1 | /* Class Matrix
|
---|
2 | *
|
---|
3 | * Defines a matrix and includes the methods needed
|
---|
4 | * for standard matrix manipulations, e.g. multiplation,
|
---|
5 | * and related procedures, e.g. solution of linear
|
---|
6 | * simultaneous equations
|
---|
7 | *
|
---|
8 | * See class ComplexMatrix and PhasorMatrix for complex matrix arithmetic
|
---|
9 | *
|
---|
10 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
11 | *
|
---|
12 | * DATE: June 2002
|
---|
13 | * UPDATES: 21 April 2004, 16 February 2006, 31 March 2006, 22 April 2006, 1 July 2007, 17 July 2007
|
---|
14 | * 18 August 2007, 7 October 2007, 27 February 2008, 7 April 2008, 5 July 2008, 6-15 September 2008
|
---|
15 | * 7-14 October 2008, 16 February 2009, 16 June 2009, 15 October 2009, 4-5 November 2009
|
---|
16 | * 12 January 2010, 19 February 2010, 14 November 2010, 12 January 2011, 20 January 2011
|
---|
17 | *
|
---|
18 | *
|
---|
19 | * DOCUMENTATION:
|
---|
20 | * See Michael Thomas Flanagan's Java library on-line web page:
|
---|
21 | * http://www.ee.ucl.ac.uk/~mflanaga/java/Matrix.html
|
---|
22 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
23 | *
|
---|
24 | * Copyright (c) 2002 - 2011 Michael Thomas Flanagan
|
---|
25 | * PERMISSION TO COPY:
|
---|
26 | *
|
---|
27 | * Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
|
---|
28 | * provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
|
---|
29 | * and associated documentation or publications.
|
---|
30 | *
|
---|
31 | * Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice, this list of conditions
|
---|
32 | * and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
|
---|
33 | *
|
---|
34 | * Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
|
---|
35 | * the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission from the Michael Thomas Flanagan:
|
---|
36 | *
|
---|
37 | * Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
|
---|
38 | * Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
|
---|
39 | * or its derivatives.
|
---|
40 | *
|
---|
41 | ***************************************************************************************/
|
---|
42 |
|
---|
43 | package agents.anac.y2015.agentBuyogV2.flanagan.math;
|
---|
44 |
|
---|
45 | import java.util.ArrayList;
|
---|
46 | import java.util.Vector;
|
---|
47 |
|
---|
48 | import agents.anac.y2015.agentBuyogV2.flanagan.analysis.Regression;
|
---|
49 | import agents.anac.y2015.agentBuyogV2.flanagan.analysis.RegressionFunction;
|
---|
50 | import agents.anac.y2015.agentBuyogV2.flanagan.analysis.Stat;
|
---|
51 | import agents.anac.y2015.agentBuyogV2.flanagan.math.ArrayMaths;
|
---|
52 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Conv;
|
---|
53 |
|
---|
54 | import java.math.BigDecimal;
|
---|
55 | import java.math.BigInteger;
|
---|
56 |
|
---|
57 | public class Matrix{
|
---|
58 |
|
---|
59 | private int numberOfRows = 0; // number of rows
|
---|
60 | private int numberOfColumns = 0; // number of columns
|
---|
61 | private double matrix[][] = null; // 2-D Matrix
|
---|
62 | private double hessenberg[][] = null; // 2-D Hessenberg equivalent
|
---|
63 | private boolean hessenbergDone = false; // = true when Hessenberg matrix calculated
|
---|
64 | private int permutationIndex[] = null; // row permutation index
|
---|
65 | private double rowSwapIndex = 1.0D; // row swap index
|
---|
66 | private double[] eigenValues = null; // eigen values of the matrix
|
---|
67 | private double[][] eigenVector = null; // eigen vectors of the matrix
|
---|
68 | private double[] sortedEigenValues = null; // eigen values of the matrix sorted into descending order
|
---|
69 | private double[][] sortedEigenVector = null; // eigen vectors of the matrix sorted to matching descending eigen value order
|
---|
70 | private int numberOfRotations = 0; // number of rotations in Jacobi transformation
|
---|
71 | private int[] eigenIndices = null; // indices of the eigen values before sorting into descending order
|
---|
72 | private int maximumJacobiIterations = 100; // maximum number of Jacobi iterations
|
---|
73 | private boolean eigenDone = false; // = true when eigen values and vectors calculated
|
---|
74 | private boolean matrixCheck = true; // check on matrix status
|
---|
75 | // true - no problems encountered in LU decomposition
|
---|
76 | // false - attempted a LU decomposition on a singular matrix
|
---|
77 |
|
---|
78 | private boolean supressErrorMessage = false; // true - LU decompostion failure message supressed
|
---|
79 |
|
---|
80 | private double tiny = 1.0e-100; // small number replacing zero in LU decomposition
|
---|
81 |
|
---|
82 | // CONSTRUCTORS
|
---|
83 | // Construct a numberOfRows x numberOfColumns matrix of variables all equal to zero
|
---|
84 | public Matrix(int numberOfRows, int numberOfColumns){
|
---|
85 | this.numberOfRows = numberOfRows;
|
---|
86 | this.numberOfColumns = numberOfColumns;
|
---|
87 | this.matrix = new double[numberOfRows][numberOfColumns];
|
---|
88 | this.permutationIndex = new int[numberOfRows];
|
---|
89 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
90 | }
|
---|
91 |
|
---|
92 | // Construct a numberOfRows x numberOfColumns matrix of variables all equal to the number const
|
---|
93 | public Matrix(int numberOfRows, int numberOfColumns, double constant){
|
---|
94 | this.numberOfRows = numberOfRows;
|
---|
95 | this.numberOfColumns = numberOfColumns;
|
---|
96 | this.matrix = new double[numberOfRows][numberOfColumns];
|
---|
97 | for(int i=0;i<numberOfRows;i++){
|
---|
98 | for(int j=0;j<numberOfColumns;j++)this.matrix[i][j]=constant;
|
---|
99 | }
|
---|
100 | this.permutationIndex = new int[numberOfRows];
|
---|
101 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
102 | }
|
---|
103 |
|
---|
104 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of variables
|
---|
105 | public Matrix(double[][] twoD){
|
---|
106 | this.numberOfRows = twoD.length;
|
---|
107 | this.numberOfColumns = twoD[0].length;
|
---|
108 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
109 | for(int i=0; i<numberOfRows; i++){
|
---|
110 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
111 | for(int j=0; j<numberOfColumns; j++){
|
---|
112 | this.matrix[i][j]=twoD[i][j];
|
---|
113 | }
|
---|
114 | }
|
---|
115 | this.permutationIndex = new int[numberOfRows];
|
---|
116 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
117 | }
|
---|
118 |
|
---|
119 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of floats
|
---|
120 | public Matrix(float[][] twoD){
|
---|
121 | this.numberOfRows = twoD.length;
|
---|
122 | this.numberOfColumns = twoD[0].length;
|
---|
123 | for(int i=1; i<numberOfRows; i++){
|
---|
124 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
125 | }
|
---|
126 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
127 | for(int i=0; i<numberOfRows; i++){
|
---|
128 | for(int j=0; j<numberOfColumns; j++){
|
---|
129 | this.matrix[i][j] = (double)twoD[i][j];
|
---|
130 | }
|
---|
131 | }
|
---|
132 | this.permutationIndex = new int[numberOfRows];
|
---|
133 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
134 | }
|
---|
135 |
|
---|
136 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of longs
|
---|
137 | public Matrix(long[][] twoD){
|
---|
138 | this.numberOfRows = twoD.length;
|
---|
139 | this.numberOfColumns = twoD[0].length;
|
---|
140 | for(int i=1; i<numberOfRows; i++){
|
---|
141 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
142 | }
|
---|
143 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
144 | for(int i=0; i<numberOfRows; i++){
|
---|
145 | for(int j=0; j<numberOfColumns; j++){
|
---|
146 | this.matrix[i][j] = (double)twoD[i][j];
|
---|
147 | }
|
---|
148 | }
|
---|
149 | this.permutationIndex = new int[numberOfRows];
|
---|
150 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of ints
|
---|
155 | public Matrix(int[][] twoD){
|
---|
156 | this.numberOfRows = twoD.length;
|
---|
157 | this.numberOfColumns = twoD[0].length;
|
---|
158 | for(int i=1; i<numberOfRows; i++){
|
---|
159 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
160 | }
|
---|
161 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
162 | for(int i=0; i<numberOfRows; i++){
|
---|
163 | for(int j=0; j<numberOfColumns; j++){
|
---|
164 | this.matrix[i][j] = (double)twoD[i][j];
|
---|
165 | }
|
---|
166 | }
|
---|
167 | this.permutationIndex = new int[numberOfRows];
|
---|
168 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Construct matrix with a copy of an existing numberOfRows 1-D array of ArrayMaths
|
---|
172 | public Matrix(ArrayMaths[] twoD){
|
---|
173 | this.numberOfRows = twoD.length;
|
---|
174 | this.numberOfColumns = twoD[0].length();
|
---|
175 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
176 | for(int i=0; i<numberOfRows; i++){
|
---|
177 | double[] arrayh = (twoD[i].copy()).array();
|
---|
178 | if(arrayh.length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
179 | this.matrix[i] = arrayh;
|
---|
180 | }
|
---|
181 | this.permutationIndex = new int[numberOfRows];
|
---|
182 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
183 | }
|
---|
184 |
|
---|
185 | // Construct matrix with a copy of an existing numberOfRows 1-D array of ArrayLists<Object>
|
---|
186 | public Matrix(ArrayList<Object>[] twoDal){
|
---|
187 | this.numberOfRows = twoDal.length;
|
---|
188 | ArrayMaths[] twoD = new ArrayMaths[this.numberOfRows];
|
---|
189 | for(int i=0; i<this.numberOfRows; i++){
|
---|
190 | twoD[i] = new ArrayMaths(twoDal[i]);
|
---|
191 | }
|
---|
192 |
|
---|
193 | this.numberOfColumns = twoD[0].length();
|
---|
194 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
195 | for(int i=0; i<numberOfRows; i++){
|
---|
196 | double[] arrayh = (twoD[i].copy()).array();
|
---|
197 | if(arrayh.length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
198 | this.matrix[i] = arrayh;
|
---|
199 | }
|
---|
200 | this.permutationIndex = new int[numberOfRows];
|
---|
201 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
202 | }
|
---|
203 |
|
---|
204 | // Construct matrix with a copy of an existing numberOfRows 1-D array of Vector<Object>
|
---|
205 | public Matrix(Vector<Object>[] twoDv){
|
---|
206 | this.numberOfRows = twoDv.length;
|
---|
207 | ArrayMaths[] twoD = new ArrayMaths[this.numberOfRows];
|
---|
208 | for(int i=0; i<this.numberOfRows; i++){
|
---|
209 | twoD[i] = new ArrayMaths(twoDv[i]);
|
---|
210 | }
|
---|
211 |
|
---|
212 | this.numberOfColumns = twoD[0].length();
|
---|
213 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
214 | for(int i=0; i<numberOfRows; i++){
|
---|
215 | double[] arrayh = (twoD[i].copy()).array();
|
---|
216 | if(arrayh.length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
217 | this.matrix[i] = arrayh;
|
---|
218 | }
|
---|
219 | this.permutationIndex = new int[numberOfRows];
|
---|
220 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
221 | }
|
---|
222 |
|
---|
223 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of BigDecimals
|
---|
224 | public Matrix(BigDecimal[][] twoD){
|
---|
225 | this.numberOfRows = twoD.length;
|
---|
226 | this.numberOfColumns = twoD[0].length;
|
---|
227 | for(int i=1; i<numberOfRows; i++){
|
---|
228 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
229 | }
|
---|
230 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
231 | for(int i=0; i<numberOfRows; i++){
|
---|
232 | for(int j=0; j<numberOfColumns; j++){
|
---|
233 | this.matrix[i][j] = twoD[i][j].doubleValue();
|
---|
234 | }
|
---|
235 | }
|
---|
236 | this.permutationIndex = new int[numberOfRows];
|
---|
237 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
238 | }
|
---|
239 |
|
---|
240 | // Construct matrix with a copy of an existing numberOfRows x numberOfColumns 2-D array of BigIntegers
|
---|
241 | public Matrix(BigInteger[][] twoD){
|
---|
242 | this.numberOfRows = twoD.length;
|
---|
243 | this.numberOfColumns = twoD[0].length;
|
---|
244 | for(int i=1; i<numberOfRows; i++){
|
---|
245 | if(twoD[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
246 | }
|
---|
247 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
248 | for(int i=0; i<numberOfRows; i++){
|
---|
249 | for(int j=0; j<numberOfColumns; j++){
|
---|
250 | this.matrix[i][j] = twoD[i][j].doubleValue();
|
---|
251 | }
|
---|
252 | }
|
---|
253 | this.permutationIndex = new int[numberOfRows];
|
---|
254 | for(int i=0;i<numberOfRows;i++)this.permutationIndex[i]=i;
|
---|
255 | }
|
---|
256 |
|
---|
257 |
|
---|
258 |
|
---|
259 | // Construct matrix with a copy of the 2D matrix and permutation index of an existing Matrix bb.
