source: src/main/java/agents/anac/y2018/agentnp1/AgentNP1.java@ 346

Last change on this file since 346 was 345, checked in by Tim Baarslag, 4 years ago

Fixed agent 2018 descriptions

File size: 21.6 KB
Line 
1package agents.anac.y2018.agentnp1;
2
3import java.util.List;
4
5import java.util.ArrayList;
6import java.util.HashMap;
7import java.util.Map;
8import java.util.TreeMap;
9
10import agents.anac.y2018.agentnp1.etc.bidSearch;
11import genius.core.AgentID;
12import genius.core.Bid;
13import genius.core.actions.Accept;
14import genius.core.actions.Action;
15import genius.core.actions.EndNegotiation;
16import genius.core.actions.Offer;
17import genius.core.issue.Issue;
18import genius.core.issue.IssueDiscrete;
19import genius.core.issue.IssueInteger;
20import genius.core.issue.IssueReal;
21import genius.core.issue.Value;
22import genius.core.issue.ValueInteger;
23import genius.core.parties.AbstractNegotiationParty;
24import genius.core.parties.NegotiationInfo;
25import genius.core.utility.UtilitySpace;
26
27public class AgentNP1 extends AbstractNegotiationParty {
28 private NegotiationInfo info;
29 private UtilitySpace utilitySpace;
30 private List<Issue> issues;
31 private Action myAction;
32 private Bid myLastBid;
33 private Bid lastOppBid; // the last bid
34 private Bid offerBid;
35 private double geneUtil; //my agent generates a utility
36 private double recvUtil; // opponent's agenet generates a utility for my agent
37 private double rv; // reservation value
38 private double df; // discount factor
39 private int rounds; //negotiation rounds
40 private boolean upValueIntWeight;
41 private boolean issueContainIntType;
42 private boolean DF_RV;
43 private ArrayList<AgentID> opponents; // Negotiating partners' list
44 private ArrayList<Bid> allBids; // All Bids
45 private ArrayList<Double> oppUtil;
46 private ArrayList<Double> myUtil;
47 private HashMap<AgentID, List<Bid>> oppBidHistory; // opponent bids' history
48 private HashMap<AgentID, Map<Issue, Double>> IssueWeight; // issues & weights
49 private HashMap<AgentID, Map<Issue, List<ValueInteger>>> IssueIntValue;
50 private HashMap<AgentID, Map<Issue, Map<Value, Double>>> ValueFrequency;
51 private HashMap<AgentID, Double> oppSumDiff;
52 private AgentID hardestOpp;
53 private long startTime; // negotiation start time
54 private long currTime; // current time
55 private long diff;
56 private double totalTime;
57 private double normalizedTime;
58// private long normalizedTime;
59 private bidSearch bidSearch;
60
61 private Map<String, Integer> map;
62
63 public AgentNP1() {
64 myAction = null;
65 myLastBid = null;
66 lastOppBid = null;
67 offerBid = null;
68 geneUtil = 0.0D;
69 recvUtil = 0.0D;
70 }
71
72 @Override
73 public void init(NegotiationInfo info) { //info,utility space, deadline, time, etc...information
74
75 super.init(info); // call init AbstractNegotiationParty class
76 this.info = info;
77 utilitySpace = info.getUtilitySpace(); //confirm utility space
78 rv = utilitySpace.getReservationValue().doubleValue(); // reservation value
79 df = info.getUtilitySpace().getDiscountFactor(); //discount factor
80 issues = utilitySpace.getDomain().getIssues(); // issues which set within that domain
81 allBids = new ArrayList<Bid>();
82 oppUtil = new ArrayList<Double>();
83 myUtil = new ArrayList<Double>(); //my own bid utility
84 opponents = new ArrayList<AgentID>(); //negotiators list
85 oppBidHistory = new HashMap<AgentID, List<Bid>>(); //the history of the negotiators
86 IssueWeight = new HashMap<AgentID, Map<Issue, Double>>();
87 IssueIntValue = new HashMap<AgentID, Map<Issue, List<ValueInteger>>>();
88 ValueFrequency = new HashMap<AgentID, Map<Issue, Map<Value, Double>>>();
89 oppSumDiff = new HashMap<AgentID, Double>();
90 rounds = 0;
91 upValueIntWeight = false;
92 issueContainIntType = false;
93 DF_RV = false;
94 initTime();
95 issueContainIntType();
96
97 map = new TreeMap<String, Integer>();
98
99 try {
100 bidSearch = new bidSearch(utilitySpace, info);
101 } catch (Exception e) {
102 e.printStackTrace();
103 }
104
105 }
106
107 public void receiveMessage(AgentID sender, Action opponentAction) {
108
109 super.receiveMessage(sender, opponentAction);
110 //System.out.println(sender);
111 if (sender != null && !opponents.contains(sender)) { // In the case of the first negotiating partner
112 opponents.add(sender); // Add sender to negotiating partner list
113 initOpp(sender); // Secure storage area for each sender
114 }
115
116 // in case of "Offer" negotiation action
117 if (sender != null && opponentAction != null && (opponentAction instanceof Offer)) {
118 lastOppBid = ((Offer) opponentAction).getBid(); // Acquire current negotiation opponent bid (ex: price 3.5$, color red, vebdor docomo etc...)
