[341] | 1 | package agents.anac.y2018.condagent;
|
---|
| 2 |
|
---|
| 3 | import java.util.List;
|
---|
| 4 |
|
---|
[343] | 5 | import java.util.ArrayList;
|
---|
[341] | 6 |
|
---|
[343] | 7 | import genius.core.Bid;
|
---|
| 8 | import genius.core.issue.Issue;
|
---|
| 9 | import genius.core.issue.IssueDiscrete;
|
---|
| 10 | import genius.core.issue.IssueReal;
|
---|
| 11 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 12 | import genius.core.utility.EVALFUNCTYPE;
|
---|
| 13 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 14 | import genius.core.utility.EvaluatorReal;
|
---|
[341] | 15 |
|
---|
| 16 |
|
---|
| 17 |
|
---|
| 18 |
|
---|
[343] | 19 |
|
---|
| 20 |
|
---|
[341] | 21 | public class BayesianOpponentModel
|
---|
| 22 | extends OpponentModel
|
---|
| 23 | {
|
---|
| 24 | private AdditiveUtilitySpace fUS;
|
---|
| 25 | private WeightHypothesis[] fWeightHyps;
|
---|
| 26 | private ArrayList<ArrayList<EvaluatorHypothesis>> fEvaluatorHyps;
|
---|
| 27 | private ArrayList<EvaluatorHypothesis[]> fEvalHyps;
|
---|
| 28 | private ArrayList<UtilitySpaceHypothesis> fUSHyps;
|
---|
| 29 | private boolean fUseMostProbableHypsOnly = false;
|
---|
| 30 | private ArrayList<UtilitySpaceHypothesis> fMostProbableUSHyps;
|
---|
| 31 | private double fPreviousBidUtility;
|
---|
| 32 | private double EXPECTED_CONCESSION_STEP = 0.035D;
|
---|
| 33 | private double SIGMA = 0.25D;
|
---|
| 34 | private boolean USE_DOMAIN_KNOWLEDGE = false;
|
---|
| 35 | List<Issue> issues;
|
---|
| 36 |
|
---|
| 37 | public BayesianOpponentModel(AdditiveUtilitySpace pUtilitySpace) {
|
---|
| 38 | if (pUtilitySpace == null)
|
---|
| 39 | throw new NullPointerException("pUtilitySpace=null");
|
---|
| 40 | fDomain = pUtilitySpace.getDomain();
|
---|
| 41 | fPreviousBidUtility = 1.0D;
|
---|
| 42 | fUS = pUtilitySpace;
|
---|
| 43 | fBiddingHistory = new ArrayList();
|
---|
| 44 | issues = fDomain.getIssues();
|
---|
| 45 | int lNumberOfHyps = factorial(issues.size());
|
---|
| 46 | fWeightHyps = new WeightHypothesis[lNumberOfHyps];
|
---|
| 47 |
|
---|
| 48 | int index = 0;
|
---|
| 49 | double[] P = new double[issues.size()];
|
---|
| 50 |
|
---|
| 51 | for (int i = 0; i < issues.size(); i++) {
|
---|
| 52 | P[i] =
|
---|
| 53 | ((i + 1) / (issues.size() * (fDomain.getIssues().size() + 1) / 2.0D));
|
---|
| 54 | }
|
---|
| 55 | antilex(new Integer(index), fWeightHyps, P,
|
---|
| 56 | fDomain.getIssues().size() - 1);
|
---|
| 57 |
|
---|
| 58 |
|
---|
| 59 |
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | for (int i = 0; i < fWeightHyps.length; i++) {
|
---|
| 65 | fWeightHyps[i].setProbability(1.0D / fWeightHyps.length);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | fEvaluatorHyps = new ArrayList();
|
---|
| 69 | int lTotalTriangularFns = 1;
|
---|
| 70 | for (int i = 0; i < fUS.getNrOfEvaluators(); i++) {
|
---|
| 71 | ArrayList<EvaluatorHypothesis> lEvalHyps = new ArrayList();
|
---|
| 72 | lEvalHyps = new ArrayList();
|
---|
| 73 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 74 | switch (fUS.getEvaluator(((Issue)issues.get(i)).getNumber()).getType())
|
---|
| 75 | {
|
---|
| 76 |
|
---|
| 77 | case OBJECTIVE:
|
---|
| 78 | IssueReal lIssue = (IssueReal)fDomain.getIssues().get(i);
|
---|
| 79 | EvaluatorReal lHypEval = new EvaluatorReal();
|
---|
| 80 |
|
---|
| 81 | if (USE_DOMAIN_KNOWLEDGE)
|
---|
| 82 | {
|
---|
| 83 | lHypEval = new EvaluatorReal();
|
---|
| 84 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 85 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 86 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 87 | lHypEval.addParam(1,
|
---|
| 88 | 1.0D / (lHypEval.getUpperBound() - lHypEval