|
---|
260 | public Matrix(Matrix bb){
|
---|
261 | this.numberOfRows = bb.numberOfRows;
|
---|
262 | this.numberOfColumns = bb.numberOfColumns;
|
---|
263 | this.matrix = new double[this.numberOfRows][this.numberOfColumns];
|
---|
264 | for(int i=0; i<numberOfRows; i++){
|
---|
265 | for(int j=0; j<numberOfColumns; j++){
|
---|
266 | this.matrix[i][j] = bb.matrix[i][j];
|
---|
267 | }
|
---|
268 | }
|
---|
269 | this.permutationIndex = Conv.copy(bb.permutationIndex);
|
---|
270 | this.rowSwapIndex = bb.rowSwapIndex;
|
---|
271 | }
|
---|
272 |
|
---|
273 |
|
---|
274 | // METHODS
|
---|
275 | // SET VALUES
|
---|
276 | // reset value of tiny used to replace zero in LU decompostions
|
---|
277 | // If not set: 1e-100 used
|
---|
278 | public void resetLUzero(double zeroValue){
|
---|
279 | this.tiny = zeroValue;
|
---|
280 | }
|
---|
281 |
|
---|
282 | // Set the matrix with a copy of an existing numberOfRows x numberOfColumns 2-D matrix of variables
|
---|
283 | public void setTwoDarray(double[][] aarray){
|
---|
284 | if(this.numberOfRows != aarray.length)throw new IllegalArgumentException("row length of this Matrix differs from that of the 2D array argument");
|
---|
285 | if(this.numberOfColumns != aarray[0].length)throw new IllegalArgumentException("column length of this Matrix differs from that of the 2D array argument");
|
---|
286 | for(int i=0; i<numberOfRows; i++){
|
---|
287 | if(aarray[i].length!=numberOfColumns)throw new IllegalArgumentException("All rows must have the same length");
|
---|
288 | for(int j=0; j<numberOfColumns; j++){
|
---|
289 | this.matrix[i][j]=aarray[i][j];
|
---|
290 | }
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | // Set an individual array element
|
---|
295 | // i = row index
|
---|
296 | // j = column index
|
---|
297 | // aa = value of the element
|
---|
298 | public void setElement(int i, int j, double aa){
|
---|
299 | this.matrix[i][j]=aa;
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | // Set a sub-matrix starting with row index i, column index j
|
---|
304 | public void setSubMatrix(int i, int j, double[][] subMatrix){
|
---|
305 | int k = subMatrix.length;
|
---|
306 | int l = subMatrix[0].length;
|
---|
307 | if(i+k-1>=this.numberOfRows)throw new IllegalArgumentException("Sub-matrix position is outside the row bounds of this Matrix");
|
---|
308 | if(j+l-1>=this.numberOfColumns)throw new IllegalArgumentException("Sub-matrix position is outside the column bounds of this Matrix");
|
---|
309 |
|
---|
310 | int m = 0;
|
---|
311 | int n = 0;
|
---|
312 | for(int p=0; p<k; p++){
|
---|
313 | n = 0;
|
---|
314 | for(int q=0; q<l; q++){
|
---|
315 | this.matrix[i+p][j+q] = subMatrix[m][n];
|
---|
316 | n++;
|
---|
317 | }
|
---|
318 | m++;
|
---|
319 | }
|
---|
320 | }
|
---|
321 |
|
---|
322 | // Set a sub-matrix starting with row index i, column index j
|
---|
323 | // and ending with row index k, column index l
|
---|
324 | // See setSubMatrix above - this method has been retained for compatibility purposes
|
---|
325 | public void setSubMatrix(int i, int j, int k, int l, double[][] subMatrix){
|
---|
326 | this.setSubMatrix(i, j, subMatrix);
|
---|
327 | }
|
---|
328 |
|
---|
329 | // Set a sub-matrix
|
---|
330 | // row = array of row indices
|
---|
331 | // col = array of column indices
|
---|
332 | public void setSubMatrix(int[] row, int[] col, double[][] subMatrix){
|
---|
333 | int n=row.length;
|
---|
334 | int m=col.length;
|
---|
335 | for(int p=0; p<n; p++){
|
---|
336 | for(int q=0; q<m; q++){
|
---|
337 | this.matrix[row[p]][col[q]] = subMatrix[p][q];
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 | // Get the value of matrixCheck
|
---|
343 | public boolean getMatrixCheck(){
|
---|
344 | return this.matrixCheck;
|
---|
345 | }
|
---|
346 |
|
---|
347 | // SPECIAL MATRICES
|
---|
348 | // Construct an identity matrix
|
---|
349 | public static Matrix identityMatrix(int numberOfRows){
|
---|
350 | Matrix special = new Matrix(numberOfRows, numberOfRows);
|
---|
351 | for(int i=0; i<numberOfRows; i++){
|
---|
352 | special.matrix[i][i]=1.0;
|
---|
353 | }
|
---|
354 | return special;
|
---|
355 | }
|
---|
356 |
|
---|
357 | // Construct a square unit matrix
|
---|
358 | public static Matrix unitMatrix(int numberOfRows){
|
---|
359 | Matrix special = new Matrix(numberOfRows, numberOfRows);
|
---|
360 | for(int i=0; i<numberOfRows; i++){
|
---|
361 | for(int j=0; j<numberOfRows; j++){
|
---|
362 | special.matrix[i][j]=1.0;
|
---|
363 | }
|
---|
364 | }
|
---|
365 | return special;
|
---|
366 | }
|
---|
367 |
|
---|
368 | // Construct a rectangular unit matrix
|
---|
369 | public static Matrix unitMatrix(int numberOfRows, int numberOfColumns){
|
---|
370 | Matrix special = new Matrix(numberOfRows, numberOfColumns);
|
---|
371 | for(int i=0; i<numberOfRows; i++){
|
---|
372 | for(int j=0; j<numberOfColumns; j++){
|
---|
373 | special.matrix[i][j]=1.0;
|
---|
374 | }
|
---|
375 | }
|
---|
376 | return special;
|
---|
377 | }
|
---|
378 |
|
---|
379 | // Construct a square scalar matrix
|
---|
380 | public static Matrix scalarMatrix(int numberOfRows, double diagconst){
|
---|
381 | Matrix special = new Matrix(numberOfRows, numberOfRows);
|
---|
382 | double[][] specialArray = special.getArrayReference();
|
---|
383 | for(int i=0; i<numberOfRows; i++){
|
---|
384 | for(int j=i; j<numberOfRows; j++){
|
---|
385 | if(i==j){
|
---|
386 | specialArray[i][j]= diagconst;
|
---|
387 | }
|
---|
388 | }
|
---|
389 | }
|
---|
390 | return special;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // Construct a rectangular scalar matrix
|
---|
394 | public static Matrix scalarMatrix(int numberOfRows, int numberOfColumns, double diagconst){
|
---|
395 | Matrix special = new Matrix(numberOfRows, numberOfColumns);
|
---|
396 | double[][] specialArray = special.getArrayReference();
|
---|
397 | for(int i=0; i<numberOfRows; i++){
|
---|
398 | for(int j=i; j<numberOfColumns; j++){
|
---|
399 | if(i==j){
|
---|
400 | specialArray[i][j]= diagconst;
|
---|
401 | }
|
---|
402 | }
|
---|
403 | }
|
---|
404 | return special;
|
---|
405 | }
|
---|
406 |
|
---|
407 | // Construct a square diagonal matrix
|
---|
408 | public static Matrix diagonalMatrix(int numberOfRows, double[] diag){
|
---|
409 | if(diag.length!=numberOfRows)throw new IllegalArgumentException("matrix dimension differs from diagonal array length");
|
---|
410 | Matrix special = new Matrix(numberOfRows, numberOfRows);
|
---|
411 | double[][] specialArray = special.getArrayReference();
|
---|
412 | for(int i=0; i<numberOfRows; i++){
|
---|
413 | specialArray[i][i]=diag[i];
|
---|
414 | }
|
---|
415 | return special;
|
---|
416 | }
|
---|
417 |
|
---|
418 | // Construct a rectangular diagonal matrix
|
---|
419 | public static Matrix diagonalMatrix(int numberOfRows, int numberOfColumns, double[] diag){
|
---|
420 | if(diag.length!=numberOfRows)throw new IllegalArgumentException("matrix dimension differs from diagonal array length");
|
---|
421 | Matrix special = new Matrix(numberOfRows, numberOfColumns);
|
---|
422 | double[][] specialArray = special.getArrayReference();
|
---|
423 | for(int i=0; i<numberOfRows; i++){
|
---|
424 | for(int j=i; j<numberOfColumns; j++){
|
---|
425 | if(i==j){
|
---|
426 | specialArray[i][j]= diag[i];
|
---|
427 | }
|
---|
428 | }
|
---|
429 | }
|
---|
430 | return special;
|
---|
431 | }
|
---|
432 |
|
---|
433 | // GET VALUES
|
---|
434 | // Return the number of rows
|
---|
435 | public int getNumberOfRows(){
|
---|
436 | return this.numberOfRows;
|
---|
437 | }
|
---|
438 |
|
---|
439 | // Return the number of rows
|
---|
440 | public int getNrow(){
|
---|
441 | return this.numberOfRows;
|
---|
442 | }
|
---|
443 |
|
---|
444 | // Return the number of columns
|
---|
445 | public int getNumberOfColumns(){
|
---|
446 | return this.numberOfColumns;
|
---|
447 | }
|
---|
448 |
|
---|
449 | // Return the number of columns
|
---|
450 | public int getNcol(){
|
---|
451 | return this.numberOfColumns;
|
---|
452 | }
|
---|
453 |
|
---|
454 | // Return a reference to the internal 2-D array
|
---|
455 | public double[][] getArrayReference(){
|
---|
456 | return this.matrix;
|
---|
457 | }
|
---|
458 |
|
---|
459 | // Return a reference to the internal 2-D array
|
---|
460 | // included for backward compatibility with incorrect earlier documentation
|
---|
461 | public double[][] getArrayPointer(){
|
---|
462 | return this.matrix;
|
---|
463 | }
|
---|
464 |
|
---|
465 | // Return a copy of the internal 2-D array
|
---|
466 | public double[][] getArrayCopy(){
|
---|
467 | double[][] c = new double[this.numberOfRows][this.numberOfColumns];
|
---|
468 | for(int i=0; i<numberOfRows; i++){
|
---|
469 | for(int j=0; j<numberOfColumns; j++){
|
---|
470 | c[i][j]=this.matrix[i][j];
|
---|
471 | }
|
---|
472 | }
|
---|
473 | return c;
|
---|
474 | }
|
---|
475 |
|
---|
476 | // Return a copy of a row
|
---|
477 | public double[] getRowCopy(int i){
|
---|
478 | if(i>=this.numberOfRows)throw new IllegalArgumentException("Row index, " + i + ", must be less than the number of rows, " + this.numberOfRows);
|
---|
479 | if(i<0)throw new IllegalArgumentException("Row index, " + i + ", must be zero or positive");
|
---|
480 | return Conv.copy(this.matrix[i]);
|
---|
481 | }
|
---|
482 |
|
---|
483 | // Return a copy of a column
|
---|
484 | public double[] getColumnCopy(int ii){
|
---|
485 | if(ii>=this.numberOfColumns)throw new IllegalArgumentException("Column index, " + ii + ", must be less than the number of columns, " + this.numberOfColumns);
|
---|
486 | if(ii<0)throw new IllegalArgumentException("column index, " + ii + ", must be zero or positive");
|
---|
487 | double[] col = new double[this.numberOfRows];
|
---|
488 | for(int i=0; i<numberOfRows; i++){
|
---|
489 | col[i]=this.matrix[i][ii];
|
---|
490 | }
|
---|
491 | return col;
|
---|
492 | }
|
---|
493 |
|
---|
494 |
|
---|
495 | // Return a single element of the internal 2-D array
|
---|
496 | public double getElement(int i, int j){
|
---|
497 | return this.matrix[i][j];
|
---|
498 | }
|
---|
499 |
|
---|
500 | // Return a single element of the internal 2-D array
|
---|
501 | // included for backward compatibility with incorrect earlier documentation
|
---|
502 | public double getElementCopy(int i, int j){
|
---|
503 | return this.matrix[i][j];
|
---|
504 | }
|
---|
505 |
|
---|
506 | // Return a single element of the internal 2-D array
|
---|
507 | // included for backward compatibility with incorrect earlier documentation
|
---|
508 | public double getElementPointer(int i, int j){
|
---|
509 | return this.matrix[i][j];
|
---|
510 | }
|
---|
511 |
|
---|
512 | // Return a sub-matrix starting with row index i, column index j
|
---|
513 | // and ending with row index k, column index l
|
---|
514 | public Matrix getSubMatrix(int i, int j, int k, int l){
|
---|
515 | if(i>k)throw new IllegalArgumentException("row indices inverted");
|
---|
516 | if(j>l)throw new IllegalArgumentException("column indices inverted");
|
---|
517 | if(k>=this.numberOfRows)throw new IllegalArgumentException("Sub-matrix position is outside the row bounds of this Matrix" );
|
---|
518 | if(l>=this.numberOfColumns)throw new IllegalArgumentException("Sub-matrix position is outside the column bounds of this Matrix" + i + " " +l);
|
---|
519 |
|
---|
520 | int n=k-i+1, m=l-j+1;
|
---|
521 | Matrix subMatrix = new Matrix(n, m);
|
---|
522 | double[][] sarray = subMatrix.getArrayReference();
|
---|
523 | for(int p=0; p<n; p++){
|
---|
524 | for(int q=0; q<m; q++){
|
---|
525 | sarray[p][q]= this.matrix[i+p][j+q];
|
---|
526 | }
|
---|
527 | }
|
---|
528 | return subMatrix;
|
---|
529 | }
|
---|
530 |
|
---|
531 | // Return a sub-matrix
|
---|
532 | // row = array of row indices
|
---|
533 | // col = array of column indices
|
---|
534 | public Matrix getSubMatrix(int[] row, int[] col){
|
---|
535 | int n = row.length;
|
---|
536 | int m = col.length;
|
---|
537 | Matrix subMatrix = new Matrix(n, m);
|
---|
538 | double[][] sarray = subMatrix.getArrayReference();
|
---|
539 | for(int i=0; i<n; i++){
|
---|
540 | for(int j=0; j<m; j++){
|
---|
541 | sarray[i][j]= this.matrix[row[i]][col[j]];
|
---|
542 | }
|
---|
543 | }
|
---|
544 | return subMatrix;
|
---|
545 | }
|
---|
546 |
|
---|
547 | // Return a reference to the permutation index array
|
---|
548 | public int[] getIndexReference(){
|
---|
549 | return this.permutationIndex;
|
---|
550 | }
|
---|
551 |
|
---|
552 | // Return a reference to the permutation index array
|
---|
553 | // included for backward compatibility with incorrect earlier documentation
|
---|
554 | public int[] getIndexPointer(){
|
---|
555 | return this.permutationIndex;
|
---|
556 | }
|
---|
557 |
|
---|
558 | // Return a copy of the permutation index array
|
---|
559 | public int[] getIndexCopy(){
|
---|
560 | int[] indcopy = new int[this.numberOfRows];
|
---|
561 | for(int i=0; i<this.numberOfRows; i++){
|
---|
562 | indcopy[i]=this.permutationIndex[i];
|
---|
563 | }
|
---|
564 | return indcopy;
|
---|
565 | }
|
---|
566 |
|
---|
567 | // Return the row swap index
|
---|
568 | public double getSwap(){
|
---|
569 | return this.rowSwapIndex;
|
---|
570 | }
|
---|
571 |
|
---|
572 | // COPY
|
---|
573 | // Copy a Matrix [static method]
|
---|
574 | public static Matrix copy(Matrix a){
|
---|
575 | if(a==null){
|
---|
576 | return null;
|
---|
577 | }
|
---|
578 | else{
|
---|
579 | int nr = a.getNumberOfRows();
|
---|
580 | int nc = a.getNumberOfColumns();
|
---|
581 | double[][] aarray = a.getArrayReference();
|
---|
582 | Matrix b = new Matrix(nr,nc);
|
---|
583 | b.numberOfRows = nr;
|
---|
584 | b.numberOfColumns = nc;
|
---|
585 | double[][] barray = b.getArrayReference();
|
---|
586 | for(int i=0; i<nr; i++){
|
---|
587 | for(int j=0; j<nc; j++){
|
---|
588 | barray[i][j]=aarray[i][j];
|
---|
589 | }
|
---|
590 | }
|
---|
591 | for(int i=0; i<nr; i++)b.permutationIndex[i] = a.permutationIndex[i];