119 recvUtil = utilitySpace.getUtility(lastOppBid);
120 allBids.add(lastOppBid); // add a bid
121 oppUtil.add(recvUtil);
122 updateOpp(sender);
123 }
124 }
125
126 public Action chooseAction(List<Class<? extends Action>> possibleActions) {
127
128 updateTime();
129 double timePerRound = timeline.getTime() / (double) rounds;
130 double remainingRounds = (1.0D - timeline.getTime()) / timePerRound;
131 double minimalThreshold = 0.6999999999999999;
132 double upperThreshold = 0.999999999999999;
133 double acceptThreshold = 0.779999999999999;
134 minimalThreshold = minimalThreshold * df;
135 rounds++;
136
137 if (!possibleActions.contains("negotiator/actions/Accept")) {
138 if (timeline.getTime() > 0.0D && timeline.getTime() <= 0.9D) {
139 acceptThreshold = 0.81D;
140 if (recvUtil > acceptThreshold) {
141 return new Accept(getPartyId(), lastOppBid);
142 }
143 } else if (timeline.getTime() > 0.9D && timeline.getTime() <= 0.99D) {
144 acceptThreshold = 0.78D;
145 if (recvUtil > acceptThreshold) {
146 return new Accept(getPartyId(), lastOppBid);
147 } else if (!DF_RV && judge_DF_RV()) {
148 return new EndNegotiation(getPartyId());
149 }
150 } else if (timeline.getTime() > 0.97D ) {
151 if (recvUtil > rv) {
152 return new Accept(getPartyId(), lastOppBid);
153 } else if (recvUtil <= rv) {
154 return new EndNegotiation(getPartyId());
155 }
156 }
157
158 double max = 0.0D;
159 double sum = 0.0D;
160
161 if (timeline.getTime() < 0.5D) {
162 minimalThreshold = 0.96 - (0.195 *timeline.getTime());
163 Bid myLastBid = bidSearch.getBid(generateRandomBid(), minimalThreshold);
164 geneUtil = utilitySpace.getUtility(myLastBid);
165 allBids.add(myLastBid); //add the created my own bid
166 myUtil.add(geneUtil );
167 System.out.println("[AgentNP Bid (" + rounds + ")]: " + myLastBid );
168 System.out.println("[AgentNP Utility (" + rounds + ")]: " + geneUtil );
169 return myAction = new Offer(getPartyId(), myLastBid);
170 } else if (timeline.getTime() >= 0.5D && timeline.getTime() < 0.7D) {
171 minimalThreshold = 0.85 - (0.105 *timeline.getTime());
172 Bid myLastBid = bidSearch.getBid(generateRandomBid(), minimalThreshold);
173 geneUtil = utilitySpace.getUtility(myLastBid);
174 allBids.add(myLastBid); //add the created my own bid
175 myUtil.add(geneUtil );
176 System.out.println("[AgentNP Bid (" + rounds + ")]: " + myLastBid );
177 System.out.println("[AgentNP Utility (" + rounds + ")]: " + geneUtil );
178 return myAction = new Offer(getPartyId(), myLastBid);
179 } else if (timeline.getTime() >= 0.7D && timeline.getTime() <0.95 ) {
180 for (int i = 0; i < oppUtil.size(); i++) {
181 sum += oppUtil.get(i);
182 max = Math.max(max, oppUtil.get(i));
183 }
184 double ave = sum / oppUtil.size();
185 if (max > 0.7799D && ave > 6.999D) {
186 minimalThreshold = ave ;
187 upperThreshold =max ;
188 } else {
189 minimalThreshold = ave + 0.095D ;
190 upperThreshold =max + 0.095D ;
191 }
192
193 do {
194 myLastBid = generateRndBid();
195 geneUtil = utilitySpace.getUtility(myLastBid); // get utility value of Bid created randomly
196 for (int i = 0; i <myUtil.size(); i++) {
197 if (myUtil.get(i) == geneUtil) {
198 geneUtil = utilitySpace.getUtility(myLastBid); // get utility value of Bid created randomly
199 }
200 }
201
202 } while (geneUtil < minimalThreshold || geneUtil > upperThreshold); //When a random value smaller than mini is generated, generation is terminated
203
204 allBids.add(myLastBid);
205 myUtil.add(geneUtil );
