---|
137 | {
|
---|
138 | lHypEval = new EvaluatorReal();
|
---|
139 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
140 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
141 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
142 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
143 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
144 | lHypEval.addParam(
|
---|
145 | 2,
|
---|
146 | lHypEval.getLowerBound() +
|
---|
147 | k * (
|
---|
148 | lHypEval.getUpperBound() - lHypEval
|
---|
149 | .getLowerBound()) / (
|
---|
150 | lTotalTriangularFns + 1));
|
---|
151 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
152 | lEvaluatorHypothesis.setProbability(0.3333333333333333D);
|
---|
153 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
154 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
155 | }
|
---|
156 | }
|
---|
157 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
158 | ((EvaluatorHypothesis)lEvalHyps.get(k)).setProbability(
|
---|
159 | 1.0D / lEvalHyps.size());
|
---|
160 | }
|
---|
161 |
|
---|
162 | break;
|
---|
163 |
|
---|
164 | case DISCRETE:
|
---|
165 | lEvalHyps = new ArrayList();
|
---|
166 | fEvaluatorHyps.add(lEvalHyps);
|
---|
167 |
|
---|
168 | IssueDiscrete lDiscIssue =
|
---|
169 | (IssueDiscrete)fDomain.getIssues().get(i);
|
---|
170 | if (USE_DOMAIN_KNOWLEDGE)
|
---|
171 | {
|
---|
172 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
173 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
174 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
175 | Integer.valueOf(1000 * j));
|
---|
176 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
177 | lDiscreteEval);
|
---|
178 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
179 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
180 | }
|
---|
181 | else
|
---|
182 | {
|
---|
183 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
184 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
185 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
186 | Integer.valueOf(1000 * j + 1));
|
---|
187 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
188 | lDiscreteEval);
|
---|
189 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
190 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
191 |
|
---|
192 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
193 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
194 | {
|
---|
195 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
196 | Integer.valueOf(1000 * (lDiscIssue.getNumberOfValues() -
|
---|
197 | j - 1) + 1)); }
|
---|
198 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
199 | lDiscreteEval);
|
---|
200 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
201 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
202 |
|
---|
203 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
204 | int halfway = lDiscIssue.getNumberOfValues() / 2;
|
---|
205 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++) {
|
---|
206 | if (j < halfway) {
|
---|
207 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
208 | Integer.valueOf(1000 * j + 1));
|
---|
209 | }
|
---|
210 | else
|
---|
211 | {
|
---|
212 | lDiscreteEval.addEvaluation(
|
---|
213 | lDiscIssue.getValue(j),
|
---|
214 | Integer.valueOf(1000 * (lDiscIssue
|
---|
215 | .getNumberOfValues() - j - 1) + 1)); }
|
---|
216 | }
|
---|
217 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
218 | lDiscreteEval);
|
---|
219 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
220 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 |
|
---|
225 | break;
|
---|
226 | }
|
---|
227 |
|
---|
228 | }
|
---|
229 |
|
---|
230 |
|
---|
231 | buildEvaluationHyps();
|
---|
232 |
|
---|
233 | buildUniformHyps();
|
---|
234 | }
|
---|
235 |
|
---|
236 | private void buildUniformHyps() {
|
---|
237 | fUSHyps = new ArrayList();
|
---|
238 | for (int i = 0; i < fWeightHyps.length; i++)
|
---|
239 | {
|
---|
240 |
|
---|
241 | for (int j = 0; j < fEvalHyps.size(); j++) {
|
---|
242 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(
|
---|