|
---|
592 | return b;
|
---|
593 | }
|
---|
594 | }
|
---|
595 |
|
---|
596 | // Copy a Matrix [instance method]
|
---|
597 | public Matrix copy(){
|
---|
598 | if(this==null){
|
---|
599 | return null;
|
---|
600 | }
|
---|
601 | else{
|
---|
602 | int nr = this.numberOfRows;
|
---|
603 | int nc = this.numberOfColumns;
|
---|
604 | Matrix b = new Matrix(nr,nc);
|
---|
605 | double[][] barray = b.getArrayReference();
|
---|
606 | b.numberOfRows = nr;
|
---|
607 | b.numberOfColumns = nc;
|
---|
608 | for(int i=0; i<nr; i++){
|
---|
609 | for(int j=0; j<nc; j++){
|
---|
610 | barray[i][j]=this.matrix[i][j];
|
---|
611 | }
|
---|
612 | }
|
---|
613 | for(int i=0; i<nr; i++)b.permutationIndex[i] = this.permutationIndex[i];
|
---|
614 | return b;
|
---|
615 | }
|
---|
616 | }
|
---|
617 |
|
---|
618 | // Clone a Matrix
|
---|
619 | public Object clone(){
|
---|
620 | if(this==null){
|
---|
621 | return null;
|
---|
622 | }
|
---|
623 | else{
|
---|
624 | int nr = this.numberOfRows;
|
---|
625 | int nc = this.numberOfColumns;
|
---|
626 | Matrix b = new Matrix(nr,nc);
|
---|
627 | double[][] barray = b.getArrayReference();
|
---|
628 | b.numberOfRows = nr;
|
---|
629 | b.numberOfColumns = nc;
|
---|
630 | for(int i=0; i<nr; i++){
|
---|
631 | for(int j=0; j<nc; j++){
|
---|
632 | barray[i][j]=this.matrix[i][j];
|
---|
633 | }
|
---|
634 | }
|
---|
635 | for(int i=0; i<nr; i++)b.permutationIndex[i] = this.permutationIndex[i];
|
---|
636 | return (Object) b;
|
---|
637 | }
|
---|
638 | }
|
---|
639 |
|
---|
640 | // COLUMN MATRICES
|
---|
641 | // Converts a 1-D array of doubles to a column matrix
|
---|
642 | public static Matrix columnMatrix(double[] darray){
|
---|
643 | int nr = darray.length;
|
---|
644 | Matrix pp = new Matrix(nr, 1);
|
---|
645 | for(int i=0; i<nr; i++)pp.matrix[i][0] = darray[i];
|
---|
646 | return pp;
|
---|
647 | }
|
---|
648 |
|
---|
649 | // ROW MATRICES
|
---|
650 | // Converts a 1-D array of doubles to a row matrix
|
---|
651 | public static Matrix rowMatrix(double[] darray){
|
---|
652 | int nc = darray.length;
|
---|
653 | Matrix pp = new Matrix(1, nc);
|
---|
654 | for(int i=0; i<nc; i++)pp.matrix[0][i] = darray[i];
|
---|
655 | return pp;
|
---|
656 | }
|
---|
657 |
|
---|
658 | // ADDITION
|
---|
659 | // Add this matrix to matrix B. This matrix remains unaltered [instance method]
|
---|
660 | public Matrix plus(Matrix bmat){
|
---|
661 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
662 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
663 | }
|
---|
664 | int nr=bmat.numberOfRows;
|
---|
665 | int nc=bmat.numberOfColumns;
|
---|
666 | Matrix cmat = new Matrix(nr,nc);
|
---|
667 | double[][] carray = cmat.getArrayReference();
|
---|
668 | for(int i=0; i<nr; i++){
|
---|
669 | for(int j=0; j<nc; j++){
|
---|
670 | carray[i][j]=this.matrix[i][j] + bmat.matrix[i][j];
|
---|
671 | }
|
---|
672 | }
|
---|
673 | return cmat;
|
---|
674 | }
|
---|
675 |
|
---|
676 | // Add this matrix to 2-D array B. This matrix remains unaltered [instance method]
|
---|
677 | public Matrix plus(double[][] bmat){
|
---|
678 | int nr=bmat.length;
|
---|
679 | int nc=bmat[0].length;
|
---|
680 | if((this.numberOfRows!=nr)||(this.numberOfColumns!=nc)){
|
---|
681 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
682 | }
|
---|
683 |
|
---|
684 | Matrix cmat = new Matrix(nr,nc);
|
---|
685 | double[][] carray = cmat.getArrayReference();
|
---|
686 | for(int i=0; i<nr; i++){
|
---|
687 | for(int j=0; j<nc; j++){
|
---|
688 | carray[i][j]=this.matrix[i][j] + bmat[i][j];
|
---|
689 | }
|
---|
690 | }
|
---|
691 | return cmat;
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | // Add matrices A and B [static method]
|
---|
696 | public static Matrix plus(Matrix amat, Matrix bmat){
|
---|
697 | if((amat.numberOfRows!=bmat.numberOfRows)||(amat.numberOfColumns!=bmat.numberOfColumns)){
|
---|
698 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
699 | }
|
---|
700 | int nr=amat.numberOfRows;
|
---|
701 | int nc=amat.numberOfColumns;
|
---|
702 | Matrix cmat = new Matrix(nr,nc);
|
---|
703 | double[][] carray = cmat.getArrayReference();
|
---|
704 | for(int i=0; i<nr; i++){
|
---|
705 | for(int j=0; j<nc; j++){
|
---|
706 | carray[i][j]=amat.matrix[i][j] + bmat.matrix[i][j];
|
---|
707 | }
|
---|
708 | }
|
---|
709 | return cmat;
|
---|
710 | }
|
---|
711 |
|
---|
712 | // Add matrix B to this matrix [equivalence of +=]
|
---|
713 | public void plusEquals(Matrix bmat){
|
---|
714 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
715 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
716 | }
|
---|
717 | int nr=bmat.numberOfRows;
|
---|
718 | int nc=bmat.numberOfColumns;
|
---|
719 |
|
---|
720 | for(int i=0; i<nr; i++){
|
---|
721 | for(int j=0; j<nc; j++){
|
---|
722 | this.matrix[i][j] += bmat.matrix[i][j];
|
---|
723 | }
|
---|
724 | }
|
---|
725 | }
|
---|
726 |
|
---|
727 | // SUBTRACTION
|
---|
728 | // Subtract matrix B from this matrix. This matrix remains unaltered [instance method]
|
---|
729 | public Matrix minus(Matrix bmat){
|
---|
730 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
731 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
732 | }
|
---|
733 | int nr=this.numberOfRows;
|
---|
734 | int nc=this.numberOfColumns;
|
---|
735 | Matrix cmat = new Matrix(nr,nc);
|
---|
736 | double[][] carray = cmat.getArrayReference();
|
---|
737 | for(int i=0; i<nr; i++){
|
---|
738 | for(int j=0; j<nc; j++){
|
---|
739 | carray[i][j]=this.matrix[i][j] - bmat.matrix[i][j];
|
---|
740 | }
|
---|
741 | }
|
---|
742 | return cmat;
|
---|
743 | }
|
---|
744 |
|
---|
745 | // Subtract a 2-D array from this matrix. This matrix remains unaltered [instance method]
|
---|
746 | public Matrix minus(double[][] bmat){
|
---|
747 | int nr=bmat.length;
|
---|
748 | int nc=bmat[0].length;
|
---|
749 | if((this.numberOfRows!=nr)||(this.numberOfColumns!=nc)){
|
---|
750 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
751 | }
|
---|
752 |
|
---|
753 | Matrix cmat = new Matrix(nr,nc);
|
---|
754 | double[][] carray = cmat.getArrayReference();
|
---|
755 | for(int i=0; i<nr; i++){
|
---|
756 | for(int j=0; j<nc; j++){
|
---|
757 | carray[i][j]=this.matrix[i][j] - bmat[i][j];
|
---|
758 | }
|
---|
759 | }
|
---|
760 | return cmat;
|
---|
761 | }
|
---|
762 |
|
---|
763 |
|
---|
764 | // Subtract matrix B from matrix A [static method]
|
---|
765 | public static Matrix minus(Matrix amat, Matrix bmat){
|
---|
766 | if((amat.numberOfRows!=bmat.numberOfRows)||(amat.numberOfColumns!=bmat.numberOfColumns)){
|
---|
767 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
768 | }
|
---|
769 | int nr=amat.numberOfRows;
|
---|
770 | int nc=amat.numberOfColumns;
|
---|
771 | Matrix cmat = new Matrix(nr,nc);
|
---|
772 | double[][] carray = cmat.getArrayReference();
|
---|
773 | for(int i=0; i<nr; i++){
|
---|
774 | for(int j=0; j<nc; j++){
|
---|
775 | carray[i][j]=amat.matrix[i][j] - bmat.matrix[i][j];
|
---|
776 | }
|
---|
777 | }
|
---|
778 | return cmat;
|
---|
779 | }
|
---|
780 |
|
---|
781 | // Subtract matrix B from this matrix [equivlance of -=]
|
---|
782 | public void minusEquals(Matrix bmat){
|
---|
783 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
784 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
785 | }
|
---|
786 | int nr=bmat.numberOfRows;
|
---|
787 | int nc=bmat.numberOfColumns;
|
---|
788 |
|
---|
789 | for(int i=0; i<nr; i++){
|
---|
790 | for(int j=0; j<nc; j++){
|
---|
791 | this.matrix[i][j] -= bmat.matrix[i][j];
|
---|
792 | }
|
---|
793 | }
|
---|
794 | }
|
---|
795 |
|
---|
796 | // MULTIPLICATION
|
---|
797 | // Multiply this matrix by a matrix. [instance method]
|
---|
798 | // This matrix remains unaltered.
|
---|
799 | public Matrix times(Matrix bmat){
|
---|
800 | if(this.numberOfColumns!=bmat.numberOfRows)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
801 |
|
---|
802 | Matrix cmat = new Matrix(this.numberOfRows, bmat.numberOfColumns);
|
---|
803 | double [][] carray = cmat.getArrayReference();
|
---|
804 | double sum = 0.0D;
|
---|
805 |
|
---|
806 | for(int i=0; i<this.numberOfRows; i++){
|
---|
807 | for(int j=0; j<bmat.numberOfColumns; j++){
|
---|
808 | sum=0.0D;
|
---|
809 | for(int k=0; k<this.numberOfColumns; k++){
|
---|
810 | sum += this.matrix[i][k]*bmat.matrix[k][j];
|
---|
811 | }
|
---|
812 | carray[i][j]=sum;
|
---|
813 | }
|
---|
814 | }
|
---|
815 | return cmat;
|
---|
816 | }
|
---|
817 |
|
---|
818 | // Multiply this matrix by a 2-D array. [instance method]
|
---|
819 | // This matrix remains unaltered.
|
---|
820 | public Matrix times(double[][] bmat){
|
---|
821 | int nr=bmat.length;
|
---|
822 | int nc=bmat[0].length;
|
---|
823 |
|
---|
824 | if(this.numberOfColumns!=nr)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
825 |
|
---|
826 | Matrix cmat = new Matrix(this.numberOfRows, nc);
|
---|
827 | double [][] carray = cmat.getArrayReference();
|
---|
828 | double sum = 0.0D;
|
---|
829 |
|
---|
830 | for(int i=0; i<this.numberOfRows; i++){
|
---|
831 | for(int j=0; j<nc; j++){
|
---|
832 | sum=0.0D;
|
---|
833 | for(int k=0; k<this.numberOfColumns; k++){
|
---|
834 | sum += this.matrix[i][k]*bmat[k][j];
|
---|
835 | }
|
---|
836 | carray[i][j]=sum;
|
---|
837 | }
|
---|
838 | }
|
---|
839 | return cmat;
|
---|
840 | }
|
---|
841 |
|
---|
842 | // Multiply this matrix by a constant [instance method]
|
---|
843 | // This matrix remains unaltered
|
---|
844 | public Matrix times(double constant){
|
---|
845 | Matrix cmat = new Matrix(this.numberOfRows, this.numberOfColumns);
|
---|
846 | double [][] carray = cmat.getArrayReference();
|
---|
847 |
|
---|
848 | for(int i=0; i<this.numberOfRows; i++){
|
---|
849 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
850 | carray[i][j] = this.matrix[i][j]*constant;
|
---|
851 | }
|
---|
852 | }
|
---|
853 | return cmat;
|
---|
854 | }
|
---|
855 |
|
---|
856 | // Multiply two matrices {static method]
|
---|
857 | public static Matrix times(Matrix amat, Matrix bmat){
|
---|
858 | if(amat.numberOfColumns!=bmat.numberOfRows)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
859 |
|
---|
860 | Matrix cmat = new Matrix(amat.numberOfRows, bmat.numberOfColumns);
|
---|
861 | double [][] carray = cmat.getArrayReference();
|
---|
862 | double sum = 0.0D;
|
---|
863 |
|
---|
864 | for(int i=0; i<amat.numberOfRows; i++){
|
---|
865 | for(int j=0; j<bmat.numberOfColumns; j++){
|
---|
866 | sum=0.0D;
|
---|
867 | for(int k=0; k<amat.numberOfColumns; k++){
|
---|
868 | sum += (amat.matrix[i][k]*bmat.matrix[k][j]);
|
---|
869 | }
|
---|
870 | carray[i][j]=sum;
|
---|
871 | }
|
---|
872 | }
|
---|
873 | return cmat;
|
---|
874 | }
|
---|
875 |
|
---|
876 | // Multiply a Matrix by a 2-D array of doubles [static method]
|
---|
877 | public static Matrix times(Matrix amat, double[][] bmat){
|
---|
878 | if(amat.numberOfColumns!=bmat.length)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
879 |
|
---|
880 | Matrix cmat = new Matrix(amat.numberOfRows, bmat[0].length);
|
---|
881 | Matrix dmat = new Matrix(bmat);
|
---|
882 | double [][] carray = cmat.getArrayReference();
|
---|
883 | double sum = 0.0D;
|
---|
884 |
|
---|
885 | for(int i=0; i<amat.numberOfRows; i++){
|
---|
886 | for(int j=0; j<dmat.numberOfColumns; j++){
|
---|
887 | sum=0.0D;
|
---|
888 | for(int k=0; k<amat.numberOfColumns; k++){
|
---|
889 | sum += (amat.matrix[i][k]*dmat.matrix[k][j]);
|
---|
890 | }
|
---|
891 | carray[i][j]=sum;
|
---|
892 | }
|
---|
893 | }
|
---|
894 | return cmat;
|
---|
895 | }
|
---|
896 |
|
---|
897 | // Multiply a matrix by a constant [static method]
|
---|
898 | public static Matrix times(Matrix amat, double constant){
|
---|
899 | Matrix cmat = new Matrix(amat.numberOfRows, amat.numberOfColumns);
|
---|
900 | double [][] carray = cmat.getArrayReference();
|
---|
901 |
|
---|
902 | for(int i=0; i<amat.numberOfRows; i++){
|
---|
903 | for(int j=0; j<amat.numberOfColumns; j++){
|
---|
904 | carray[i][j] = amat.matrix[i][j]*constant;
|
---|
905 | }
|
---|
906 | }
|
---|
907 | return cmat;
|
---|
908 | }
|
---|
909 |
|
---|
910 | // Multiply this matrix by a matrix [equivalence of *=]
|
---|
911 | public void timesEquals(Matrix bmat){
|
---|
912 | if(this.numberOfColumns!=bmat.numberOfRows)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
913 |
|
---|
914 | Matrix cmat = new Matrix(this.numberOfRows, bmat.numberOfColumns);
|
---|
915 | double [][] carray = cmat.getArrayReference();
|
---|
916 | double sum = 0.0D;
|
---|
917 |
|
---|
918 | for(int i=0; i<this.numberOfRows; i++){
|
---|
919 | for(int j=0; j<bmat.numberOfColumns; j++){
|
---|
920 | sum=0.0D;
|
---|
921 | for(int k=0; k<this.numberOfColumns; k++){
|
---|
922 | sum += this.matrix[i][k]*bmat.matrix[k][j];
|
---|
923 | }
|
---|
924 | carray[i][j]=sum;
|
---|
925 | }
|
---|
926 | }
|
---|
927 |
|
---|
928 | this.numberOfRows = cmat.numberOfRows;
|
---|
929 | this.numberOfColumns = cmat.numberOfColumns;
|
---|
930 | for(int i=0; i<this.numberOfRows; i++){
|
---|
931 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
932 | this.matrix[i][j] = cmat.matrix[i][j];
|
---|
933 | }
|
---|
934 | }
|
---|
935 | }
|
---|
936 |
|
---|
937 | // Multiply this matrix by a constant [equivalence of *=]
|
---|
938 | public void timesEquals(double constant){
|
---|
939 |
|
---|
940 | for(int i=0; i<this.numberOfRows; i++){
|
---|
941 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
942 | this.matrix[i][j] *= constant;
|
---|
943 | }
|
---|
944 | }
|
---|
945 | }
|
---|
946 |
|
---|
947 | // DIVISION
|
---|
948 | // Divide this Matrix by a Matrix - instance method
|
---|
949 | public Matrix over(Matrix bmat){
|
---|
950 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
951 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
952 | }
|
---|
953 | return this.times(bmat.inverse());
|
---|
954 | }
|
---|
955 |
|
---|
956 | // Divide a Matrix by a Matrix - static method.