|
---|
| 89 | .getLowerBound()));
|
---|
| 90 | lHypEval.addParam(
|
---|
| 91 | 0,
|
---|
| 92 | -lHypEval.getLowerBound() / (
|
---|
| 93 | lHypEval.getUpperBound() - lHypEval
|
---|
| 94 | .getLowerBound()));
|
---|
| 95 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 96 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 97 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 98 | }
|
---|
| 99 | else
|
---|
| 100 | {
|
---|
| 101 | lHypEval = new EvaluatorReal();
|
---|
| 102 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 103 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 104 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 105 | lHypEval.addParam(1,
|
---|
| 106 | 1.0D / (lHypEval.getUpperBound() - lHypEval
|
---|
| 107 | .getLowerBound()));
|
---|
| 108 | lHypEval.addParam(
|
---|
| 109 | 0,
|
---|
| 110 | -lHypEval.getLowerBound() / (
|
---|
| 111 | lHypEval.getUpperBound() - lHypEval
|
---|
| 112 | .getLowerBound()));
|
---|
| 113 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 114 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 115 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 116 |
|
---|
| 117 | lHypEval = new EvaluatorReal();
|
---|
| 118 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 119 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 120 | lHypEval.setType(EVALFUNCTYPE.LINEAR);
|
---|
| 121 | lHypEval.addParam(
|
---|
| 122 | 1,
|
---|
| 123 | -1.0D / (
|
---|
| 124 | lHypEval.getUpperBound() - lHypEval
|
---|
| 125 | .getLowerBound()));
|
---|
| 126 | lHypEval.addParam(
|
---|
| 127 | 0,
|
---|
| 128 | 1.0D +
|
---|
| 129 | lHypEval.getLowerBound() / (
|
---|
| 130 | lHypEval.getUpperBound() - lHypEval
|
---|
| 131 | .getLowerBound()));
|
---|
| 132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 133 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 134 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 135 |
|
---|
| 136 | for (int k = 1; k <= lTotalTriangularFns; k++)
|
---|
| 137 | {
|
---|
| 138 | lHypEval = new EvaluatorReal();
|
---|
| 139 | lHypEval.setUpperBound(lIssue.getUpperBound());
|
---|
| 140 | lHypEval.setLowerBound(lIssue.getLowerBound());
|
---|
| 141 | lHypEval.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
| 142 | lHypEval.addParam(0, lHypEval.getLowerBound());
|
---|
| 143 | lHypEval.addParam(1, lHypEval.getUpperBound());
|
---|
| 144 | lHypEval.addParam(
|
---|
| 145 | 2,
|
---|
| 146 | lHypEval.getLowerBound() +
|
---|
| 147 | k * (
|
---|
| 148 | lHypEval.getUpperBound() - lHypEval
|
---|
| 149 | .getLowerBound()) / (
|
---|
| 150 | lTotalTriangularFns + 1));
|
---|
| 151 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEval);
|
---|
| 152 | lEvaluatorHypothesis.setProbability(0.3333333333333333D);
|
---|
| 153 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 154 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
| 158 | ((EvaluatorHypothesis)lEvalHyps.get(k)).setProbability(
|
---|
| 159 | 1.0D / lEvalHyps.size());
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | break;
|
---|
| 163 |
|
---|
| 164 | case DISCRETE:
|
---|
| 165 | lEvalHyps = new ArrayList();
|
---|
| 166 | fEvaluatorHyps.add(lEvalHyps);
|
---|
| 167 |
|
---|
| 168 | IssueDiscrete lDiscIssue =
|
---|
| 169 | (IssueDiscrete)fDomain.getIssues().get(i);
|
---|
| 170 | if (USE_DOMAIN_KNOWLEDGE)
|
---|
| 171 | {
|
---|
| 172 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 173 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 174 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 175 | Integer.valueOf(1000 * j));
|
---|
| 176 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 177 | lDiscreteEval);
|
---|