206 System.out.println("[AgentNP Bid (" + rounds + ")]: " + myLastBid );
207 System.out.println("[AgentNP Utility (" + rounds + ")]: " + geneUtil );
208 return myAction = new Offer(getPartyId(), myLastBid); //contents of bid
209
210 } else if ( timeline.getTime() >= 0.95) {
211 for (int i = 0; i < oppUtil.size(); i++) {
212 sum += oppUtil.get(i);
213 max = Math.max(max, oppUtil.get(i));
214 }
215 double ave = sum / oppUtil.size();
216 if (max > 0.7799D && ave > 6.999D) {
217 minimalThreshold = ave ;
218 upperThreshold =max ;
219 } else {
220 minimalThreshold = ave + 0.0749 ;
221 upperThreshold =max + 0.0749 ;
222 } do {
223 myLastBid = generateRndBid(); // generate a random bid
224 geneUtil = utilitySpace.getUtility(myLastBid); // get utility value of Bid created randomly
225
226 for (int i = 0; i <myUtil.size(); i++) {
227 if (myUtil.get(i) == geneUtil) {
228 geneUtil = utilitySpace.getUtility(myLastBid); // get utility value of Bid created randomly
229 }
230 }
231
232 } while (geneUtil < minimalThreshold || geneUtil > upperThreshold); //When a random value smaller than mini is generated, generation is terminated
233 allBids.add(myLastBid);
234 myUtil.add(geneUtil );
235 System.out.println("[AgentNP Bid (" + rounds + ")]: " + myLastBid );
236 System.out.println("[AgentNP Utility (" + rounds + ")]: " + geneUtil );
237 return myAction = new Offer(getPartyId(), myLastBid);
238 }
239
240 }
241 return myAction;
242 }
243
244 /**
245 *
246 * @return
247 */
248
249 private boolean judge_DF_RV() {
250
251 double init = 1.0D;
252 double initRV = 0.75D;
253 boolean endNegotiation = false;
254
255 for (double i = init; i >= 0.0D; i -= 0.01D) {
256 String df0 = String.format("%.2f", new Object[] { Double.valueOf(i) });
257 double df1 = Double.parseDouble(df0);
258 if (df == df1 && rv >= initRV) {
259 endNegotiation = true;
260 }
261 initRV -= 0.0050000000000000001D;
262 }
263 DF_RV = true;
264 return endNegotiation;
265 }
266
267 /**
268 *
269 * @param sender
270 */
271 private void updateOpp(AgentID sender) {
272 if (timeline.getTime() < 0.07D) {
273 upValueIntWeight(sender);
274 }
275 upModelIssWeight(sender);
276 updateModelOppValueWeight(sender);
277 oppBidHistory.get(sender).add(lastOppBid);
278 retrieveToughestOpp();
279 }
280
281 /**
282 *
283 * @param sender
284 */
285 private void upValueIntWeight(AgentID sender) {
286 for (Issue issue : issues) {
287 if (issue.getType().toString().equals("INTEGER")) {
288 ValueInteger currIssueValueInteger = (ValueInteger) lastOppBid.getValue(issue.getNumber());
289 IssueIntValue.get(sender).get(issue).add(currIssueValueInteger); //point
290 }
291 }
292
293 if (timeline.getTime() < 0.07D && !upValueIntWeight) {
294 for (AgentID agent : IssueIntValue.keySet()) {
295 for (Issue issue : issues) {
296 if (issue.getType().toString().equals("INTEGER")) {
297 int sumLower = 0;
298 int sumUpper = 0;
299 int lowerB = ((IssueInteger) issue).getLowerBound();
300 int upperB = ((IssueInteger) issue).getUpperBound();
301 int mid = (lowerB + upperB) / 2;
302 double average = 1.0D / (double) (upperB - lowerB);
303
304 for (int i = 0; i < IssueIntValue.get(agent).get(issue).size(); i++) {
305 int vv = Integer.parseInt(IssueIntValue.get(agent).get(issue).get(i).toString());
306 if (vv <= mid)
307 sumLower++;
308 else
309 sumUpper++;
310 }
311
312 ValueInteger vL = new ValueInteger(lowerB);
313 ValueInteger vU = new ValueInteger(upperB);
314 if (sumLower > sumUpper) {