|
---|
957 | public Matrix over(Matrix amat, Matrix bmat){
|
---|
958 | if((amat.numberOfRows!=bmat.numberOfRows)||(amat.numberOfColumns!=bmat.numberOfColumns)){
|
---|
959 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
960 | }
|
---|
961 | return amat.times(bmat.inverse());
|
---|
962 | }
|
---|
963 |
|
---|
964 |
|
---|
965 | // Divide this Matrix by a 2-D array of doubles.
|
---|
966 | public Matrix over(double[][] bmat){
|
---|
967 | int nr=bmat.length;
|
---|
968 | int nc=bmat[0].length;
|
---|
969 | if((this.numberOfRows!=nr)||(this.numberOfColumns!=nc)){
|
---|
970 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
971 | }
|
---|
972 |
|
---|
973 | Matrix cmat = new Matrix(bmat);
|
---|
974 | return this.times(cmat.inverse());
|
---|
975 | }
|
---|
976 |
|
---|
977 | // Divide a Matrix by a 2-D array of doubles - static method.
|
---|
978 | public Matrix over(Matrix amat, double[][] bmat){
|
---|
979 | int nr=bmat.length;
|
---|
980 | int nc=bmat[0].length;
|
---|
981 | if((amat.numberOfRows!=nr)||(amat.numberOfColumns!=nc)){
|
---|
982 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
983 | }
|
---|
984 |
|
---|
985 | Matrix cmat = new Matrix(bmat);
|
---|
986 | return amat.times(cmat.inverse());
|
---|
987 | }
|
---|
988 |
|
---|
989 | // Divide a 2-D array of doubles by a Matrix - static method.
|
---|
990 | public Matrix over(double[][] amat, Matrix bmat){
|
---|
991 | int nr=amat.length;
|
---|
992 | int nc=amat[0].length;
|
---|
993 | if((bmat.numberOfRows!=nr)||(bmat.numberOfColumns!=nc)){
|
---|
994 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
995 | }
|
---|
996 |
|
---|
997 | Matrix cmat = new Matrix(amat);
|
---|
998 | return cmat.times(bmat.inverse());
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | // Divide a 2-D array of doubles by a 2-D array of doubles - static method.
|
---|
1002 | public Matrix over(double[][] amat, double[][] bmat){
|
---|
1003 | int nr=amat.length;
|
---|
1004 | int nc=amat[0].length;
|
---|
1005 | if((bmat.length!=nr)||(bmat[0].length!=nc)){
|
---|
1006 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | Matrix cmat = new Matrix(amat);
|
---|
1010 | Matrix dmat = new Matrix(bmat);
|
---|
1011 | return cmat.times(dmat.inverse());
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | // Divide a this matrix by a matrix[equivalence of /=]
|
---|
1015 | public void overEquals(Matrix bmat){
|
---|
1016 | if((this.numberOfRows!=bmat.numberOfRows)||(this.numberOfColumns!=bmat.numberOfColumns)){
|
---|
1017 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
1018 | }
|
---|
1019 | Matrix cmat = new Matrix(bmat);
|
---|
1020 | this.timesEquals(cmat.inverse());
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | // Divide this Matrix by a 2D array of doubles [equivalence of /=]
|
---|
1024 | public void overEquals(double[][] bmat){
|
---|
1025 | Matrix pmat = new Matrix(bmat);
|
---|
1026 | this.overEquals(pmat);
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | // INVERSE
|
---|
1030 | // Inverse of a square matrix [instance method]
|
---|
1031 | public Matrix inverse(){
|
---|
1032 | int n = this.numberOfRows;
|
---|
1033 | if(n!=this.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1034 | Matrix invmat = new Matrix(n, n);
|
---|
1035 |
|
---|
1036 | if(n==1){
|
---|
1037 | double[][] hold = this.getArrayCopy();
|
---|
1038 | if(hold[0][0]==0.0)throw new IllegalArgumentException("Matrix is singular");
|
---|
1039 | hold[0][0] = 1.0/hold[0][0];
|
---|
1040 | invmat = new Matrix(hold);
|
---|
1041 | }
|
---|
1042 | else{
|
---|
1043 | if(n==2){
|
---|
1044 | double[][] hold = this.getArrayCopy();
|
---|
1045 | double det = hold[0][0]*hold[1][1] - hold[0][1]*hold[1][0];
|
---|
1046 | if(det==0.0)throw new IllegalArgumentException("Matrix is singular");
|
---|
1047 | double[][] hold2 = new double[2][2];
|
---|
1048 | hold2[0][0] = hold[1][1]/det;
|
---|
1049 | hold2[1][1] = hold[0][0]/det;
|
---|
1050 | hold2[1][0] = -hold[1][0]/det;
|
---|
1051 | hold2[0][1] = -hold[0][1]/det;
|
---|
1052 | invmat = new Matrix(hold2);
|
---|
1053 | }
|
---|
1054 | else{
|
---|
1055 | double[] col = new double[n];
|
---|
1056 | double[] xvec = new double[n];
|
---|
1057 | double[][] invarray = invmat.getArrayReference();
|
---|
1058 | Matrix ludmat;
|
---|
1059 |
|
---|
1060 | ludmat = this.luDecomp();
|
---|
1061 | for(int j=0; j<n; j++){
|
---|
1062 | for(int i=0; i<n; i++)col[i]=0.0D;
|
---|
1063 | col[j]=1.0;
|
---|
1064 | xvec=ludmat.luBackSub(col);
|
---|
1065 | for(int i=0; i<n; i++)invarray[i][j]=xvec[i];
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | return invmat;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | // Inverse of a square matrix [static method]
|
---|
1073 | public static Matrix inverse(Matrix amat){
|
---|
1074 | int n = amat.numberOfRows;
|
---|
1075 | if(n!=amat.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1076 | Matrix invmat = new Matrix(n, n);
|
---|
1077 |
|
---|
1078 | if(n==1){
|
---|
1079 | double[][] hold = amat.getArrayCopy();
|
---|
1080 | if(hold[0][0]==0.0)throw new IllegalArgumentException("Matrix is singular");
|
---|
1081 | hold[0][0] = 1.0/hold[0][0];
|
---|
1082 | invmat = new Matrix(hold);
|
---|
1083 | }
|
---|
1084 | else{
|
---|
1085 | if(n==2){
|
---|
1086 | double[][] hold = amat.getArrayCopy();
|
---|
1087 | double det = hold[0][0]*hold[1][1] - hold[0][1]*hold[1][0];
|
---|
1088 | if(det==0.0)throw new IllegalArgumentException("Matrix is singular");
|
---|
1089 | double[][] hold2 = new double[2][2];
|
---|
1090 | hold2[0][0] = hold[1][1]/det;
|
---|
1091 | hold2[1][1] = hold[0][0]/det;
|
---|
1092 | hold2[1][0] = -hold[1][0]/det;
|
---|
1093 | hold2[0][1] = -hold[0][1]/det;
|
---|
1094 | invmat = new Matrix(hold2);
|
---|
1095 | }
|
---|
1096 | else{
|
---|
1097 | double[] col = new double[n];
|
---|
1098 | double[] xvec = new double[n];
|
---|
1099 | double[][] invarray = invmat.getArrayReference();
|
---|
1100 | Matrix ludmat;
|
---|
1101 |
|
---|
1102 | ludmat = amat.luDecomp();
|
---|
1103 | for(int j=0; j<n; j++){
|
---|
1104 | for(int i=0; i<n; i++)col[i]=0.0D;
|
---|
1105 | col[j]=1.0;
|
---|
1106 | xvec=ludmat.luBackSub(col);
|
---|
1107 | for(int i=0; i<n; i++)invarray[i][j]=xvec[i];
|
---|
1108 | }
|
---|
1109 | }
|
---|
1110 | }
|
---|
1111 | return invmat;
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | // TRANSPOSE
|
---|
1115 | // Transpose of a matrix [instance method]
|
---|
1116 | public Matrix transpose(){
|
---|
1117 | Matrix tmat = new Matrix(this.numberOfColumns, this.numberOfRows);
|
---|
1118 | double[][] tarray = tmat.getArrayReference();
|
---|
1119 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1120 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1121 | tarray[i][j]=this.matrix[j][i];
|
---|
1122 | }
|
---|
1123 | }
|
---|
1124 | return tmat;
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | // Transpose of a matrix [static method]
|
---|
1128 | public static Matrix transpose(Matrix amat){
|
---|
1129 | Matrix tmat = new Matrix(amat.numberOfColumns, amat.numberOfRows);
|
---|
1130 | double[][] tarray = tmat.getArrayReference();
|
---|
1131 | for(int i=0; i<amat.numberOfColumns; i++){
|
---|
1132 | for(int j=0; j<amat.numberOfRows; j++){
|
---|
1133 | tarray[i][j]=amat.matrix[j][i];
|
---|
1134 | }
|
---|
1135 | }
|
---|
1136 | return tmat;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | // OPPOSITE
|
---|
1140 | // Opposite of a matrix [instance method]
|
---|
1141 | public Matrix opposite(){
|
---|
1142 | Matrix opp = Matrix.copy(this);
|
---|
1143 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1144 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1145 | opp.matrix[i][j]=-this.matrix[i][j];
|
---|
1146 | }
|
---|
1147 | }
|
---|
1148 | return opp;
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | // Opposite of a matrix [static method]
|
---|
1152 | public static Matrix opposite(Matrix amat){
|
---|
1153 | Matrix opp = Matrix.copy(amat);
|
---|
1154 | for(int i=0; i<amat.numberOfRows; i++){
|
---|
1155 | for(int j=0; j<amat.numberOfColumns; j++){
|
---|
1156 | opp.matrix[i][j]=-amat.matrix[i][j];
|
---|
1157 | }
|
---|
1158 | }
|
---|
1159 | return opp;
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | // TRACE
|
---|
1163 | // Trace of a matrix [instance method]
|
---|
1164 | public double trace(){
|
---|
1165 | double trac = 0.0D;
|
---|
1166 | for(int i=0; i<Math.min(this.numberOfColumns,this.numberOfColumns); i++){
|
---|
1167 | trac += this.matrix[i][i];
|
---|
1168 | }
|
---|
1169 | return trac;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | // Trace of a matrix [static method]
|
---|
1173 | public static double trace(Matrix amat){
|
---|
1174 | double trac = 0.0D;
|
---|
1175 | for(int i=0; i<Math.min(amat.numberOfColumns,amat.numberOfColumns); i++){
|
---|
1176 | trac += amat.matrix[i][i];
|
---|
1177 | }
|
---|
1178 | return trac;
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 | // DETERMINANT
|
---|
1182 | // Returns the determinant of a square matrix [instance method]
|
---|
1183 | public double determinant(){
|
---|
1184 | int n = this.numberOfRows;
|
---|
1185 | if(n!=this.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1186 | double det = 0.0D;
|
---|
1187 | if(n==2){
|
---|
1188 | det = this.matrix[0][0]*this.matrix[1][1] - this.matrix[0][1]*this.matrix[1][0];
|
---|
1189 | }
|
---|
1190 | else{
|
---|
1191 | Matrix ludmat = this.luDecomp();
|
---|
1192 | det = ludmat.rowSwapIndex;
|
---|
1193 | for(int j=0; j<n; j++){
|
---|
1194 | det *= ludmat.matrix[j][j];
|
---|
1195 | }
|
---|
1196 | }
|
---|
1197 | return det;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | // Returns the determinant of a square matrix [static method] - Matrix input
|
---|
1201 | public static double determinant(Matrix amat){
|
---|
1202 | int n = amat.numberOfRows;
|
---|
1203 | if(n!=amat.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1204 | double det = 0.0D;
|
---|
1205 |
|
---|
1206 | if(n==2){
|
---|
1207 | double[][] hold = amat.getArrayCopy();
|
---|
1208 | det = hold[0][0]*hold[1][1] - hold[0][1]*hold[1][0];
|
---|
1209 | }
|
---|
1210 | else{
|
---|
1211 | Matrix ludmat = amat.luDecomp();
|
---|
1212 | det = ludmat.rowSwapIndex;
|
---|
1213 | for(int j=0; j<n; j++){
|
---|
1214 | det *= (ludmat.matrix[j][j]);
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 | return det;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | // Returns the determinant of a square matrix [static method] - [][] array input
|
---|
1221 | public static double determinant(double[][]mat){
|
---|
1222 | int n = mat.length;
|
---|
1223 | for(int i=0; i<n; i++)if(n!=mat[i].length)throw new IllegalArgumentException("Matrix is not square");
|
---|
1224 | double det = 0.0D;
|
---|
1225 |
|
---|
1226 | if(n==2){
|
---|
1227 | det = mat[0][0]*mat[1][1] - mat[0][1]*mat[1][0];
|
---|
1228 | }
|
---|
1229 | else{
|
---|
1230 | Matrix amat = new Matrix(mat);
|
---|
1231 | Matrix ludmat = amat.luDecomp();
|
---|
1232 | det = ludmat.rowSwapIndex;
|
---|
1233 | for(int j=0; j<n; j++){
|
---|
1234 | det *= (ludmat.matrix[j][j]);
|
---|
1235 | }
|
---|
1236 | }
|
---|
1237 | return det;
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | // Returns the log(determinant) of a square matrix [instance method].
|
---|
1241 | // Useful if determinant() underflows or overflows.
|
---|
1242 | public double logDeterminant(){
|
---|
1243 | int n = this.numberOfRows;
|
---|
1244 | if(n!=this.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1245 | double det = 0.0D;
|
---|
1246 | Matrix ludmat = this.luDecomp();
|
---|
1247 |
|
---|
1248 | det = ludmat.rowSwapIndex;
|
---|
1249 | det=Math.log(det);
|
---|
1250 | for(int j=0; j<n; j++){
|
---|
1251 | det += Math.log(ludmat.matrix[j][j]);
|
---|
1252 | }
|
---|
1253 | return det;
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | // Returns the log(determinant) of a square matrix [static method] - matrix input.
|
---|
1257 | // Useful if determinant() underflows or overflows.
|
---|
1258 | public static double logDeterminant(Matrix amat){
|
---|
1259 | int n = amat.numberOfRows;
|
---|
1260 | if(n!=amat.numberOfColumns)throw new IllegalArgumentException("Matrix is not square");
|
---|
1261 | double det = 0.0D;
|
---|
1262 | Matrix ludmat = amat.luDecomp();
|
---|
1263 |
|
---|
1264 | det = ludmat.rowSwapIndex;
|
---|
1265 | det=Math.log(det);
|
---|
1266 | for(int j=0; j<n; j++){
|
---|
1267 | det += Math.log(ludmat.matrix[j][j]);
|
---|
1268 | }
|
---|
1269 | return det;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | // Returns the log(determinant) of a square matrix [static method] double[][] input.