| 178 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 179 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 180 | }
|
---|
| 181 | else
|
---|
| 182 | {
|
---|
| 183 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 184 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 185 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 186 | Integer.valueOf(1000 * j + 1));
|
---|
| 187 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 188 | lDiscreteEval);
|
---|
| 189 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
| 190 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 191 |
|
---|
| 192 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 193 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
| 194 | {
|
---|
| 195 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 196 | Integer.valueOf(1000 * (lDiscIssue.getNumberOfValues() -
|
---|
| 197 | j - 1) + 1)); }
|
---|
| 198 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 199 | lDiscreteEval);
|
---|
| 200 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 201 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
| 202 |
|
---|
| 203 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
| 204 | int halfway = lDiscIssue.getNumberOfValues() / 2;
|
---|
| 205 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++) {
|
---|
| 206 | if (j < halfway) {
|
---|
| 207 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j),
|
---|
| 208 | Integer.valueOf(1000 * j + 1));
|
---|
| 209 | }
|
---|
| 210 | else
|
---|
| 211 | {
|
---|
| 212 | lDiscreteEval.addEvaluation(
|
---|
| 213 | lDiscIssue.getValue(j),
|
---|
| 214 | Integer.valueOf(1000 * (lDiscIssue
|
---|
| 215 | .getNumberOfValues() - j - 1) + 1)); }
|
---|
| 216 | }
|
---|
| 217 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
| 218 | lDiscreteEval);
|
---|
| 219 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
| 220 | lEvaluatorHypothesis.setDesc("triangular");
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | break;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 |
|
---|
| 231 | buildEvaluationHyps();
|
---|
| 232 |
|
---|
| 233 | buildUniformHyps();
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | private void buildUniformHyps() {
|
---|
| 237 | fUSHyps = new ArrayList();
|
---|
| 238 | for (int i = 0; i < fWeightHyps.length; i++)
|
---|
| 239 | {
|
---|
| 240 |
|
---|
| 241 | for (int j = 0; j < fEvalHyps.size(); j++) {
|
---|
| 242 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(
|
---|
| 243 | fDomain, fUS, fWeightHyps[i], (EvaluatorHypothesis[])fEvalHyps.get(j));
|
---|
| 244 | fUSHyps.add(lUSHyp);
|
---|
| 245 | }
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 249 | ((UtilitySpaceHypothesis)fUSHyps.get(i)).setProbability(1.0D / fUSHyps.size());
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | private void reverse(double[] P, int m) {
|
---|
| 254 | int i = 0;int j = m;
|
---|
| 255 | while (i < j)
|
---|
| 256 | {
|
---|
| 257 | double lTmp = P[i];
|
---|
| 258 | P[i] = P[j];
|
---|
| 259 | P[j] = lTmp;
|
---|
| 260 | i++;
|
---|
| 261 | j--;
|
---|
| 262 | }
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | private Integer antilex(Integer index, WeightHypothesis[] hyps, double[] P, int m)
|
---|
| 266 | {
|
---|
| 267 | if (m == 0) {
|
---|
| 268 | WeightHypothesis lWH = new WeightHypothesis(fDomain);
|
---|
| 269 | for (int i = 0; i < P.length; i++)
|
---|
| 270 | lWH.setWeight(i, P[i]);
|
---|
| 271 | hyps[index.intValue()] = lWH;
|
---|
| 272 | index = Integer.valueOf(index.intValue() + 1);
|
---|
| 273 | } else {
|
---|
| 274 | for (int i = 0; i <= m; i++) {
|
---|
| 275 | index = antilex(index, hyps, P, m - 1);
|
---|
