1 | /**********************************************************
|
---|
2 | *
|
---|
3 | * QuadriCubicSpline.java
|
---|
4 | *
|
---|
5 | * Class for performing an interpolation on the tabulated
|
---|
6 | * function y = f(x1,x2,x3,x4) using a natural quadricubic spline
|
---|
7 | * Assumes second derivatives at end points = 0 (natural spine)
|
---|
8 | *
|
---|
9 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
10 | *
|
---|
11 | * DATE: May 2003
|
---|
12 | * UPDATE July 2007, 4 December 2007, 21 September 2008, 12 October 2009, 31 October 2009
|
---|
13 | *
|
---|
14 | * DOCUMENTATION:
|
---|
15 | * See Michael Thomas Flanagan's Java library on-line web page:
|
---|
16 | * http://www.ee.ucl.ac.uk/~mflanaga/java/QuadriCubicSpline.html
|
---|
17 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
18 | *
|
---|
19 | * Copyright (c) 2003 - 2009 Michael Thomas Flanagan
|
---|
20 | *
|
---|
21 | * PERMISSION TO COPY:
|
---|
22 | *
|
---|
23 | * Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
|
---|
24 | * provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
|
---|
25 | * and associated documentation or publications.
|
---|
26 | *
|
---|
27 | * Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice, this list of conditions
|
---|
28 | * and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
|
---|
29 | *
|
---|
30 | * Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
|
---|
31 | * the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission from the Michael Thomas Flanagan:
|
---|
32 | *
|
---|
33 | * Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
|
---|
34 | * Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
|
---|
35 | * or its derivatives.
|
---|
36 | *
|
---|
37 | ***************************************************************************************/
|
---|
38 |
|
---|
39 | package agents.anac.y2015.agentBuyogV2.flanagan.interpolation;
|
---|
40 |
|
---|
41 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Fmath;
|
---|
42 |
|
---|
43 | public class QuadriCubicSpline{
|
---|
44 |
|
---|
45 | private int nPoints = 0; // no. of x1 tabulated points
|
---|
46 | private int mPoints = 0; // no. of x2 tabulated points
|
---|
47 | private int lPoints = 0; // no. of x3 tabulated points
|
---|
48 | private int kPoints = 0; // no. of x4 tabulated points
|
---|
49 |
|
---|
50 | private double[][][][] y = null; // y=f(x1,x2,x3,x4) tabulated function
|
---|
51 | private double[] x1 = null; // x1 in tabulated function f(x1,x2,x3,x4)
|
---|
52 | private double[] x2 = null; // x2 in tabulated function f(x1,x2,x3,x4)
|
---|
53 | private double[] x3 = null; // x3 in tabulated function f(x1,x2,x3,x4)
|
---|
54 | private double[] x4 = null; // x4 in tabulated function f(x1,x2,x3,x4)
|
---|
55 | private double[] xMin = new double[4]; // minimum values of x1, x2, x3 and x4
|
---|
56 | private double[] xMax = new double[4]; // maximum values of x1, x2, x3 and x4
|
---|
57 |
|
---|
58 | private TriCubicSpline[] tcsn = null; // nPoints array of TriCubicSpline instances
|
---|
59 | private CubicSpline csm = null; // CubicSpline instance
|
---|
60 | private double[][][][] d2ydx2inner = null; // inner matrix of second derivatives
|
---|
61 | private boolean derivCalculated = false; // = true when the called triicubic spline derivatives have been calculated
|
---|
62 | private boolean averageIdenticalAbscissae = false; // if true: the the ordinate values for identical abscissae are averaged
|
---|
63 | // If false: the abscissae values are separated by 0.001 of the total abscissae range;
|
---|
64 | private static double potentialRoundingError = 5e-15; // potential rounding error used in checking wheter a value lies within the interpolation bounds (static value)