|
---|
1273 | // Useful if determinant() underflows or overflows.
|
---|
1274 | public static double logDeterminant(double[][] mat){
|
---|
1275 | int n = mat.length;
|
---|
1276 | for(int i=0; i<n; i++)if(n!=mat[i].length)throw new IllegalArgumentException("Matrix is not square");
|
---|
1277 | Matrix amat = new Matrix(mat);
|
---|
1278 | return amat.determinant();
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | // REDUCED ROW ECHELON FORM
|
---|
1282 | public Matrix reducedRowEchelonForm(){
|
---|
1283 |
|
---|
1284 | double[][] mat = new double[this.numberOfRows][this.numberOfColumns];
|
---|
1285 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1286 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1287 | mat[i][j] = this.matrix[i][j];
|
---|
1288 | }
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | int leadingCoeff = 0;
|
---|
1292 | int rowPointer = 0;
|
---|
1293 |
|
---|
1294 | boolean testOuter = true;
|
---|
1295 | while(testOuter){
|
---|
1296 | int counter = rowPointer;
|
---|
1297 | boolean testInner = true;
|
---|
1298 | while(testInner && mat[counter][leadingCoeff] == 0) {
|
---|
1299 | counter++;
|
---|
1300 | if(counter == this.numberOfRows){
|
---|
1301 | counter = rowPointer;
|
---|
1302 | leadingCoeff++;
|
---|
1303 | if(leadingCoeff == this.numberOfColumns)testInner=false;
|
---|
1304 | }
|
---|
1305 | }
|
---|
1306 | if(testInner){
|
---|
1307 | double[] temp = mat[rowPointer];
|
---|
1308 | mat[rowPointer] = mat[counter];
|
---|
1309 | mat[counter] = temp;
|
---|
1310 |
|
---|
1311 | double pivot = mat[rowPointer][leadingCoeff];
|
---|
1312 | for(int j=0; j<this.numberOfColumns; j++)mat[rowPointer][j] /= pivot;
|
---|
1313 |
|
---|
1314 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1315 | if (i!=rowPointer) {
|
---|
1316 | pivot = mat[i][leadingCoeff];
|
---|
1317 | for (int j=0; j<this.numberOfColumns; j++)mat[i][j] -= pivot * mat[rowPointer][j];
|
---|
1318 | }
|
---|
1319 | }
|
---|
1320 | leadingCoeff++;
|
---|
1321 | if(leadingCoeff>=this.numberOfColumns)testOuter = false;
|
---|
1322 | }
|
---|
1323 | rowPointer++;
|
---|
1324 | if(rowPointer>=this.numberOfRows || !testInner)testOuter = false;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1328 | for (int j=0; j<this.numberOfColumns; j++){
|
---|
1329 | if(mat[i][j]==-0.0)mat[i][j] = 0.0;
|
---|
1330 | }
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | return new Matrix(mat);
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | // FROBENIUS NORM of a matrix
|
---|
1337 | // Sometimes referred to as the EUCLIDEAN NORM
|
---|
1338 | public double frobeniusNorm(){
|
---|
1339 | double norm=0.0D;
|
---|
1340 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1341 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1342 | norm=hypot(norm, Math.abs(matrix[i][j]));
|
---|
1343 | }
|
---|
1344 | }
|
---|
1345 | return norm;
|
---|
1346 | }
|
---|
1347 |
|
---|
1348 |
|
---|
1349 | // ONE NORM of a matrix
|
---|
1350 | public double oneNorm(){
|
---|
1351 | double norm = 0.0D;
|
---|
1352 | double sum = 0.0D;
|
---|
1353 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1354 | sum=0.0D;
|
---|
1355 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1356 | sum+=Math.abs(this.matrix[i][j]);
|
---|
1357 | }
|
---|
1358 | norm=Math.max(norm,sum);
|
---|
1359 | }
|
---|
1360 | return norm;
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | // INFINITY NORM of a matrix
|
---|
1364 | public double infinityNorm(){
|
---|
1365 | double norm = 0.0D;
|
---|
1366 | double sum = 0.0D;
|
---|
1367 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1368 | sum=0.0D;
|
---|
1369 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1370 | sum+=Math.abs(this.matrix[i][j]);
|
---|
1371 | }
|
---|
1372 | norm=Math.max(norm,sum);
|
---|
1373 | }
|
---|
1374 | return norm;
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | // SUM OF THE ELEMENTS
|
---|
1378 | // Returns sum of all elements
|
---|
1379 | public double sum(){
|
---|
1380 | double sum = 0.0;
|
---|
1381 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1382 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1383 | sum += this.matrix[i][j];
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 | return sum;
|
---|
1387 | }
|
---|
1388 |
|
---|
1389 | // Returns sums of the rows
|
---|
1390 | public double[] rowSums(){
|
---|
1391 | double[] sums = new double[this.numberOfRows];
|
---|
1392 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1393 | sums[i] = 0.0;
|
---|
1394 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1395 | sums[i] += this.matrix[i][j];
|
---|
1396 | }
|
---|
1397 | }
|
---|
1398 | return sums;
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 | // Returns sums of the columns
|
---|
1402 | public double[] columnSums(){
|
---|
1403 | double[] sums = new double[this.numberOfColumns];
|
---|
1404 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1405 | sums[i] = 0.0;
|
---|
1406 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1407 | sums[i] += this.matrix[j][i];
|
---|
1408 | }
|
---|
1409 | }
|
---|
1410 | return sums;
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 |
|
---|
1414 |
|
---|
1415 | // MEAN OF THE ELEMENTS
|
---|
1416 | // Returns mean of all elements
|
---|
1417 | public double mean(){
|
---|
1418 | double mean = 0.0;
|
---|
1419 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1420 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1421 | mean += this.matrix[i][j];
|
---|
1422 | }
|
---|
1423 | }
|
---|
1424 | mean /= this.numberOfRows*this.numberOfColumns;
|
---|
1425 | return mean;
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | // Returns means of the rows
|
---|
1429 | public double[] rowMeans(){
|
---|
1430 | double[] means = new double[this.numberOfRows];
|
---|
1431 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1432 | means[i] = 0.0;
|
---|
1433 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1434 | means[i] += this.matrix[i][j];
|
---|
1435 | }
|
---|
1436 | means[i] /= this.numberOfColumns;
|
---|
1437 | }
|
---|
1438 | return means;
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 | // Returns means of the columns
|
---|
1442 | public double[] columnMeans(){
|
---|
1443 | double[] means = new double[this.numberOfColumns];
|
---|
1444 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1445 | means[i] = 0.0;
|
---|
1446 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1447 | means[i] += this.matrix[j][i];
|
---|
1448 | }
|
---|
1449 | means[i] /= this.numberOfRows;
|
---|
1450 | }
|
---|
1451 | return means;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | // SUBTRACT THE MEAN OF THE ELEMENTS
|
---|
1455 | // Returns a matrix whose elements are the original elements minus the mean of all elements
|
---|
1456 | public Matrix subtractMean(){
|
---|
1457 | Matrix mat = new Matrix(this.numberOfRows, this.numberOfColumns);
|
---|
1458 |
|
---|
1459 | double mean = 0.0;
|
---|
1460 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1461 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1462 | mean += this.matrix[i][j];
|
---|
1463 | }
|
---|
1464 | }
|
---|
1465 | mean /= this.numberOfRows*this.numberOfColumns;
|
---|
1466 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1467 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1468 | mat.matrix[i][j] = this.matrix[i][j] - mean;
|
---|
1469 | }
|
---|
1470 | }
|
---|
1471 | return mat;
|
---|
1472 | }
|
---|
1473 |
|
---|
1474 | // Returns a matrix whose rows are the elements are the original row minus the mean of the elements of that row
|
---|
1475 | public Matrix subtractRowMeans(){
|
---|
1476 | Matrix mat = new Matrix(this.numberOfRows, this.numberOfColumns);
|
---|
1477 |
|
---|
1478 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1479 | double mean = 0.0;
|
---|
1480 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1481 | mean += this.matrix[i][j];
|
---|
1482 | }
|
---|
1483 | mean /= this.numberOfColumns;
|
---|
1484 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1485 | mat.matrix[i][j] = this.matrix[i][j] - mean;
|
---|
1486 | }
|
---|
1487 | }
|
---|
1488 | return mat;
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | // Returns matrix whose columns are the elements are the original column minus the mean of the elements of that olumnc
|
---|
1492 | public Matrix subtractColumnMeans(){
|
---|
1493 | Matrix mat = new Matrix(this.numberOfRows, this.numberOfColumns);
|
---|
1494 |
|
---|
1495 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1496 | double mean = 0.0;
|
---|
1497 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1498 | mean += this.matrix[j][i];
|
---|
1499 | }
|
---|
1500 | mean /= this.numberOfRows;
|
---|
1501 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1502 | mat.matrix[j][i] = this.matrix[j][i] - mean;
|
---|
1503 | }
|
---|
1504 | }
|
---|
1505 | return mat;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 |
|
---|
1509 |
|
---|
1510 | // MEDIAN OF THE ELEMENTS
|
---|
1511 | // Returns median of all elements
|
---|
1512 | public double median(){
|
---|
1513 | Stat st = new Stat(this.matrix[0]);
|
---|
1514 |
|
---|
1515 | for(int i=1; i<this.numberOfRows; i++){
|
---|
1516 | st.concatenate(this.matrix[i]);
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | return st.median();
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | // Returns medians of the rows
|
---|
1523 | public double[] rowMedians(){
|
---|
1524 | double[] medians = new double[this.numberOfRows];
|
---|
1525 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1526 | Stat st = new Stat(this.matrix[i]);
|
---|
1527 | medians[i] = st.median();
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 | return medians;
|
---|
1531 | }
|
---|
1532 |
|
---|
1533 | // Returns medians of the columns
|
---|
1534 | public double[] columnMedians(){
|
---|
1535 | double[] medians = new double[this.numberOfRows];
|
---|
1536 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1537 | double[] hold = new double[this.numberOfRows];
|
---|
1538 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1539 | hold[i] = this.matrix[j][i];
|
---|
1540 | }
|
---|
1541 | Stat st = new Stat(hold);
|
---|
1542 | medians[i] = st.median();
|
---|
1543 | }
|
---|
1544 |
|
---|
1545 | return medians;
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | // SET THE DENOMINATOR OF THE VARIANCES AND STANDARD DEVIATIONS TO NUMBER OF ELEMENTS, n
|
---|
1549 | // Default value = n-1
|
---|
1550 | public void setDenominatorToN(){
|
---|
1551 | Stat.setStaticDenominatorToN();
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 |
|
---|
1555 | // VARIANCE OF THE ELEMENTS
|
---|
1556 | // Returns variance of all elements
|
---|
1557 | public double variance(){
|
---|
1558 | Stat st = new Stat(this.matrix[0]);
|
---|
1559 |
|
---|
1560 | for(int i=1; i<this.numberOfRows; i++){
|
---|
1561 | st.concatenate(this.matrix[i]);
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 | return st.variance();
|
---|
1565 | }
|
---|
1566 |
|
---|
1567 | // Returns variances of the rows
|
---|
1568 | public double[] rowVariances(){
|
---|
1569 | double[] variances = new double[this.numberOfRows];
|
---|
1570 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1571 | Stat st = new Stat(this.matrix[i]);
|
---|
1572 | variances[i] = st.variance();
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 | return variances;
|
---|
1576 | }
|
---|
1577 |
|
---|
1578 | // Returns variances of the columns
|
---|
1579 | public double[] columnVariances(){
|
---|
1580 | double[] variances = new double[this.numberOfColumns];
|
---|
1581 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1582 | double[] hold = new double[this.numberOfRows];
|
---|
1583 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1584 | hold[i] = this.matrix[j][i];
|
---|
1585 | }
|
---|
1586 | Stat st = new Stat(hold);
|
---|
1587 | variances[i] = st.variance();
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | return variances;
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 |
|
---|
1594 |
|
---|
1595 | // STANDARD DEVIATION OF THE ELEMENTS
|
---|
1596 | // Returns standard deviation of all elements
|
---|
1597 | public double standardDeviation(){
|
---|
1598 | Stat st = new Stat(this.matrix[0]);
|
---|
1599 |
|
---|
1600 | for(int i=1; i<this.numberOfRows; i++){
|
---|
1601 | st.concatenate(this.matrix[i]);
|
---|
1602 | }
|
---|
1603 |
|
---|
1604 | return st.standardDeviation();
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | // Returns standard deviations of the rows
|
---|
1608 | public double[] rowStandardDeviations(){
|
---|
1609 | double[] standardDeviations = new double[this.numberOfRows];
|
---|
1610 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1611 | Stat st = new Stat(this.matrix[i]);
|
---|
1612 | standardDeviations[i] = st.standardDeviation();
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | return standardDeviations;
|
---|
1616 | }
|
---|
1617 |
|
---|
1618 | // Returns standard deviations of the columns
|
---|
1619 | public double[] columnStandardDeviations(){
|
---|
1620 | double[] standardDeviations = new double[this.numberOfColumns];
|
---|
1621 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1622 | double[] hold = new double[this.numberOfRows];
|
---|
1623 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1624 | hold[i] = this.matrix[j][i];
|
---|
1625 | }
|
---|
1626 | Stat st = new Stat(hold);
|
---|
1627 | standardDeviations[i] = st.standardDeviation();
|
---|
1628 | }
|
---|
1629 |
|
---|
1630 | return standardDeviations;
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 |
|
---|
1634 | // STANDARD ERROR OF THE ELEMENTS
|
---|
1635 | // Returns standard error of all elements
|
