source: src/main/java/agents/anac/y2015/agentBuyogV2/flanagan/interpolation/BiCubicSplineFirstDerivative.java

Last change on this file was 127, checked in by Wouter Pasman, 6 years ago

#41 ROLL BACK of rev.126 . So this version is equal to rev. 125

File size: 8.4 KB
Line 
1/**********************************************************
2*
3* BiCubicSplineFirstDerivative.java
4*
5* Class for performing an interpolation on the tabulated
6* function y = f(x1,x2) using a natural bicubic spline
7* Assumes second derivatives at end points = 0 (natural spine)
8* Calculates the interpolated value of y and
9* the first derivatives of y with respect to both x1 and x2
10*
11* WRITTEN BY: Dr Michael Thomas Flanagan
12*
13* DATE: January 2010 - modified version of BiCubicSpline (2003 - 2008)
14* UPDATE:
15*
16* DOCUMENTATION:
17* See Michael Thomas Flanagan's Java library on-line web page:
18* http://www.ee.ucl.ac.uk/~mflanaga/java/BiCubicSplineFirstDerivative.html
19* http://www.ee.ucl.ac.uk/~mflanaga/java/
20*
21* Copyright (c) 2003 - 2010 Michael Thomas Flanagan
22*
23* PERMISSION TO COPY:
24*
25* Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
26* provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
27* and associated documentation or publications.
28*
29* Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice, this list of conditions
30* and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
31*
32* Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
33* the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission from the Michael Thomas Flanagan:
34*
35* Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
36* Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
37* or its derivatives.
38*
39***************************************************************************************/
40
41package agents.anac.y2015.agentBuyogV2.flanagan.interpolation;
42
43import agents.anac.y2015.agentBuyogV2.flanagan.math.Fmath;
44
45public class BiCubicSplineFirstDerivative{
46
47 private int nPoints = 0; // no. of x1 tabulated points
48 private int mPoints = 0; // no. of x2 tabulated points
49 private double[][] y = null; // y=f(x1,x2) tabulated function
50 private double[][] yTranspose = null; // transposed tabulated function, y=f(x2,x1)
51 private double[] x1 = null; // x1 in tabulated function f(x1,x2)
52 private double[] x2 = null; // x2 in tabulated function f(x1,x2)
53 private double[] xMin = new double[2]; // minimum values of x1 and x2
54 private double[] xMax = new double[2]; // maximum values of x1 and x2
55 private BiCubicSplinePartialDerivative cspdY = null; // BiCubicSplinePartialDerivative instance for entered data
56 private BiCubicSplinePartialDerivative cspdYt = null; // BiCubicSplinePartialDerivative instance for transposed data
57 private boolean averageIdenticalAbscissae = false; // if true: the the ordinate values for identical abscissae are averaged
58 // if false: the abscissae values are separated by 0.001 of the total abscissae range;
59 private static double potentialRoundingError = 5e-15; // potential rounding error used in checking wheter a value lies within the interpolation bounds (static value)
60 private static boolean roundingCheck = true; // = true: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit (static value)
61
62
63 // Constructor
64 // Constructor with data arrays initialised to arrays x and y
65 public BiCubicSplineFirstDerivative(double[] x1, double[] x2, double[][] y){
66
67
68 this.nPoints=x1.length;
69 this.mPoints=x2.length;
70 if(this.nPoints!=y.length)throw new IllegalArgumentException("Arrays x1 and y-row are of different length " + this.nPoints + " " + y.length);
71 if(this.mPoints!=y[0].length)throw new IllegalArgumentException("Arrays x2 and y-column are of different length "+ this.mPoints + " " + y[0].length);
72 if(this.nPoints<3 || this.mPoints<3)throw new IllegalArgumentException("The data matrix must have a minimum size of 3 X 3");
73
74 this.x1 = new double[this.nPoints];
75 this.x2 = new double[this.mPoints];
76 this.y = new double[this.nPoints][this.mPoints];
77 this.yTranspose = new double[this.mPoints][this.nPoints];
78 for(int i=0; i<this.nPoints; i++){
79 this.x1[i]=x1[i];
80 }
81 this.xMin[0] = Fmath.minimum(this.x1);
82 this.xMax[0] = Fmath.maximum(this.x1);
83 for(int j=0; j<this.mPoints; j++){
84 this.x2[j]=x2[j];
85 }
86 this.xMin[1] = Fmath.minimum(this.x2);
87 this.xMax[1] = Fmath.maximum(this.x2);
88 for(int i =0; i<this.nPoints; i++){
89 for(int j=0; j<this.mPoints; j++){
90 this.y[i][j]=y[i][j];
91 }
92 }
93
94 // Transpose
95 for(int i =0; i<this.nPoints; i++){
96 for(int j=0; j<this.mPoints; j++){
97 this.yTranspose[j][i] = this.y[i][j];
98 }
99 }
100
101 // Instantiate CubicSplinePartialDerivative for both y and yTranspose
102 this.cspdY = new BiCubicSplinePartialDerivative(x1, x2, y);
103 this.cspdYt = new BiCubicSplinePartialDerivative(x2, x1, yTranspose);
104
105 }
106
107 // METHODS
108
109 // Reset rounding error check option
110 // Default option: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit
111 // This method causes this check to be ignored and an exception to be thrown if any point lies outside the interpolation bounds
112 public static void noRoundingErrorCheck(){
113 BiCubicSplineFirstDerivative.roundingCheck = false;
114 CubicSpline.noRoundingErrorCheck();
115 }
116
117 // Reset potential rounding error value
118 // Default option: points outside the interpolation bounds by less than the potential rounding error rounded to the bounds limit
119 // The default value for the potential rounding error is 5e-15*times the 10^exponent of the value outside the bounds
120 // This method allows the 5e-15 to be reset
121 public static void potentialRoundingError(double potentialRoundingError){
122 BiCubicSplineFirstDerivative.potentialRoundingError = potentialRoundingError;
123 CubicSpline.potentialRoundingError(potentialRoundingError);
124 }
125
126 // Reset the default handing of identical abscissae with different ordinates
127 // from the default option of separating the two relevant abscissae by 0.001 of the range
128 // to avraging the relevant ordinates
129 public void averageIdenticalAbscissae(){
130 this.averageIdenticalAbscissae = true;
131 this.cspdY.averageIdenticalAbscissae();
132 this.cspdYt.averageIdenticalAbscissae();
133 }
134
135 // Get minimum limits
136 public double[] getXmin(){
137 return this.xMin;
138 }
139
140 // Get maximum limits
141 public double[] getXmax(){
142 return this.xMax;
143 }
144
145 // Get limits to x
146 public double[] getLimits(){
147 double[] limits = {xMin[0], xMax[0], xMin[1], xMax[1]};
148 return limits;
149 }
150
151 // Display limits to x
152 public void displayLimits(){
153 System.out.println(" ");
154 for(int i=0; i<2; i++){
155 System.out.println("The limits to the x array " + i + " are " + xMin[i] + " and " + xMax[i]);
156 }
157 System.out.println(" ");
158 }
159
160
161 // Returns an interpolated value of y for a value of x
162 // from a tabulated function y=f(x1,x2)
163 public double[] interpolate(double xx1, double xx2){
164
165 double[] interpY = cspdY.interpolate(xx1, xx2);
166 double[] interpYt = cspdYt.interpolate(xx2, xx1);
167 double averageY = (interpY[0] + interpYt[0])/2.0;
168 double[] ret = {averageY, interpY[1], interpYt[1], interpY[0], interpYt[0]};
169
170 return ret;
171 }
172}
173
Note: See TracBrowser for help on using the repository browser.