243 | fDomain, fUS, fWeightHyps[i], (EvaluatorHypothesis[])fEvalHyps.get(j));
|
---|
244 | fUSHyps.add(lUSHyp);
|
---|
245 | }
|
---|
246 | }
|
---|
247 |
|
---|
248 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
249 | ((UtilitySpaceHypothesis)fUSHyps.get(i)).setProbability(1.0D / fUSHyps.size());
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | private void reverse(double[] P, int m) {
|
---|
254 | int i = 0;int j = m;
|
---|
255 | while (i < j)
|
---|
256 | {
|
---|
257 | double lTmp = P[i];
|
---|
258 | P[i] = P[j];
|
---|
259 | P[j] = lTmp;
|
---|
260 | i++;
|
---|
261 | j--;
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | private Integer antilex(Integer index, WeightHypothesis[] hyps, double[] P, int m)
|
---|
266 | {
|
---|
267 | if (m == 0) {
|
---|
268 | WeightHypothesis lWH = new WeightHypothesis(fDomain);
|
---|
269 | for (int i = 0; i < P.length; i++)
|
---|
270 | lWH.setWeight(i, P[i]);
|
---|
271 | hyps[index.intValue()] = lWH;
|
---|
272 | index = Integer.valueOf(index.intValue() + 1);
|
---|
273 | } else {
|
---|
274 | for (int i = 0; i <= m; i++) {
|
---|
275 | index = antilex(index, hyps, P, m - 1);
|
---|
276 | if (i < m)
|
---|
277 | {
|
---|
278 | double lTmp = P[i];
|
---|
279 | P[i] = P[m];
|
---|
280 | P[m] = lTmp;
|
---|
281 | reverse(P, m - 1);
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 | return index;
|
---|
286 | }
|
---|
287 |
|
---|
288 |
|
---|
289 | private double conditionalDistribution(double pUtility, double pPreviousBidUtility)
|
---|
290 | {
|
---|
291 | if (pPreviousBidUtility < pUtility) {
|
---|
292 | return 0.0D;
|
---|
293 | }
|
---|
294 |
|
---|
295 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
296 | double lResult = 1.0D / (SIGMA * Math.sqrt(6.283185307179586D)) *
|
---|
297 | Math.exp(-(x * x) / (2.0D * SIGMA * SIGMA));
|
---|
298 | return lResult;
|
---|
299 | }
|
---|
300 |
|
---|
301 | public void updateBeliefs(Bid pBid) throws Exception
|
---|
302 | {
|
---|
303 | fBiddingHistory.add(pBid);
|
---|
304 | if (haveSeenBefore(pBid)) {
|
---|
305 | return;
|
---|
306 | }
|
---|
307 | double lFullProb = 0.0D;
|
---|
308 | double lMaxProb = 0.0D;
|
---|
309 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
310 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
311 | double condDistrib = hyp.getProbability() *
|
---|
312 | conditionalDistribution(((UtilitySpaceHypothesis)fUSHyps.get(i)).getUtility(pBid),
|
---|
313 | fPreviousBidUtility);
|
---|
314 | lFullProb += condDistrib;
|
---|
315 | if (condDistrib > lMaxProb)
|
---|
316 | lMaxProb = condDistrib;
|
---|
317 | hyp.setProbability(condDistrib);
|
---|
318 | }
|
---|
319 | if (fUseMostProbableHypsOnly) {
|
---|
320 | fMostProbableUSHyps = new ArrayList();
|
---|
321 | }
|
---|
322 | double lMostProbableHypFullProb = 0.0D;
|
---|
323 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
324 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
325 | double normalizedProbability = hyp.getProbability() / lFullProb;
|
---|
326 | hyp.setProbability(normalizedProbability);
|
---|
327 | if ((fUseMostProbableHypsOnly) &&
|
---|
328 | (normalizedProbability > lMaxProb * 0.99D / lFullProb)) {
|
---|
329 | fMostProbableUSHyps.add(hyp);
|
---|
330 | lMostProbableHypFullProb += normalizedProbability;
|
---|
331 | }
|
---|
332 | }
|
---|
333 | if (fUseMostProbableHypsOnly) {
|
---|
334 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
335 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fMostProbableUSHyps.get(i);
|
---|
336 | double normalizedProbability = hyp.getProbability() /
|
---|
337 | lMostProbableHypFullProb;
|
---|
338 | hyp.setProbability(normalizedProbability);
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 |
|
---|
343 |
|
---|
344 |
|
---|
345 |
|
---|
346 | System.out.println("BA: Using " +
|
---|
347 | String.valueOf(fMostProbableUSHyps.size()) + " out of " +
|
---|
348 | String.valueOf(fUSHyps.size()) + "hyps");
|
---|
349 | System.out.println(getMaxHyp().toString());
|
---|
350 |
|
---|
351 |
|
---|
352 | fPreviousBidUtility -= EXPECTED_CONCESSION_STEP;