---|
1636 | public double stanadardError(){
|
---|
1637 | Stat st = new Stat(this.matrix[0]);
|
---|
1638 |
|
---|
1639 | for(int i=1; i<this.numberOfRows; i++){
|
---|
1640 | st.concatenate(this.matrix[i]);
|
---|
1641 | }
|
---|
1642 |
|
---|
1643 | return st.standardError();
|
---|
1644 | }
|
---|
1645 |
|
---|
1646 | // Returns standard errors of the rows
|
---|
1647 | public double[] rowStandardErrors(){
|
---|
1648 | double[] standardErrors = new double[this.numberOfRows];
|
---|
1649 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1650 | Stat st = new Stat(this.matrix[i]);
|
---|
1651 | standardErrors[i] = st.standardError();
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | return standardErrors;
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | // Returns standard errors of the columns
|
---|
1658 | public double[] columnStandardErrors(){
|
---|
1659 | double[] standardErrors = new double[this.numberOfRows];
|
---|
1660 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1661 | double[] hold = new double[this.numberOfRows];
|
---|
1662 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1663 | hold[i] = this.matrix[j][i];
|
---|
1664 | }
|
---|
1665 | Stat st = new Stat(hold);
|
---|
1666 | standardErrors[i] = st.standardError();
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 | return standardErrors;
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 |
|
---|
1673 |
|
---|
1674 | // MAXIMUM ELEMENT
|
---|
1675 | // Returns the value, row index and column index of the maximum element
|
---|
1676 | public double[] maximumElement(){
|
---|
1677 | double[] ret = new double[3];
|
---|
1678 | double[] holdD = new double[this.numberOfRows];
|
---|
1679 | ArrayMaths am = null;
|
---|
1680 | int[] holdI = new int [this.numberOfRows];
|
---|
1681 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1682 | am = new ArrayMaths(this.matrix[i]);
|
---|
1683 | holdD[i] = am.maximum();
|
---|
1684 | holdI[i] = am.maximumIndex();
|
---|
1685 | }
|
---|
1686 | am = new ArrayMaths(holdD);
|
---|
1687 | ret[0] = am.maximum();
|
---|
1688 | int maxI = am.maximumIndex();
|
---|
1689 | ret[1] = (double)maxI;
|
---|
1690 | ret[2] = (double)holdI[maxI];
|
---|
1691 |
|
---|
1692 | return ret;
|
---|
1693 | }
|
---|
1694 |
|
---|
1695 | // Returns maxima of the rows
|
---|
1696 | public double[] rowMaxima(){
|
---|
1697 | double[] maxima = new double[this.numberOfRows];
|
---|
1698 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1699 | Stat st = new Stat(this.matrix[i]);
|
---|
1700 | maxima[i] = st.maximum();
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | return maxima;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | // Returns maxima of the columns
|
---|
1707 | public double[] columnMaxima(){
|
---|
1708 | double[] maxima = new double[this.numberOfRows];
|
---|
1709 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1710 | double[] hold = new double[this.numberOfRows];
|
---|
1711 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1712 | hold[i] = this.matrix[j][i];
|
---|
1713 | }
|
---|
1714 | Stat st = new Stat(hold);
|
---|
1715 | maxima[i] = st.maximum();
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | return maxima;
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | // MINIMUM ELEMENT
|
---|
1722 | // Returns the value, row index and column index of the minimum element
|
---|
1723 | public double[] minimumElement(){
|
---|
1724 | double[] ret = new double[3];
|
---|
1725 | double[] holdD = new double[this.numberOfRows];
|
---|
1726 | ArrayMaths am = null;
|
---|
1727 | int[] holdI = new int [this.numberOfRows];
|
---|
1728 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1729 | am = new ArrayMaths(this.matrix[i]);
|
---|
1730 | holdD[i] = am.minimum();
|
---|
1731 | holdI[i] = am.minimumIndex();
|
---|
1732 | }
|
---|
1733 | am = new ArrayMaths(holdD);
|
---|
1734 | ret[0] = am.minimum();
|
---|
1735 | int minI = am.minimumIndex();
|
---|
1736 | ret[1] = (double)minI;
|
---|
1737 | ret[2] = (double)holdI[minI];
|
---|
1738 |
|
---|
1739 | return ret;
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | // Returns minima of the rows
|
---|
1743 | public double[] rowMinima(){
|
---|
1744 | double[] minima = new double[this.numberOfRows];
|
---|
1745 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1746 | Stat st = new Stat(this.matrix[i]);
|
---|
1747 | minima[i] = st.minimum();
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 | return minima;
|
---|
1751 | }
|
---|
1752 |
|
---|
1753 | // Returns minima of the columns
|
---|
1754 | public double[] columnMinima(){
|
---|
1755 | double[] minima = new double[this.numberOfRows];
|
---|
1756 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1757 | double[] hold = new double[this.numberOfRows];
|
---|
1758 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1759 | hold[i] = this.matrix[j][i];
|
---|
1760 | }
|
---|
1761 | Stat st = new Stat(hold);
|
---|
1762 | minima[i] = st.minimum();
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 | return minima;
|
---|
1766 | }
|
---|
1767 |
|
---|
1768 | // RANGE
|
---|
1769 | // Returns the range of all the elements
|
---|
1770 | public double range(){
|
---|
1771 | return this.maximumElement()[0] - this.minimumElement()[0];
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 | // Returns ranges of the rows
|
---|
1775 | public double[] rowRanges(){
|
---|
1776 | double[] ranges = new double[this.numberOfRows];
|
---|
1777 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1778 | Stat st = new Stat(this.matrix[i]);
|
---|
1779 | ranges[i] = st.maximum() - st.minimum();
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | return ranges;
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 | // Returns ranges of the columns
|
---|
1786 | public double[] columnRanges(){
|
---|
1787 | double[] ranges = new double[this.numberOfRows];
|
---|
1788 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
1789 | double[] hold = new double[this.numberOfRows];
|
---|
1790 | for(int j=0; j<this.numberOfRows; j++){
|
---|
1791 | hold[i] = this.matrix[j][i];
|
---|
1792 | }
|
---|
1793 | Stat st = new Stat(hold);
|
---|
1794 | ranges[i] = st.maximum() - st.minimum();
|
---|
1795 | }
|
---|
1796 |
|
---|
1797 | return ranges;
|
---|
1798 | }
|
---|
1799 |
|
---|
1800 | // PIVOT
|
---|
1801 | // Swaps rows and columns to place absolute maximum element in positiom matrix[0][0]
|
---|
1802 | public int[] pivot(){
|
---|
1803 | double[] max = this.maximumElement();
|
---|
1804 | int maxI = (int)max[1];
|
---|
1805 | int maxJ = (int)max[2];
|
---|
1806 | double[] min = this.minimumElement();
|
---|
1807 | int minI = (int)min[1];
|
---|
1808 | int minJ = (int)min[2];
|
---|
1809 | if(Math.abs(min[0])>Math.abs(max[0])){
|
---|
1810 | maxI = minI;
|
---|
1811 | maxJ = minJ;
|
---|
1812 | }
|
---|
1813 | int[] ret = {maxI, maxJ};
|
---|
1814 |
|
---|
1815 | double[] hold1 = this.matrix[0];
|
---|
1816 | this.matrix[0] = this.matrix[maxI];
|
---|
1817 | this.matrix[maxI] = hold1;
|
---|
1818 | double hold2 = 0.0;
|
---|
1819 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1820 | hold2 = this.matrix[i][0];
|
---|
1821 | this.matrix[i][0] = this.matrix[i][maxJ];
|
---|
1822 | this.matrix[i][maxJ] = hold2;
|
---|
1823 | }
|
---|
1824 |
|
---|
1825 | return ret;
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | // MATRIX TESTS
|
---|
1829 |
|
---|
1830 | // Check if a matrix is square
|
---|
1831 | public boolean isSquare(){
|
---|
1832 | boolean test = false;
|
---|
1833 | if(this.numberOfRows==this.numberOfColumns)test = true;
|
---|
1834 | return test;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 | // Check if a matrix is symmetric
|
---|
1838 | public boolean isSymmetric(){
|
---|
1839 | boolean test = true;
|
---|
1840 | if(this.numberOfRows==this.numberOfColumns){
|
---|
1841 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1842 | for(int j=i+1; j<this.numberOfColumns; j++){
|
---|
1843 | if(this.matrix[i][j]!=this.matrix[j][i])test = false;
|
---|
1844 | }
|
---|
1845 | }
|
---|
1846 | }
|
---|
1847 | else{
|
---|
1848 | test = false;
|
---|
1849 | }
|
---|
1850 | return test;
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | // Check if a matrix is zero
|
---|
1854 | public boolean isZero(){
|
---|
1855 | boolean test = true;
|
---|
1856 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1857 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1858 | if(this.matrix[i][j]!=0.0D)test = false;
|
---|
1859 | }
|
---|
1860 | }
|
---|
1861 | return test;
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | // Check if a matrix is unit
|
---|
1865 | public boolean isUnit(){
|
---|
1866 | boolean test = true;
|
---|
1867 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1868 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1869 | if(this.matrix[i][j]!=1.0D)test = false;
|
---|
1870 | }
|
---|
1871 | }
|
---|
1872 | return test;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | // Check if a matrix is diagonal
|
---|
1876 | public boolean isDiagonal(){
|
---|
1877 | boolean test = true;
|
---|
1878 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1879 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1880 | if(i!=j && this.matrix[i][j]!=0.0D)test = false;
|
---|
1881 | }
|
---|
1882 | }
|
---|
1883 | return test;
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 | // Check if a matrix is upper triagonal
|
---|
1887 | public boolean isUpperTriagonal(){
|
---|
1888 | boolean test = true;
|
---|
1889 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1890 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1891 | if(j<i && this.matrix[i][j]!=0.0D)test = false;
|
---|
1892 | }
|
---|
1893 | }
|
---|
1894 | return test;
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 | // Check if a matrix is lower triagonal
|
---|
1898 | public boolean isLowerTriagonal(){
|
---|
1899 | boolean test = true;
|
---|
1900 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1901 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1902 | if(i>j && this.matrix[i][j]!=0.0D)test = false;
|
---|
1903 | }
|
---|
1904 | }
|
---|
1905 | return test;
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | // Check if a matrix is tridiagonal
|
---|
1909 | public boolean isTridiagonal(){
|
---|
1910 | boolean test = true;
|
---|
1911 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1912 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1913 | if(i<(j+1) && this.matrix[i][j]!=0.0D)test = false;
|
---|
1914 | if(j>(i+1) && this.matrix[i][j]!=0.0D)test = false;
|
---|
1915 | }
|
---|
1916 | }
|
---|
1917 | return test;
|
---|
1918 | }
|
---|
1919 |
|
---|
1920 | // Check if a matrix is upper Hessenberg
|
---|
1921 | public boolean isUpperHessenberg(){
|
---|
1922 | boolean test = true;
|
---|
1923 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1924 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1925 | if(j<(i+1) && this.matrix[i][j]!=0.0D)test = false;
|
---|
1926 | }
|
---|
1927 | }
|
---|
1928 | return test;
|
---|
1929 | }
|
---|
1930 |
|
---|
1931 | // Check if a matrix is lower Hessenberg
|
---|
1932 | public boolean isLowerHessenberg(){
|
---|
1933 | boolean test = true;
|
---|
1934 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1935 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1936 | if(i>(j+1) && this.matrix[i][j]!=0.0D)test = false;
|
---|
1937 | }
|
---|
1938 | }
|
---|
1939 | return test;
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 | // Check if a matrix is a identity matrix
|
---|
1943 | public boolean isIdentity(){
|
---|
1944 | boolean test = true;
|
---|
1945 | if(this.numberOfRows==this.numberOfColumns){
|
---|
1946 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1947 | if(this.matrix[i][i]!=1.0D)test = false;
|
---|
1948 | for(int j=i+1; j<this.numberOfColumns; j++){
|
---|
1949 | if(this.matrix[i][j]!=0.0D)test = false;
|
---|
1950 | if(this.matrix[j][i]!=0.0D)test = false;
|
---|
1951 | }
|
---|
1952 | }
|
---|
1953 | }
|
---|
1954 | else{
|
---|
1955 | test = false;
|
---|
1956 | }
|
---|
1957 | return test;
|
---|
1958 | }
|
---|
1959 |
|
---|
1960 | // Check if a matrix is symmetric within a given tolerance
|
---|
1961 | public boolean isNearlySymmetric(double tolerance){
|
---|
1962 | boolean test = true;
|
---|
1963 | if(this.numberOfRows==this.numberOfColumns){
|
---|
1964 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1965 | for(int j=i+1; j<this.numberOfColumns; j++){
|
---|
1966 | if(Math.abs(this.matrix[i][j]-this.matrix[j][i])>Math.abs(tolerance))test = false;
|
---|
1967 | }
|
---|
1968 | }
|
---|
1969 | }
|
---|
1970 | else{
|
---|
1971 | test = false;
|
---|
1972 | }
|
---|
1973 | return test;
|
---|
1974 | }
|
---|
1975 |
|
---|
1976 | // Check if a matrix is zero within a given tolerance
|
---|
1977 | public boolean isNearlyZero(double tolerance){
|
---|
1978 | boolean test = true;
|
---|
1979 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1980 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1981 | if(Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
1982 | }
|
---|
1983 | }
|
---|
1984 | return test;
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | // Check if a matrix is unit within a given tolerance
|
---|
1988 | public boolean isNearlyUnit(double tolerance){
|
---|
1989 | boolean test = true;
|
---|
1990 | for(int i=0; i<this.numberOfRows; i++){
|
---|
1991 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
1992 | if(Math.abs(this.matrix[i][j] - 1.0D)>Math.abs(tolerance))test = false;
|
---|
1993 | }
|
---|
1994 | }
|
---|
1995 | return test;
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 |
|
---|
1999 | // Check if a matrix is upper triagonal within a given tolerance