| 276 | if (i < m)
|
---|
| 277 | {
|
---|
| 278 | double lTmp = P[i];
|
---|
| 279 | P[i] = P[m];
|
---|
| 280 | P[m] = lTmp;
|
---|
| 281 | reverse(P, m - 1);
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 | }
|
---|
| 285 | return index;
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 |
|
---|
| 289 | private double conditionalDistribution(double pUtility, double pPreviousBidUtility)
|
---|
| 290 | {
|
---|
| 291 | if (pPreviousBidUtility < pUtility) {
|
---|
| 292 | return 0.0D;
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
| 296 | double lResult = 1.0D / (SIGMA * Math.sqrt(6.283185307179586D)) *
|
---|
| 297 | Math.exp(-(x * x) / (2.0D * SIGMA * SIGMA));
|
---|
| 298 | return lResult;
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | public void updateBeliefs(Bid pBid) throws Exception
|
---|
| 302 | {
|
---|
| 303 | fBiddingHistory.add(pBid);
|
---|
| 304 | if (haveSeenBefore(pBid)) {
|
---|
| 305 | return;
|
---|
| 306 | }
|
---|
| 307 | double lFullProb = 0.0D;
|
---|
| 308 | double lMaxProb = 0.0D;
|
---|
| 309 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 310 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
| 311 | double condDistrib = hyp.getProbability() *
|
---|
| 312 | conditionalDistribution(((UtilitySpaceHypothesis)fUSHyps.get(i)).getUtility(pBid),
|
---|
| 313 | fPreviousBidUtility);
|
---|
| 314 | lFullProb += condDistrib;
|
---|
| 315 | if (condDistrib > lMaxProb)
|
---|
| 316 | lMaxProb = condDistrib;
|
---|
| 317 | hyp.setProbability(condDistrib);
|
---|
| 318 | }
|
---|
| 319 | if (fUseMostProbableHypsOnly) {
|
---|
| 320 | fMostProbableUSHyps = new ArrayList();
|
---|
| 321 | }
|
---|
| 322 | double lMostProbableHypFullProb = 0.0D;
|
---|
| 323 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 324 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
| 325 | double normalizedProbability = hyp.getProbability() / lFullProb;
|
---|
| 326 | hyp.setProbability(normalizedProbability);
|
---|
| 327 | if ((fUseMostProbableHypsOnly) &&
|
---|
| 328 | (normalizedProbability > lMaxProb * 0.99D / lFullProb)) {
|
---|
| 329 | fMostProbableUSHyps.add(hyp);
|
---|
| 330 | lMostProbableHypFullProb += normalizedProbability;
|
---|
| 331 | }
|
---|
| 332 | }
|
---|
| 333 | if (fUseMostProbableHypsOnly) {
|
---|
| 334 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
| 335 | UtilitySpaceHypothesis hyp = (UtilitySpaceHypothesis)fMostProbableUSHyps.get(i);
|
---|
| 336 | double normalizedProbability = hyp.getProbability() /
|
---|
| 337 | lMostProbableHypFullProb;
|
---|
| 338 | hyp.setProbability(normalizedProbability);
|
---|
| 339 | }
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 |
|
---|
| 343 |
|
---|
| 344 |
|
---|
| 345 |
|
---|
| 346 | System.out.println("BA: Using " +
|
---|
| 347 | String.valueOf(fMostProbableUSHyps.size()) + " out of " +
|
---|
| 348 | String.valueOf(fUSHyps.size()) + "hyps");
|
---|
| 349 | System.out.println(getMaxHyp().toString());
|
---|
| 350 |
|
---|
| 351 |
|
---|
| 352 | fPreviousBidUtility -= EXPECTED_CONCESSION_STEP;
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 |
|
---|
| 356 |
|
---|
| 357 | private void buildEvaluationHypsRecursive(ArrayList<EvaluatorHypothesis[]> pHyps, EvaluatorHypothesis[] pEval, int m)
|
---|
| 358 | {
|
---|
| 359 | if (m == 0) {
|
---|
| 360 | ArrayList<EvaluatorHypothesis> lEvalHyps = (ArrayList)fEvaluatorHyps.get(fUS
|
---|
| 361 | .getNrOfEvaluators() - 1);
|
---|
| 362 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
| 363 | pEval[(fUS.getNrOfEvaluators() - 1)] = ((EvaluatorHypothesis)lEvalHyps.get(i));
|
---|
| 364 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