315 ValueFrequency.get(agent).get(issue).put(vL, Double.valueOf(1.0D));
316 ValueFrequency.get(agent).get(issue).put(vU, Double.valueOf(0.0D));
317 double adjustment = 1.0D;
318 for (int i = lowerB + 1; i < upperB; i++) {
319 adjustment -= average;
320 ValueInteger vI = new ValueInteger(i);
321 ValueFrequency.get(agent).get(issue).put(vI, Double.valueOf(adjustment));
322 }
323 } else {
324 ValueFrequency.get(agent).get(issue).put(vU, Double.valueOf(1.0D));
325 ValueFrequency.get(agent).get(issue).put(vL, Double.valueOf(0.0D));
326 double adjustment = 0.0D;
327 for (int i = lowerB + 1; i < upperB; i++) {
328 adjustment += average;
329 ValueInteger vI = new ValueInteger(i);
330 ValueFrequency.get(agent).get(issue).put(vI, Double.valueOf(adjustment));
331 }
332 }
333 }
334 }
335 }
336
337 upValueIntWeight = true;
338 }
339 }
340
341 private void upModelIssWeight(AgentID sender) { //calculate weight
342 if (oppBidHistory.get(sender).size() != 0 && timeline.getTime() > 0.05D) {
343 Bid formerRoundBid = oppBidHistory.get(sender).get((oppBidHistory.get(sender)).size() - 1);
344 double issueWeightFormula = Math.pow(1D - normalizedTime, 10D) / (double) (issues.size() * 100);
345 double issueWeightInteger = Math.pow(1D - normalizedTime, 10D) / (double) (issues.size() * 10);
346 double issueSum = 0.0D;
347
348 for (Issue issue : issues) {
349 Value formIssueValue = formerRoundBid.getValue(issue.getNumber()); //selected former value
350 Value currIssueValue = lastOppBid.getValue(issue.getNumber()); //selected current value
351
352 if (issueContainIntType) {
353 if (issue.getType().toString().equals("INTEGER")) {
354 if (incrIntIssWeight(issue, formIssueValue, currIssueValue)) {
355 IssueWeight.get(sender).put(issue, Double
356 .valueOf(IssueWeight.get(sender).get(issue).doubleValue() + issueWeightInteger));
357 }
358 } else if (formIssueValue == currIssueValue) {
359 IssueWeight.get(sender).put(issue, Double
360 .valueOf(IssueWeight.get(sender).get(issue).doubleValue() + issueWeightInteger));
361 }
362 } else if (formIssueValue == currIssueValue) {
363 IssueWeight.get(sender).put(issue,
364 Double.valueOf(IssueWeight.get(sender).get(issue).doubleValue() + issueWeightFormula));
365 }
366 issueSum += IssueWeight.get(sender).get(issue).doubleValue();
367 }
368
369 for (Issue issue : issues) {
370 double normalizedIssueW = IssueWeight.get(sender).get(issue).doubleValue() / issueSum;
371 IssueWeight.get(sender).put(issue, Double.valueOf(normalizedIssueW)); //IssueWeight: weight
372 }
373 }
374 }
375
376 /**
377 *
378 * @param issue
379 * @param formIssueValue
380 * @param currIssueValue
381 * @return
382 */
383 public boolean incrIntIssWeight(Issue issue, Value formIssueValue, Value currIssueValue) {
384
385 double arraySlot[] = new double[5];
386 boolean sameSection = false;
387 int pastV = Integer.parseInt(formIssueValue.toString());
388 int currV = Integer.parseInt(currIssueValue.toString());
389 int lowerB = ((IssueInteger) issue).getLowerBound();
390 int upperB = ((IssueInteger) issue).getUpperBound();
391 double formula = ((upperB - lowerB) + 1) / 5;
392 double increment = (double) lowerB + formula;
393 for (int i = 0; i < 4; i++) {
394 arraySlot[i] = increment;
395 increment += formula;
396 }
397
398 arraySlot[4] = upperB;
399 if ((double) pastV <= arraySlot[0] && (double) currV <= arraySlot[0])
400 sameSection = true;
401 else if ((double) pastV <= arraySlot[1] && (double) currV <= arraySlot[1] && (double) pastV > arraySlot[0]