|
---|
65 | private static boolean roundingCheck = true; // = true: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit (static value)
|
---|
66 |
|
---|
67 |
|
---|
68 | // Constructor
|
---|
69 | public QuadriCubicSpline(double[] x1, double[] x2, double[] x3, double[] x4, double[][][][] y){
|
---|
70 | this.nPoints=x1.length;
|
---|
71 | this.mPoints=x2.length;
|
---|
72 | this.lPoints=x3.length;
|
---|
73 | this.kPoints=x4.length;
|
---|
74 | if(this.nPoints!=y.length)throw new IllegalArgumentException("Arrays x1 and y-row are of different length " + this.nPoints + " " + y.length);
|
---|
75 | if(this.mPoints!=y[0].length)throw new IllegalArgumentException("Arrays x2 and y-column are of different length "+ this.mPoints + " " + y[0].length);
|
---|
76 | if(this.lPoints!=y[0][0].length)throw new IllegalArgumentException("Arrays x3 and y-column are of different length "+ this.mPoints + " " + y[0][0].length);
|
---|
77 | if(this.kPoints!=y[0][0][0].length)throw new IllegalArgumentException("Arrays x4 and y-column are of different length "+ this.kPoints + " " + y[0][0][0].length);
|
---|
78 | if(this.nPoints<3 || this.mPoints<3 || this.lPoints<3 || this.kPoints<3)throw new IllegalArgumentException("The tabulated 4D array must have a minimum size of 3 X 3 X 3 X 3");
|
---|
79 |
|
---|
80 | this.csm = new CubicSpline(this.nPoints);
|
---|
81 | this.tcsn = TriCubicSpline.oneDarray(this.nPoints, this.mPoints, this.lPoints, this.kPoints);
|
---|
82 | this.x1 = new double[this.nPoints];
|
---|
83 | this.x2 = new double[this.mPoints];
|
---|
84 | this.x3 = new double[this.lPoints];
|
---|
85 | this.x4 = new double[this.kPoints];
|
---|
86 |
|
---|
87 | this.y = new double[this.nPoints][this.mPoints][this.lPoints][this.kPoints];
|
---|
88 | this.d2ydx2inner = new double[this.nPoints][this.mPoints][this.lPoints][this.kPoints];
|
---|
89 | for(int i=0; i<this.nPoints; i++){
|
---|
90 | this.x1[i]=x1[i];
|
---|
91 | }
|
---|
92 | this.xMin[0] = Fmath.minimum(this.x1);
|
---|
93 | this.xMax[0] = Fmath.maximum(this.x1);
|
---|
94 |
|
---|
95 | for(int j=0; j<this.mPoints; j++){
|
---|
96 | this.x2[j]=x2[j];
|
---|
97 | }
|
---|
98 | this.xMin[1] = Fmath.minimum(this.x2);
|
---|
99 | this.xMax[1] = Fmath.maximum(this.x2);
|
---|
100 |
|
---|
101 | for(int j=0; j<this.lPoints; j++){
|
---|
102 | this.x3[j]=x3[j];
|
---|
103 | }
|
---|
104 | this.xMin[2] = Fmath.minimum(this.x3);
|
---|
105 | this.xMax[2] = Fmath.maximum(this.x3);
|
---|
106 |
|
---|
107 | for(int j=0; j<this.kPoints; j++){
|
---|
108 | this.x4[j]=x4[j];
|
---|
109 | }
|
---|
110 | this.xMin[3] = Fmath.minimum(this.x4);
|
---|
111 | this.xMax[3] = Fmath.maximum(this.x4);
|
---|
112 |
|
---|
113 | for(int i =0; i<this.nPoints; i++){
|
---|
114 | for(int j=0; j<this.mPoints; j++){
|
---|
115 | for(int k=0; k<this.lPoints; k++){
|
---|
116 | for(int l=0; l<this.kPoints; l++){
|
---|
117 | this.y[i][j][k][l]=y[i][j][k][l];
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | double[][][] yTempml = new double[this.mPoints][this.lPoints][this.kPoints];
|
---|
124 | for(int i=0; i<this.nPoints; i++){
|
---|
125 | for(int j=0; j<this.mPoints; j++){
|
---|
126 | for(int k=0; k<this.lPoints; k++){
|
---|
127 | for(int l=0; l<this.kPoints; l++){
|
---|
128 | yTempml[j][k][l]=y[i][j][k][l];
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 | this.tcsn[i].resetData(x2,x3,x4,yTempml);
|
---|
133 | d2ydx2inner[i] = this.tcsn[i].getDeriv();
|
---|
134 | }
|
---|
135 | double[] yTempm = new double[nPoints];
|
---|
136 | this.derivCalculated = true;
|
---|
137 | }
|
---|
138 |
|
---|
139 | // METHODS
|
---|
140 |
|
---|
141 | // Reset rounding error check option