| 365 | .getNrOfEvaluators()];
|
---|
| 366 |
|
---|
| 367 | for (int j = 0; j < lTmp.length; j++)
|
---|
| 368 | lTmp[j] = pEval[j];
|
---|
| 369 | pHyps.add(lTmp);
|
---|
| 370 | }
|
---|
| 371 | } else {
|
---|
| 372 | ArrayList<EvaluatorHypothesis> lEvalHyps = (ArrayList)fEvaluatorHyps.get(fUS
|
---|
| 373 | .getNrOfEvaluators() - m - 1);
|
---|
| 374 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
| 375 | pEval[(fUS.getNrOfEvaluators() - m - 1)] = ((EvaluatorHypothesis)lEvalHyps.get(i));
|
---|
| 376 | buildEvaluationHypsRecursive(pHyps, pEval, m - 1);
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | private void buildEvaluationHyps() {
|
---|
| 382 | fEvalHyps = new ArrayList();
|
---|
| 383 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[fUS
|
---|
| 384 | .getNrOfEvaluators()];
|
---|
| 385 | buildEvaluationHypsRecursive(fEvalHyps, lTmp,
|
---|
| 386 | fUS.getNrOfEvaluators() - 1);
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
| 390 | double lExpectedUtility = 0.0D;
|
---|
| 391 | if ((fUseMostProbableHypsOnly) && (fMostProbableUSHyps != null)) {
|
---|
| 392 | for (int i = 0; i < fMostProbableUSHyps.size(); i++) {
|
---|
| 393 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fMostProbableUSHyps.get(i);
|
---|
| 394 | double p = lUSHyp.getProbability();
|
---|
| 395 | double u = lUSHyp.getUtility(pBid);
|
---|
| 396 | lExpectedUtility += p * u;
|
---|
| 397 | }
|
---|
| 398 | } else {
|
---|
| 399 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 400 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
| 401 | double p = lUSHyp.getProbability();
|
---|
| 402 | double u = lUSHyp.getUtility(pBid);
|
---|
| 403 | lExpectedUtility += p * u;
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 | return lExpectedUtility;
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 | public double getExpectedWeight(int pIssueNumber) {
|
---|
| 410 | double lExpectedWeight = 0.0D;
|
---|
| 411 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 412 | UtilitySpaceHypothesis lUSHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
| 413 | double p = lUSHyp.getProbability();
|
---|
| 414 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
| 415 | lExpectedWeight += p * u;
|
---|
| 416 | }
|
---|
| 417 | return lExpectedWeight;
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | public double getNormalizedWeight(Issue i, int startingNumber) {
|
---|
| 421 | double sum = 0.0D;
|
---|
| 422 | for (Issue issue : fDomain.getIssues()) {
|
---|
| 423 | sum += getExpectedWeight(issue.getNumber() - startingNumber);
|
---|
| 424 | }
|
---|
| 425 | return getExpectedWeight(i.getNumber() - startingNumber) / sum;
|
---|
| 426 | }
|
---|
| 427 |
|
---|
| 428 | private UtilitySpaceHypothesis getMaxHyp() {
|
---|
| 429 | UtilitySpaceHypothesis lHyp = (UtilitySpaceHypothesis)fUSHyps.get(0);
|
---|
| 430 | for (int i = 0; i < fUSHyps.size(); i++) {
|
---|
| 431 | if (lHyp.getProbability() < ((UtilitySpaceHypothesis)fUSHyps.get(i)).getProbability())
|
---|
| 432 | lHyp = (UtilitySpaceHypothesis)fUSHyps.get(i);
|
---|
| 433 | }
|
---|
| 434 | return lHyp;
|
---|
| 435 | }
|
---|
| 436 |
|
---|
| 437 |
|
---|
| 438 |
|
---|
| 439 |
|
---|
| 440 |
|
---|
| 441 |
|
---|
| 442 |
|
---|
| 443 |
|
---|
| 444 |
|
---|
| 445 |
|
---|
| 446 |
|
---|
| 447 |
|
---|
| 448 | private int factorial(int n)
|
---|
| 449 | {
|
---|
| 450 | if (n <= 1) {
|
---|
| 451 | return 1;
|
---|
| 452 | }
|
---|
| 453 | return n * factorial(n - 1);
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 | public void setMostProbableUSHypsOnly(boolean value) {
|
---|
| 457 | fUseMostProbableHypsOnly = value;
|
---|
| 458 | }
|
---|
| 459 | }
|
---|