402 && (double) currV > arraySlot[0])
403 sameSection = true;
404 else if ((double) pastV <= arraySlot[2] && (double) currV <= arraySlot[2] && (double) pastV > arraySlot[1]
405 && (double) currV > arraySlot[1])
406 sameSection = true;
407 else if ((double) pastV <= arraySlot[3] && (double) currV <= arraySlot[3] && (double) pastV > arraySlot[2]
408 && (double) currV > arraySlot[2])
409 sameSection = true;
410 else if ((double) pastV <= arraySlot[4] && (double) currV <= arraySlot[4] && (double) pastV > arraySlot[3]
411 && (double) currV > arraySlot[3])
412 sameSection = true;
413 return sameSection;
414 }
415
416 private void updateModelOppValueWeight(AgentID sender) {
417
418 double valueWeightFormula = Math.pow(0.20000000000000001D, normalizedTime) / 30000D;
419 double valueWeightInteger = Math.pow(0.20000000000000001D, normalizedTime) / 955D;
420
421 for (Issue issue : issues) {
422 if (issueContainIntType) {
423 if (!issue.getType().toString().equals("INTEGER")) {
424 Value value = lastOppBid.getValue(issue.getNumber());
425 ValueFrequency.get(sender).get(issue).put(value, Double.valueOf(
426 ValueFrequency.get(sender).get(issue).get(value).doubleValue() + valueWeightInteger));
427 }
428 } else {
429 Value value = lastOppBid.getValue(issue.getNumber());
430 ValueFrequency.get(sender).get(issue).put(value, Double.valueOf(
431 ValueFrequency.get(sender).get(issue).get(value).doubleValue() + valueWeightFormula));
432 }
433 }
434
435 for (Issue issue : issues) {
436 if (!issue.getType().toString().equals("INTEGER")) {
437 double maxValueBase = 0.0D;
438 for (Value value : ValueFrequency.get(sender).get(issue).keySet()) {
439 double currValueBase = ValueFrequency.get(sender).get(issue).get(value).doubleValue();
440 if (currValueBase > maxValueBase)
441 maxValueBase = currValueBase;
442 }
443
444 for (Value value : ValueFrequency.get(sender).get(issue).keySet()) {
445 double normalizedValue = ValueFrequency.get(sender).get(issue).get(value).doubleValue()
446 / maxValueBase;
447 ValueFrequency.get(sender).get(issue).put(value, Double.valueOf(normalizedValue));
448 }
449 }
450 }
451 }
452
453 private void retrieveToughestOpp() {
454
455 double hardestOppSumDiff = 0.0D;
456 double sumDiff;
457 for (AgentID agent : ValueFrequency.keySet()) {
458 sumDiff = 0.0D;
459 for (Issue issue : issues) {
460 double maxDiff = 0.0D;
461 for (Value value : ValueFrequency.get(agent).get(issue).keySet()) {
462 if (!issue.getType().toString().equals("INTEGER")) {
463 double diff = 1.0D - ValueFrequency.get(agent).get(issue).get(value).doubleValue();
464 if (diff > maxDiff)
465 maxDiff = diff;
466 }
467 }
468 sumDiff += maxDiff;
469 }
470 oppSumDiff.put(agent, Double.valueOf(sumDiff));
471 }
472
473 for (AgentID agent : oppSumDiff.keySet()) {
474 if (oppSumDiff.get(agent).doubleValue() > hardestOppSumDiff) {
475 hardestOppSumDiff = oppSumDiff.get(agent).doubleValue();
476 hardestOpp = agent;
477 }
478 }
479 }
480
481 /**
482 *
483 * @param sender
484 */
485 private void initOpp(AgentID sender) {
486
487 try {
488 issueIntegerHandler(sender);
489 initModelIssueWeight(sender);
490 initModelValueFrequency(sender);
491 oppBidHistory.put(sender, new ArrayList<Bid>());
492 } catch (Exception e) {
493 e.printStackTrace();
494 }
495 }
496
497 /**
498 *
499 * @param sender
500 */
501 private void issueIntegerHandler(AgentID sender) {
502
503 IssueIntValue.put(sender, new HashMap<Issue, List<ValueInteger>>());