|
---|
2000 | public boolean isNearlyUpperTriagonal(double tolerance){
|
---|
2001 | boolean test = true;
|
---|
2002 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2003 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2004 | if(j<i && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 | return test;
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 | // Check if a matrix is lower triagonal within a given tolerance
|
---|
2011 | public boolean isNearlyLowerTriagonal(double tolerance){
|
---|
2012 | boolean test = true;
|
---|
2013 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2014 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2015 | if(i>j && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2016 | }
|
---|
2017 | }
|
---|
2018 | return test;
|
---|
2019 | }
|
---|
2020 |
|
---|
2021 |
|
---|
2022 |
|
---|
2023 | // Check if a matrix is an identy matrix within a given tolerance
|
---|
2024 | public boolean isNearlyIdenty(double tolerance){
|
---|
2025 | boolean test = true;
|
---|
2026 | if(this.numberOfRows==this.numberOfColumns){
|
---|
2027 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2028 | if(Math.abs(this.matrix[i][i]-1.0D)>Math.abs(tolerance))test = false;
|
---|
2029 | for(int j=i+1; j<this.numberOfColumns; j++){
|
---|
2030 | if(Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2031 | if(Math.abs(this.matrix[j][i])>Math.abs(tolerance))test = false;
|
---|
2032 | }
|
---|
2033 | }
|
---|
2034 | }
|
---|
2035 | else{
|
---|
2036 | test = false;
|
---|
2037 | }
|
---|
2038 | return test;
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | // Check if a matrix is tridiagonal within a given tolerance
|
---|
2042 | public boolean isTridiagonal(double tolerance){
|
---|
2043 | boolean test = true;
|
---|
2044 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2045 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2046 | if(i<(j+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2047 | if(j>(i+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2048 | }
|
---|
2049 | }
|
---|
2050 | return test;
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 | // Check if a matrix is tridiagonal within a given tolerance
|
---|
2054 | public boolean isNearlyTridiagonal(double tolerance){
|
---|
2055 | boolean test = true;
|
---|
2056 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2057 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2058 | if(i<(j+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2059 | if(j>(i+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2060 | }
|
---|
2061 | }
|
---|
2062 | return test;
|
---|
2063 | }
|
---|
2064 |
|
---|
2065 | // Check if a matrix is upper Hessenberg within a given tolerance
|
---|
2066 | public boolean isNearlyUpperHessenberg(double tolerance){
|
---|
2067 | boolean test = true;
|
---|
2068 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2069 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2070 | if(j<(i+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2071 | }
|
---|
2072 | }
|
---|
2073 | return test;
|
---|
2074 | }
|
---|
2075 |
|
---|
2076 | // Check if a matrix is lower Hessenberg within a given tolerance
|
---|
2077 | public boolean isNearlyLowerHessenberg(double tolerance){
|
---|
2078 | boolean test = true;
|
---|
2079 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2080 | for(int j=0; j<this.numberOfColumns; j++){
|
---|
2081 | if(i>(j+1) && Math.abs(this.matrix[i][j])>Math.abs(tolerance))test = false;
|
---|
2082 | }
|
---|
2083 | }
|
---|
2084 | return test;
|
---|
2085 | }
|
---|
2086 |
|
---|
2087 | // Check if a matrix is singular
|
---|
2088 | public boolean isSingular(){
|
---|
2089 | boolean test = false;
|
---|
2090 | double det = this.determinant();
|
---|
2091 | if(det==0.0)test = true;
|
---|
2092 | return test;
|
---|
2093 | }
|
---|
2094 |
|
---|
2095 | // Check if a matrix is singular within a given tolerance
|
---|
2096 | public boolean isNearlySingular(double tolerance){
|
---|
2097 | boolean test = false;
|
---|
2098 | double det = this.determinant();
|
---|
2099 | if(Math.abs(det)<=Math.abs(tolerance))test = true;
|
---|
2100 | return test;
|
---|
2101 | }
|
---|
2102 |
|
---|
2103 |
|
---|
2104 | // Check for identical rows
|
---|
2105 | // Returns the number of pairs of identical rows followed by the row indices of the identical row pairs
|
---|
2106 | public ArrayList<Integer> identicalRows(){
|
---|
2107 | ArrayList<Integer> ret = new ArrayList<Integer>();
|
---|
2108 | int nIdentical = 0;
|
---|
2109 | for(int i=0; i<this.numberOfRows-1; i++){
|
---|
2110 | for(int j=i+1; j<this.numberOfRows; j++){
|
---|
2111 | int m = 0;
|
---|
2112 | for(int k=0; k<this.numberOfColumns; k++){
|
---|
2113 | if(this.matrix[i][k]==this.matrix[j][k])m++;
|
---|
2114 | }
|
---|
2115 | if(m==this.numberOfColumns){
|
---|
2116 | nIdentical++;
|
---|
2117 | ret.add(new Integer(i));
|
---|
2118 | ret.add(new Integer(j));
|
---|
2119 | }
|
---|
2120 | }
|
---|
2121 | }
|
---|
2122 | ret.add(0,new Integer(nIdentical));
|
---|
2123 | return ret;
|
---|
2124 | }
|
---|
2125 |
|
---|
2126 | // Check for identical columnss
|
---|
2127 | // Returns the number of pairs of identical columns followed by the column indices of the identical column pairs
|
---|
2128 | public ArrayList<Integer> identicalColumns(){
|
---|
2129 | ArrayList<Integer> ret = new ArrayList<Integer>();
|
---|
2130 | int nIdentical = 0;
|
---|
2131 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
2132 | for(int j=i+1; j<this.numberOfColumns-1; j++){
|
---|
2133 | int m = 0;
|
---|
2134 | for(int k=0; k<this.numberOfRows; k++){
|
---|
2135 | if(this.matrix[k][i]==this.matrix[k][j])m++;
|
---|
2136 | }
|
---|
2137 | if(m==this.numberOfRows){
|
---|
2138 | nIdentical++;
|
---|
2139 | ret.add(new Integer(i));
|
---|
2140 | ret.add(new Integer(j));
|
---|
2141 | }
|
---|
2142 | }
|
---|
2143 | }
|
---|
2144 | ret.add(0,new Integer(nIdentical));
|
---|
2145 | return ret;
|
---|
2146 | }
|
---|
2147 |
|
---|
2148 | // Check for zero rows
|
---|
2149 | // Returns the number of columns of all zeros followed by the column indices
|
---|
2150 | public ArrayList<Integer> zeroRows(){
|
---|
2151 | ArrayList<Integer> ret = new ArrayList<Integer>();
|
---|
2152 | int nZero = 0;
|
---|
2153 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2154 | int m = 0;
|
---|
2155 | for(int k=0; k<this.numberOfColumns; k++){
|
---|
2156 | if(this.matrix[i][k]==0.0)m++;
|
---|
2157 | }
|
---|
2158 | if(m==this.numberOfColumns){
|
---|
2159 | nZero++;
|
---|
2160 | ret.add(new Integer(i));
|
---|
2161 | }
|
---|
2162 | }
|
---|
2163 | ret.add(0,new Integer(nZero));
|
---|
2164 | return ret;
|
---|
2165 | }
|
---|
2166 |
|
---|
2167 | // Check for zero columns
|
---|
2168 | // Returns the number of columns of all zeros followed by the column indices
|
---|
2169 | public ArrayList<Integer> zeroColumns(){
|
---|
2170 | ArrayList<Integer> ret = new ArrayList<Integer>();
|
---|
2171 | int nZero = 0;
|
---|
2172 | for(int i=0; i<this.numberOfColumns; i++){
|
---|
2173 | int m = 0;
|
---|
2174 | for(int k=0; k<this.numberOfRows; k++){
|
---|
2175 | if(this.matrix[k][i]==0.0)m++;
|
---|
2176 | }
|
---|
2177 | if(m==this.numberOfRows){
|
---|
2178 | nZero++;
|
---|
2179 | ret.add(new Integer(i));
|
---|
2180 | }
|
---|
2181 | }
|
---|
2182 | ret.add(0,new Integer(nZero));
|
---|
2183 | return ret;
|
---|
2184 | }
|
---|
2185 |
|
---|
2186 |
|
---|
2187 | // LU DECOMPOSITION OF MATRIX A
|
---|
2188 | // For details of LU decomposition
|
---|
2189 | // See Numerical Recipes, The Art of Scientific Computing
|
---|
2190 | // by W H Press, S A Teukolsky, W T Vetterling & B P Flannery
|
---|
2191 | // Cambridge University Press, http://www.nr.com/
|
---|
2192 | // This method has followed their approach but modified to an object oriented language
|
---|
2193 | // Matrix ludmat is the returned LU decompostion
|
---|
2194 | // int[] index is the vector of row permutations
|
---|
2195 | // rowSwapIndex returns +1.0 for even number of row interchanges
|
---|
2196 | // returns -1.0 for odd number of row interchanges
|
---|
2197 | public Matrix luDecomp(){
|
---|
2198 | if(this.numberOfRows!=this.numberOfColumns)throw new IllegalArgumentException("A matrix is not square");
|
---|
2199 | int n = this.numberOfRows;
|
---|
2200 | int imax = 0;
|
---|
2201 | double dum = 0.0D, temp = 0.0D, big = 0.0D;
|
---|
2202 | double[] vv = new double[n];
|
---|
2203 | double sum = 0.0D;
|
---|
2204 | double dumm = 0.0D;
|
---|
2205 |
|
---|
2206 | this.matrixCheck = true;
|
---|
2207 |
|
---|
2208 | Matrix ludmat = Matrix.copy(this);
|
---|
2209 | double[][] ludarray = ludmat.getArrayReference();
|
---|
2210 |
|
---|
2211 | ludmat.rowSwapIndex=1.0D;
|
---|
2212 | for (int i=0;i<n;i++) {
|
---|
2213 | big=0.0D;
|
---|
2214 | for (int j=0;j<n;j++)if ((temp=Math.abs(ludarray[i][j])) > big) big=temp;
|
---|
2215 | if (big == 0.0D){
|
---|
2216 | if(!this.supressErrorMessage){
|
---|
2217 | System.out.println("Attempted LU Decomposition of a singular matrix in Matrix.luDecomp()");
|
---|
2218 | System.out.println("NaN matrix returned and matrixCheck set to false");
|
---|
2219 | }
|
---|
2220 | this.matrixCheck=false;
|
---|
2221 | for(int k=0;k<n;k++)for(int j=0;j<n;j++)ludarray[k][j]=Double.NaN;
|
---|
2222 | return ludmat;
|
---|
2223 | }
|
---|
2224 | vv[i]=1.0/big;
|
---|
2225 | }
|
---|
2226 | for (int j=0;j<n;j++) {
|
---|
2227 | for (int i=0;i<j;i++) {
|
---|
2228 | sum=ludarray[i][j];
|
---|
2229 | for (int k=0;k<i;k++) sum -= ludarray[i][k]*ludarray[k][j];
|
---|
2230 | ludarray[i][j]=sum;
|
---|
2231 | }
|
---|
2232 | big=0.0D;
|
---|
2233 | for (int i=j;i<n;i++) {
|
---|
2234 | sum=ludarray[i][j];
|
---|
2235 | for (int k=0;k<j;k++)
|
---|
2236 | sum -= ludarray[i][k]*ludarray[k][j];
|
---|
2237 | ludarray[i][j]=sum;
|
---|
2238 | if ((dum=vv[i]*Math.abs(sum)) >= big) {
|
---|
2239 | big=dum;
|
---|
2240 | imax=i;
|
---|
2241 | }
|
---|
2242 | }
|
---|
2243 | if (j != imax) {
|
---|
2244 | for (int k=0;k<n;k++) {
|
---|
2245 | dumm=ludarray[imax][k];
|
---|
2246 | ludarray[imax][k]=ludarray[j][k];
|
---|
2247 | ludarray[j][k]=dumm;
|
---|
2248 | }
|
---|
2249 | ludmat.rowSwapIndex = -ludmat.rowSwapIndex;
|
---|
2250 | vv[imax]=vv[j];
|
---|
2251 | }
|
---|
2252 | ludmat.permutationIndex[j]=imax;
|
---|
2253 |
|
---|
2254 | if(ludarray[j][j]==0.0D){
|
---|
2255 | ludarray[j][j]=this.tiny;
|
---|
2256 | }
|
---|
2257 | if(j != n-1) {
|
---|
2258 | dumm=1.0/ludarray[j][j];
|
---|
2259 | for (int i=j+1;i<n;i++){
|
---|
2260 | ludarray[i][j]*=dumm;
|
---|
2261 | }
|
---|
2262 | }
|
---|
2263 | }
|
---|
2264 | return ludmat;
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 | // Solves the set of n linear equations A.X=B using not A but its LU decomposition
|
---|
2268 | // bvec is the vector B (input)
|
---|
2269 | // xvec is the vector X (output)
|
---|
2270 | // index is the permutation vector produced by luDecomp()
|
---|
2271 | public double[] luBackSub(double[] bvec){
|
---|
2272 | int ii = 0,ip = 0;
|
---|
2273 | int n=bvec.length;
|
---|
2274 | if(n!=this.numberOfColumns)throw new IllegalArgumentException("vector length is not equal to matrix dimension");
|
---|
2275 | if(this.numberOfColumns!=this.numberOfRows)throw new IllegalArgumentException("matrix is not square");
|
---|
2276 | double sum= 0.0D;
|
---|
2277 | double[] xvec=new double[n];
|
---|
2278 | for(int i=0; i<n; i++){
|
---|
2279 | xvec[i]=bvec[i];
|
---|
2280 | }
|
---|
2281 | for (int i=0;i<n;i++) {
|
---|
2282 | ip=this.permutationIndex[i];
|
---|
2283 | sum=xvec[ip];
|
---|
2284 | xvec[ip]=xvec[i];
|
---|
2285 | if (ii==0){
|
---|
2286 | for (int j=ii;j<=i-1;j++){
|
---|
2287 | sum -= this.matrix[i][j]*xvec[j];
|
---|
2288 | }
|
---|
2289 | }
|
---|
2290 | else{
|
---|
2291 | if(sum==0.0) ii=i;
|
---|
2292 | }
|
---|
2293 | xvec[i]=sum;
|
---|
2294 | }
|
---|
2295 | for(int i=n-1;i>=0;i--) {
|
---|
2296 | sum=xvec[i];
|
---|
2297 | for (int j=i+1;j<n;j++){
|
---|
2298 | sum -= this.matrix[i][j]*xvec[j];
|
---|
2299 | }
|
---|
2300 | xvec[i]= sum/matrix[i][i];
|
---|
2301 | }
|
---|
2302 | return xvec;
|
---|
2303 | }
|
---|
2304 |
|
---|
2305 | // Solves the set of n linear equations A.X=B
|
---|
2306 | // bvec is the vector B (input)
|
---|
2307 | // xvec is the vector X (output)
|
---|
2308 | public double[] solveLinearSet(double[] bvec){
|
---|
2309 | double[] xvec = null;
|
---|
2310 | if(this.numberOfRows==this.numberOfColumns){
|
---|
2311 | // square matrix - LU decomposition used
|
---|
2312 | Matrix ludmat = this.luDecomp();
|
---|
2313 | xvec = ludmat.luBackSub(bvec);
|
---|
2314 | }
|
---|
2315 | else{
|
---|
2316 | if(this.numberOfRows>this.numberOfColumns){
|
---|
2317 | // overdetermined equations - least squares used - must be used with care
|
---|
2318 | int n = bvec.length;
|
---|
2319 | if(this.numberOfRows!=n)throw new IllegalArgumentException("Overdetermined equation solution - vector length is not equal to matrix column length");
|
---|
2320 | Matrix avecT = this.transpose();
|
---|
2321 | double[][] avec = avecT.getArrayCopy();
|
---|
2322 | Regression reg = new Regression(avec, bvec);
|
---|
2323 | reg.linearGeneral();
|
---|
2324 | xvec = reg.getCoeff();
|
---|
2325 | }
|
---|
2326 | else{
|
---|
2327 | throw new IllegalArgumentException("This class does not handle underdetermined equations");
|
---|
2328 | }
|
---|
2329 | }
|
---|
2330 | return xvec;
|
---|
2331 | }
|
---|
2332 |
|
---|
2333 | //Supress printing of LU decompostion failure message
|
---|
2334 | public void supressErrorMessage(){
|
---|
2335 | this.supressErrorMessage = true;
|
---|
2336 | }
|
---|
2337 |
|
---|
2338 |
|
---|
2339 | // HESSENBERG MARTIX
|
---|
2340 |
|
---|