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 |
|
---|
357 | private void buildEvaluationHypsRecursive(ArrayList<EvaluatorHypothesis[]> pHyps, EvaluatorHypothesis[] pEval, int m)
|
---|
358 | {
|
---|
359 | if (m == 0) {
|
---|
360 | ArrayList<EvaluatorHypothesis> lEvalHyps = (ArrayList)fEvaluatorHyps.get(fUS
|
---|
361 | .getNrOfEvaluators() - 1);
|
---|
362 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
363 | pEval[(fUS.getNrOfEvaluators() - 1)] = ((EvaluatorHypothesis)lEvalHyps.get(i));
|
---|
364 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
365 | .getNrOfEvaluators()];
|
---|
366 |
|
---|
367 | for (int j = 0; j < lTmp.length; j++)
|
---|
368 | lTmp[j] = pEval[j];
|
---|
369 | pHyps.add(lTmp);
|
---|
370 | }
|
---|
371 | } else {
|
---|
372 | ArrayList<EvaluatorHypothesis> lEvalHyps = (ArrayList)fEvaluatorHyps.get(fUS
|
---|
373 | .getNrOfEvaluators() - m - 1);
|
---|
374 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
375 | pEval[(fUS.getNrOfEvaluators() - m - 1)] = ((EvaluatorHypothesis)lEvalHyps.get(i));
|
---|
376 | buildEvaluationHypsRecursive(pHyps, pEval, m - 1);
|
---|
377 | }
|
---|
378 | }
|
---|
379 | }
|
---|
380 |
|
---|
381 | private void buildEvaluationHyps() {
|
---|
382 | fEvalHyps = new ArrayList();
|
---|
383 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
384 | .getNrOfEvaluators()];
|
---|
385 | buildEvaluationHypsRecursive(fEvalHyps, lTmp,
|
---|
386 | fUS.getNrOfEvaluators() - 1);
|
---|
387 | }
|
---|
388 |
|
---|
389 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
390 | double lExpectedUtility = 0.0D;
|
---|
391 | if ((fUseMostProbableHypsOnly) && (fMostProbableUSHyps != null)) {
|
---|
392 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
393 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fMostProbableUSHyps.get(i);
|
---|
394 | double p = lUSHyp.getProbability();
|
---|
395 | double u = lUSHyp.getUtility(pBid);
|
---|
396 | lExpectedUtility += p * u;
|
---|
397 | }
|
---|
398 | } else {
|
---|
399 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
400 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
401 | double p = lUSHyp.getProbability();
|
---|
402 | double u = lUSHyp.getUtility(pBid);
|
---|
403 | lExpectedUtility += p * u;
|
---|
404 | }
|
---|
405 | }
|
---|
406 | return lExpectedUtility;
|
---|
407 | }
|
---|
408 |
|
---|
409 | public double getExpectedWeight(int pIssueNumber) {
|
---|
410 | double lExpectedWeight = 0.0D;
|
---|
411 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
412 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
413 | double p = lUSHyp.getProbability();
|
---|
414 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
415 | lExpectedWeight += p * u;
|
---|
416 | }
|
---|
417 | return lExpectedWeight;
|
---|
418 | }
|
---|
419 |
|
---|
420 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
421 | double sum = 0.0D;
|
---|
422 | for (Issue issue : fDomain.getIssues()) {
|
---|
423 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
424 | }
|
---|
425 | return getExpectedWeight(i.getNumber() - startingNumber) / sum;
|
---|
426 | }
|
---|
427 |
|
---|
428 | private UtilitySpaceHypothesis getMaxHyp() {
|
---|
429 | UtilitySpaceHypothesis lHyp = (UtilitySpaceHypothesis)fUSHyps.get(0);
|
---|
430 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
431 | if (lHyp.getProbability() < ((UtilitySpaceHypothesis)fUSHyps.get(i)).getProbability())
|
---|
432 | lHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
433 | }
|
---|
434 | return lHyp;
|
---|
435 | }
|
---|
436 |
|
---|
437 |
|
---|
438 |
|
---|
439 |
|
---|
440 |
|
---|
441 |
|
---|
442 |
|
---|
443 |
|
---|
444 |
|
---|
445 |
|
---|
446 |
|
---|
447 |
|
---|
448 | private int factorial(int n)
|
---|
449 | {
|
---|
450 | if (n <= 1) {
|
---|
451 | return 1;
|
---|
452 | }
|
---|
453 | return n * factorial(n - 1);
|
---|
454 | }
|
---|
455 |
|
---|
456 | public void setMostProbableUSHypsOnly(boolean value) {
|
---|
457 | fUseMostProbableHypsOnly = value;
|
---|
458 | }
|
---|
459 | }
|
---|