504 for (Issue issue : issues) {
505 if (issue.getType().toString().equals("INTEGER"))
506 IssueIntValue.get(sender).put(issue, new ArrayList<ValueInteger>());
507 }
508 }
509
510 /**
511 * Weight
512 *
513 * @param sender
514 */
515 private void initModelIssueWeight(AgentID sender) {
516
517 IssueWeight.put(sender, new HashMap<Issue, Double>());
518
519 for (Issue issue : issues) {
520 IssueWeight.get(sender).put(issue, Double.valueOf(0.0D));
521 }
522
523 int numIssues = IssueWeight.get(sender).keySet().size();
524 double avgW = 1.0D / (double) numIssues;
525 for (Issue issue : IssueWeight.get(sender).keySet()) {
526 IssueWeight.get(sender).put(issue, Double.valueOf(avgW));
527 }
528 }
529
530 /**
531 *
532 * @param sender
533 */
534 private void initModelValueFrequency(AgentID sender) {
535
536 ValueFrequency.put(sender, new HashMap<Issue, Map<Value, Double>>());
537
538 for (Issue issue : issues) {
539 ValueFrequency.get(sender).put(issue, new HashMap<Value, Double>());
540
541 if (!issue.getType().toString().equals("INTEGER")) {
542 for (Value value : getValues(issue)) {
543 ValueFrequency.get(sender).get(issue).put(value, Double.valueOf(1.0D));
544 }
545 }
546 }
547 }
548
549 /**
550 *
551 * @param issue
552 * issue
553 * @return
554 */
555 public ArrayList<Value> getValues(Issue issue) {
556
557 ArrayList<Value> values = new ArrayList<Value>();
558 switch (issue.getType()) {
559 case DISCRETE:
560 for (Value value : ((IssueDiscrete) issue).getValues()) {
561 values.add(value);
562 }
563 break;
564
565 case REAL:
566 double min_value1 = ((IssueReal) issue).getLowerBound();
567 double max_value1 = ((IssueReal) issue).getUpperBound();
568 for (int i = (int) min_value1; (double) i <= max_value1; i++) {
569 Object valueObject = new Integer(i);
570 values.add((Value) valueObject);
571 }
572 break;
573
574 case INTEGER:
575 int min_value = ((IssueInteger) issue).getLowerBound();
576 int max_value = ((IssueInteger) issue).getUpperBound();
577 for (int i = min_value; i <= max_value; i++) {
578 Object valueObject = new Integer(i);
579 values.add((Value) valueObject);
580 }
581 break;
582
583 default:
584
585 }
586
587 return values;
588 }
589
590 private void issueContainIntType() {
591
592 for (Issue issue : issues) {
593 if (issue.getType().toString().equals("INTEGER")) {
594 issueContainIntType = true;
595 break;
596 }
597 }
598 }
599
600 private void updateTime() {
601
602 currTime = System.currentTimeMillis();
603 diff = currTime - startTime;
604 normalizedTime= diff / totalTime;
605 }
606
607 private void initTime() {
608
609 startTime = System.currentTimeMillis();
610 totalTime = 180000D;
611 diff = 0L;
612 }
613
614 protected Bid generateRndBid() {
615
616 Bid randomBid = null;
617 HashMap<Integer, Value> values = new HashMap<Integer, Value>();
618 List<Issue> issues = utilitySpace.getDomain().getIssues();
619 for (Issue issue : issues) {
620 try {
621 values.put(Integer.valueOf(issue.getNumber()), getRandomValue(issue));
622 } catch (Exception e) {
623 e.printStackTrace();
624 }
625 }
626
627 try {
628 randomBid = new Bid(utilitySpace.getDomain(), values);
629 } catch (Exception e) {
630 e.printStackTrace();
631 }
632 return randomBid;
633 }
634
635 public String getAgentName() {
636 return "AgentNP1-1";
637 }
638
639 @Override
640 public String getDescription() {
641 return "ANAC2018";
642 }
643
644}
Note: See TracBrowser for help on using the repository browser.