2341 | // Calculates the Hessenberg equivalant of this matrix
|
---|
2342 | public void hessenbergMatrix(){
|
---|
2343 |
|
---|
2344 | this.hessenberg = this.getArrayCopy();
|
---|
2345 | double pivot = 0.0D;
|
---|
2346 | int pivotIndex = 0;
|
---|
2347 | double hold = 0.0D;
|
---|
2348 |
|
---|
2349 | for(int i = 1; i<this.numberOfRows-1; i++){
|
---|
2350 | // identify pivot
|
---|
2351 | pivot = 0.0D;
|
---|
2352 | pivotIndex = i;
|
---|
2353 | for(int j=i; j<this.numberOfRows; j++){
|
---|
2354 | if(Math.abs(this.hessenberg[j][i-1])> Math.abs(pivot)){
|
---|
2355 | pivot = this.hessenberg[j][i-1];
|
---|
2356 | pivotIndex = j;
|
---|
2357 | }
|
---|
2358 | }
|
---|
2359 |
|
---|
2360 | // row and column interchange
|
---|
2361 | if(pivotIndex != i){
|
---|
2362 | for(int j = i-1; j<this.numberOfRows; j++){
|
---|
2363 | hold = this.hessenberg[pivotIndex][j];
|
---|
2364 | this.hessenberg[pivotIndex][j] = this.hessenberg[i][j];
|
---|
2365 | this.hessenberg[i][j] = hold;
|
---|
2366 | }
|
---|
2367 | for(int j = 0; j<this.numberOfRows; j++){
|
---|
2368 | hold = this.hessenberg[j][pivotIndex];
|
---|
2369 | this.hessenberg[j][pivotIndex] = this.hessenberg[j][i];
|
---|
2370 | this.hessenberg[j][i] = hold;
|
---|
2371 | }
|
---|
2372 |
|
---|
2373 | // elimination
|
---|
2374 | if(pivot!=0.0){
|
---|
2375 | for(int j=i+1; j<this.numberOfRows; j++){
|
---|
2376 | hold = this.hessenberg[j][i-1];
|
---|
2377 | if(hold!=0.0){
|
---|
2378 | hold /= pivot;
|
---|
2379 | this.hessenberg[j][i-1] = hold;
|
---|
2380 | for(int k=i; k<this.numberOfRows; k++){
|
---|
2381 | this.hessenberg[j][k] -= hold*this.hessenberg[i][k];
|
---|
2382 | }
|
---|
2383 | for(int k=0; k<this.numberOfRows; k++){
|
---|
2384 | this.hessenberg[k][i] += hold*this.hessenberg[k][j];
|
---|
2385 | }
|
---|
2386 | }
|
---|
2387 | }
|
---|
2388 | }
|
---|
2389 | }
|
---|
2390 | }
|
---|
2391 | for(int i = 2; i<this.numberOfRows; i++){
|
---|
2392 | for(int j = 0; j<i-1; j++){
|
---|
2393 | this.hessenberg[i][j] = 0.0;
|
---|
2394 | }
|
---|
2395 | }
|
---|
2396 | this.hessenbergDone = true;
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 | // return the Hessenberg equivalent
|
---|
2400 | public double[][] getHessenbergMatrix(){
|
---|
2401 | if(!hessenbergDone)this.hessenbergMatrix();
|
---|
2402 | return this.hessenberg;
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 |
|
---|
2406 | // EIGEN VALUES AND EIGEN VECTORS
|
---|
2407 | // For a discussion of eigen systems see
|
---|
2408 | // Numerical Recipes, The Art of Scientific Computing
|
---|
2409 | // by W H Press, S A Teukolsky, W T Vetterling & B P Flannery
|
---|
2410 | // Cambridge University Press, http://www.nr.com/
|
---|
2411 | // These methods follow their approach but modified to an object oriented language
|
---|
2412 |
|
---|
2413 | // Return eigen values as calculated
|
---|
2414 | public double[] getEigenValues(){
|
---|
2415 | if(!this.eigenDone)symmetricEigen();
|
---|
2416 | return this.eigenValues;
|
---|
2417 | }
|
---|
2418 |
|
---|
2419 | // Return eigen values in descending order
|
---|
2420 | public double[] getSortedEigenValues(){
|
---|
2421 | if(!this.eigenDone)symmetricEigen();
|
---|
2422 | return this.sortedEigenValues;
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 | // Return eigen vectors as calculated as columns
|
---|
2426 | // Each vector as a column
|
---|
2427 | public double[][] getEigenVectorsAsColumns(){
|
---|
2428 | if(!this.eigenDone)symmetricEigen();
|
---|
2429 | return this.eigenVector;
|
---|
2430 | }
|
---|
2431 | // Return eigen vectors as calculated as columns
|
---|
2432 | // Each vector as a column
|
---|
2433 | public double[][] getEigenVector(){
|
---|
2434 | if(!this.eigenDone)symmetricEigen();
|
---|
2435 | return this.eigenVector;
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 | // Return eigen vectors as calculated as rows
|
---|
2439 | // Each vector as a row
|
---|
2440 | public double[][] getEigenVectorsAsRows(){
|
---|
2441 | if(!this.eigenDone)symmetricEigen();
|
---|
2442 | double[][] ret = new double[this.numberOfRows][this.numberOfRows];
|
---|
2443 | for(int i=0; i<this.numberOfRows;i++){
|
---|
2444 | for(int j=0; j<this.numberOfRows;j++){
|
---|
2445 | ret[i][j] = this.eigenVector[j][i];
|
---|
2446 | }
|
---|
2447 | }
|
---|
2448 | return ret;
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | // Return eigen vectors reordered to match a descending order of eigen values
|
---|
2452 | // Each vector as a column
|
---|
2453 | public double[][] getSortedEigenVectorsAsColumns(){
|
---|
2454 | if(!this.eigenDone)symmetricEigen();
|
---|
2455 | return this.sortedEigenVector;
|
---|
2456 | }
|
---|
2457 |
|
---|
2458 | // Return eigen vectors reordered to match a descending order of eigen values
|
---|
2459 | // Each vector as a column
|
---|
2460 | public double[][] getSortedEigenVector(){
|
---|
2461 | if(!this.eigenDone)symmetricEigen();
|
---|
2462 | return this.sortedEigenVector;
|
---|
2463 | }
|
---|
2464 |
|
---|
2465 | // Return eigen vectors reordered to match a descending order of eigen values
|
---|
2466 | // Each vector as a row
|
---|
2467 | public double[][] getSortedEigenVectorsAsRows(){
|
---|
2468 | if(!this.eigenDone)symmetricEigen();
|
---|
2469 | double[][] ret = new double[this.numberOfRows][this.numberOfRows];
|
---|
2470 | for(int i=0; i<this.numberOfRows;i++){
|
---|
2471 | for(int j=0; j<this.numberOfRows;j++){
|
---|
2472 | ret[i][j] = this.sortedEigenVector[j][i];
|
---|
2473 | }
|
---|
2474 | }
|
---|
2475 | return ret;
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 | // Return the number of rotations used in the Jacobi procedure
|
---|
2479 | public int getNumberOfJacobiRotations(){
|
---|
2480 | return this.numberOfRotations;
|
---|
2481 | }
|
---|
2482 |
|
---|
2483 | // Returns the eigen values and eigen vectors of a symmetric matrix
|
---|
2484 | // Follows the approach of Numerical methods but adapted to object oriented programming (see above)
|
---|
2485 | private void symmetricEigen(){
|
---|
2486 |
|
---|
2487 | if(!this.isSymmetric())throw new IllegalArgumentException("matrix is not symmetric");
|
---|
2488 | double[][] amat = this.getArrayCopy();
|
---|
2489 | this.eigenVector = new double[this.numberOfRows][this.numberOfRows];
|
---|
2490 | this.eigenValues = new double[this.numberOfRows];
|
---|
2491 | double threshold = 0.0D;
|
---|
2492 | double cot2rotationAngle = 0.0D;
|
---|
2493 | double tanHalfRotationAngle = 0.0D;
|
---|
2494 | double offDiagonalSum = 0.0D;
|
---|
2495 | double scaledOffDiagonal = 0.0D;
|
---|
2496 | double sElement = 0.0D;
|
---|
2497 | double cElement = 0.0D;
|
---|
2498 | double sOverC = 0.0D;
|
---|
2499 | double vectorDifference = 0.0D;
|
---|
2500 | double[] holdingVector1 = new double[this.numberOfRows];
|
---|
2501 | double[] holdingVector2 = new double[this.numberOfRows];
|
---|
2502 |
|
---|
2503 | for(int p=0;p<this.numberOfRows;p++){
|
---|
2504 | for(int q=0;q<this.numberOfRows;q++) this.eigenVector[p][q] = 0.0;
|
---|
2505 | this.eigenVector[p][p] = 1.0;
|
---|
2506 | }
|
---|
2507 | for(int p=0;p<this.numberOfRows;p++){
|
---|
2508 | holdingVector1[p] = amat[p][p];
|
---|
2509 | this.eigenValues[p] = amat[p][p];
|
---|
2510 | holdingVector2[p] = 0.0;
|
---|
2511 | }
|
---|
2512 | this.numberOfRotations = 0;
|
---|
2513 | for(int i=1;i<=this.maximumJacobiIterations;i++){
|
---|
2514 | offDiagonalSum = 0.0;
|
---|
2515 | for(int p=0;p<this.numberOfRows-1;p++){
|
---|
2516 | for(int q=p+1;q<this.numberOfRows;q++){
|
---|
2517 | offDiagonalSum += Math.abs(amat[p][q]);
|
---|
2518 | }
|
---|
2519 | }
|
---|
2520 | if(offDiagonalSum==0.0){
|
---|
2521 | this.eigenDone = true;
|
---|
2522 | this.eigenSort();
|
---|
2523 | return;
|
---|
2524 | }
|
---|
2525 | if (i < 4){
|
---|
2526 | threshold = 0.2*offDiagonalSum/(this.numberOfRows*this.numberOfRows);
|
---|
2527 | }
|
---|
2528 | else{
|
---|
2529 | threshold = 0.0;
|
---|
2530 | }
|
---|
2531 | for(int p=0;p<this.numberOfRows-1;p++){
|
---|
2532 | for(int q=p+1;q<this.numberOfRows;q++){
|
---|
2533 | scaledOffDiagonal = 100.0*Math.abs(amat[p][q]);
|
---|
2534 | if (i > 4 && (Math.abs(this.eigenValues[p]) + scaledOffDiagonal) == Math.abs(this.eigenValues[p]) && (Math.abs(this.eigenValues[q]) + scaledOffDiagonal) == Math.abs(this.eigenValues[q])){
|
---|
2535 | amat[p][q] = 0.0;
|
---|
2536 | }
|
---|
2537 | else if(Math.abs(amat[p][q]) > threshold){
|
---|
2538 | vectorDifference = this.eigenValues[q] - this.eigenValues[p];
|
---|
2539 | if ((Math.abs(vectorDifference) + scaledOffDiagonal) == Math.abs(vectorDifference))
|
---|
2540 | sOverC = amat[p][q]/vectorDifference;
|
---|
2541 | else{
|
---|
2542 | cot2rotationAngle = 0.5*vectorDifference/amat[p][q];
|
---|
2543 | sOverC = 1.0/(Math.abs(cot2rotationAngle) + Math.sqrt(1.0 + cot2rotationAngle*cot2rotationAngle));
|
---|
2544 | if (cot2rotationAngle < 0.0) sOverC = -sOverC;
|
---|
2545 | }
|
---|
2546 | cElement = 1.0/Math.sqrt(1.0 + sOverC*sOverC);
|
---|
2547 | sElement = sOverC*cElement;
|
---|
2548 | tanHalfRotationAngle = sElement/(1.0 + cElement);
|
---|
2549 | vectorDifference = sOverC*amat[p][q];
|
---|
2550 | holdingVector2[p] -= vectorDifference;
|
---|
2551 | holdingVector2[q] += vectorDifference;
|
---|
2552 | this.eigenValues[p] -= vectorDifference;
|
---|
2553 | this.eigenValues[q] += vectorDifference;
|
---|
2554 | amat[p][q] = 0.0;
|
---|
2555 | for(int j=0;j<=p-1;j++) rotation(amat, tanHalfRotationAngle, sElement, j, p, j, q);
|
---|
2556 | for(int j=p+1;j<=q-1;j++) rotation(amat, tanHalfRotationAngle, sElement, p, j, j, q);
|
---|
2557 | for(int j=q+1;j<this.numberOfRows;j++) rotation(amat, tanHalfRotationAngle, sElement,p, j, q, j);
|
---|
2558 | for(int j=0;j<this.numberOfRows;j++) rotation(this.eigenVector, tanHalfRotationAngle, sElement, j, p, j, q);
|
---|
2559 | ++this.numberOfRotations;
|
---|
2560 | }
|
---|
2561 | }
|
---|
2562 | }
|
---|
2563 | for(int p=0;p<this.numberOfRows;p++){
|
---|
2564 | holdingVector1[p] += holdingVector2[p];
|
---|
2565 | this.eigenValues[p] = holdingVector1[p];
|
---|
2566 | holdingVector2[p] = 0.0;
|
---|
2567 | }
|
---|
2568 | }
|
---|
2569 | System.out.println("Maximum iterations, " + this.maximumJacobiIterations + ", reached - values at this point returned");
|
---|
2570 | this.eigenDone = true;
|
---|
2571 | this.eigenSort();
|
---|
2572 | }
|
---|
2573 |
|
---|
2574 | // matrix rotaion required by symmetricEigen
|
---|
2575 | private void rotation(double[][] a, double tau, double sElement, int i, int j, int k, int l){
|
---|
2576 | double aHold1 = a[i][j];
|
---|
2577 | double aHold2 = a[k][l];
|
---|
2578 | a[i][j] = aHold1 - sElement*(aHold2 + aHold1*tau);
|
---|
2579 | a[k][l] = aHold2 + sElement*(aHold1 - aHold2*tau);
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | // Sorts eigen values into descending order and rearranges eigen vecors to match
|
---|
2583 | // follows Numerical Recipes (see above)
|
---|
2584 | private void eigenSort(){
|
---|
2585 | int k = 0;
|
---|
2586 | double holdingElement;
|
---|
2587 | this.sortedEigenValues = Conv.copy(this.eigenValues);
|
---|
2588 | this.sortedEigenVector = Conv.copy(this.eigenVector);
|
---|
2589 | this.eigenIndices = new int[this.numberOfRows];
|
---|
2590 |
|
---|
2591 | for(int i=0; i<this.numberOfRows-1; i++){
|
---|
2592 | holdingElement = this.sortedEigenValues[i];
|
---|
2593 | k = i;
|
---|
2594 | for(int j=i+1; j<this.numberOfRows; j++){
|
---|
2595 | if (this.sortedEigenValues[j] >= holdingElement){
|
---|
2596 | holdingElement = this.sortedEigenValues[j];
|
---|
2597 | k = j;
|
---|
2598 | }
|
---|
2599 | }
|
---|
2600 | if (k != i){
|
---|
2601 | this.sortedEigenValues[k] = this.sortedEigenValues[i];
|
---|
2602 | this.sortedEigenValues[i] = holdingElement;
|
---|
2603 |
|
---|
2604 | for(int j=0; j<this.numberOfRows; j++){
|
---|
2605 | holdingElement = this.sortedEigenVector[j][i];
|
---|
2606 | this.sortedEigenVector[j][i] = this.sortedEigenVector[j][k];
|
---|
2607 | this.sortedEigenVector[j][k] = holdingElement;
|
---|
2608 | }
|
---|
2609 | }
|
---|
2610 | }
|
---|
2611 | this.eigenIndices = new int[this.numberOfRows];
|
---|
2612 | for(int i=0; i<this.numberOfRows; i++){
|
---|
2613 | boolean test = true;
|
---|
2614 | int j = 0;
|
---|
2615 | while(test){
|
---|
2616 | if(this.sortedEigenValues[i]==this.eigenValues[j]){
|
---|
2617 | this.eigenIndices[i] = j;
|
---|
2618 | test = false;
|
---|
2619 | }
|
---|
2620 | else{
|
---|
2621 | j++;
|
---|
2622 | }
|
---|
2623 | }
|
---|
2624 | }
|
---|
2625 | }
|
---|
2626 |
|
---|
2627 | // Return indices of the eigen values before sorting into descending order
|
---|
2628 | public int[] eigenValueIndices(){
|
---|
2629 | if(!this.eigenDone)symmetricEigen();
|
---|
2630 | return this.eigenIndices;
|
---|
2631 | }
|
---|
2632 |
|
---|
2633 |
|
---|
2634 | // Method not in java.lang.maths required in this Class
|
---|
2635 | // See Fmath.class for public versions of this method
|
---|
2636 | private static double hypot(double aa, double bb){
|
---|
2637 | double cc = 0.0D, ratio = 0.0D;
|
---|
2638 | double amod=Math.abs(aa);
|
---|
2639 | double bmod=Math.abs(bb);
|
---|
2640 |
|
---|
2641 | if(amod==0.0D){
|
---|
2642 | cc=bmod;
|
---|
2643 | }
|
---|
2644 | else{
|
---|
2645 | if(bmod==0.0D){
|
---|
2646 | cc=amod;
|
---|
2647 | }
|
---|
2648 | else{
|
---|
2649 | if(amod<=bmod){
|
---|
2650 | ratio=amod/bmod;
|
---|
2651 | cc=bmod*Math.sqrt(1.0D+ratio*ratio);
|
---|
2652 | }
|
---|
2653 | else{
|
---|
2654 | ratio=bmod/amod;
|
---|
2655 | cc=amod*Math.sqrt(1.0D+ratio*ratio);
|
---|
2656 | }
|
---|
2657 | }
|
---|
2658 | }
|
---|
2659 | return cc;
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 | }
|
---|
2663 |
|
---|
2664 |
|
---|
2665 |
|
---|
2666 |
|
---|