|
---|
142 | // Default option: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit
|
---|
143 | // This method causes this check to be ignored and an exception to be thrown if any point lies outside the interpolation bounds
|
---|
144 | public static void noRoundingErrorCheck(){
|
---|
145 | QuadriCubicSpline.roundingCheck = false;
|
---|
146 | TriCubicSpline.noRoundingErrorCheck();
|
---|
147 | BiCubicSpline.noRoundingErrorCheck();
|
---|
148 | CubicSpline.noRoundingErrorCheck();
|
---|
149 | }
|
---|
150 |
|
---|
151 | // Reset potential rounding error value
|
---|
152 | // Default option: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit
|
---|
153 | // The default value for the potential rounding error is 5e-15*times the 10^exponent of the value outside the bounds
|
---|
154 | // This method allows the 5e-15 to be reset
|
---|
155 | public static void potentialRoundingError(double potentialRoundingError){
|
---|
156 | QuadriCubicSpline.potentialRoundingError = potentialRoundingError;
|
---|
157 | TriCubicSpline.potentialRoundingError(potentialRoundingError);
|
---|
158 | BiCubicSpline.potentialRoundingError(potentialRoundingError);
|
---|
159 | CubicSpline.potentialRoundingError(potentialRoundingError);
|
---|
160 | }
|
---|
161 |
|
---|
162 | // Reset the default handing of identical abscissae with different ordinates
|
---|
163 | // from the default option of separating the two relevant abscissae by 0.001 of the range
|
---|
164 | // to avraging the relevant ordinates
|
---|
165 | public void averageIdenticalAbscissae(){
|
---|
166 | this.averageIdenticalAbscissae = true;
|
---|
167 | for(int i=0; i<this.tcsn.length; i++)this.tcsn[i].averageIdenticalAbscissae();
|
---|
168 | this.csm.averageIdenticalAbscissae();
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Get minimum limits
|
---|
172 | public double[] getXmin(){
|
---|
173 | return this.xMin;
|
---|
174 | }
|
---|
175 |
|
---|
176 | // Get maximum limits
|
---|
177 | public double[] getXmax(){
|
---|
178 | return this.xMax;
|
---|
179 | }
|
---|
180 |
|
---|
181 | // Get limits to x
|
---|
182 | public double[] getLimits(){
|
---|
183 | double[] limits = {xMin[0], xMax[0], xMin[1], xMax[1], xMin[2], xMax[2], xMin[3], xMax[3]};
|
---|
184 | return limits;
|
---|
185 | }
|
---|
186 |
|
---|
187 | // Display limits to x
|
---|
188 | public void displayLimits(){
|
---|
189 | System.out.println(" ");
|
---|
190 | for(int i=0; i<2; i++){
|
---|
191 | System.out.println("The limits to the x array " + i + " are " + xMin[i] + " and " + xMax[i]);
|
---|
192 | }
|
---|
193 | System.out.println(" ");
|
---|
194 | }
|
---|
195 |
|
---|
196 | // Returns an interpolated value of y for values of x1, x2, x3 and x4
|
---|
197 | // from a tabulated function y=f(x1,x2,x3,x4)
|
---|
198 | public double interpolate(double xx1, double xx2, double xx3, double xx4){
|
---|
199 |
|
---|
200 |
|
---|
201 | double[] yTempm = new double[nPoints];
|
---|
202 | for (int i=0;i<nPoints;i++){
|
---|
203 | yTempm[i]=this.tcsn[i].interpolate(xx2, xx3, xx4);
|
---|
204 | }
|
---|
205 | this.csm.resetData(x1,yTempm);
|
---|
206 | return this.csm.interpolate(xx1);
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | // Get inner matrix of derivatives
|
---|
211 | // Primarily used by PolyCubicSpline
|
---|
212 | public double[][][][] getDeriv(){
|
---|
213 | return this.d2ydx2inner;
|
---|
214 | }
|
---|
215 |
|
---|
216 | // Set inner matrix of derivatives
|
---|
217 | // Primarily used by PolyCubicSpline
|
---|
218 | public void setDeriv(double[][][][] d2ydx2){
|
---|
219 | this.d2ydx2inner = d2ydx2;
|
---|
220 | this.derivCalculated = true;
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|