1 | /*
|
---|
2 | * Class RungeKutta
|
---|
3 | * requires interfaces DerivFunction and DerivnFunction
|
---|
4 | *
|
---|
5 | * Contains the methods for the Runge-Kutta procedures for solving
|
---|
6 | * single or solving sets of ordinary differential equations (ODEs)
|
---|
7 | * [draws heavily on the approach adopted in Numerical Recipes
|
---|
8 | * (C language version)http://www.nr.com]
|
---|
9 | *
|
---|
10 | * A single ODE is supplied by means of an interface,
|
---|
11 | * DerivFunction
|
---|
12 | * A set of ODEs is supplied by means of an interface,
|
---|
13 | * DerivnFunction
|
---|
14 | *
|
---|
15 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
16 | *
|
---|
17 | * DATE: February 2002
|
---|
18 | * UPDATES: 22 June 2003, April 2004,
|
---|
19 | * 15 September 2006 (to incorporate improvements suggested by Klaus Benary [Klaus.Benary@gede.de])
|
---|
20 | * 11 April 2007, 25 April 2007, 4 July 2008, 26-31 January 2010
|
---|
21 | *
|
---|
22 | * DOCUMENTATION:
|
---|
23 | * See Michael Thomas Flanagan's Java library on-line web page:
|
---|
24 | * http://www.ee.ucl.ac.uk/~mflanaga/java/RungeKutta.html
|
---|
25 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
26 | *
|
---|
27 | * Copyright (c) 2002 - 2010
|
---|
28 | *
|
---|
29 | * PERMISSION TO COPY:
|
---|
30 | * Permission to use, copy and modify this software and its documentation for
|
---|
31 | * NON-COMMERCIAL purposes is granted, without fee, provided that an acknowledgement
|
---|
32 | * to the author, Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies.
|
---|
33 | *
|
---|
34 | * Dr Michael Thomas Flanagan makes no representations about the suitability
|
---|
35 | * or fitness of the software for any or for a particular purpose.
|
---|
36 | * Michael Thomas Flanagan shall not be liable for any damages suffered
|
---|
37 | * as a result of using, modifying or distributing this software or its derivatives.
|
---|
38 | *
|
---|
39 | ***************************************************************************************/
|
---|
40 |
|
---|
41 | package agents.anac.y2015.agentBuyogV2.flanagan.integration;
|
---|
42 |
|
---|
43 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Conv;
|
---|
44 |
|
---|
45 |
|
---|
46 | // Class for Runge-Kutta solution of ordinary differential equations
|
---|
47 | public class RungeKutta{
|
---|
48 |
|
---|
49 | private double x0 = Double.NaN; // initial value of x
|
---|
50 | private double xn = Double.NaN;; // final value of x
|
---|
51 | private double y0 = Double.NaN; // initial value of y; single ODE
|
---|
52 | private double[] yy0 = null; // initial values of y; multiple ODEs
|
---|
53 | private int nODE = 0; // number of ODEs
|
---|
54 | private double step = Double.NaN; // step size
|
---|
55 |
|
---|
56 | private double relTol = 1.0e-5; // tolerance multiplicative factor in adaptive step methods
|
---|
57 | private double absTol = 1.0e-3; // tolerance additive factor to ensure non-zeto tolerance in adaptive step methods
|
---|
58 | private int maxIter = -1; // maximum iterations allowed in adaptive step methods
|
---|
59 | private int nIter = 0; // number of iterations taken
|
---|
60 | private static int nStepsMultiplier = 1000; // multiplied by number of steps to give internally calculated
|
---|
61 | // maximum allowed iterations in adaptive step methods
|
---|
62 |
|
---|
63 | private static double safetyFactor = 0.9; // safety factor for Runge Kutta Fehlberg and CashKarp tolerance checks as
|
---|
64 | // error estimations are uncertain
|
---|
65 | private static double incrementFactor = -0.2; // factor used in calculating a step size increment in Fehlberg and CashKarp procedures
|
---|
66 | private static double decrementFactor = -0.25; // factor used in calculating a step size decrement in Fehlberg and CashKarp procedures
|
---|
67 |
|
---|
68 | public RungeKutta(){
|
---|
69 | }
|
---|
70 |
|
---|
71 | public void setInitialValueOfX(double x0){
|
---|
72 | this.x0 = x0;
|
---|
73 | }
|
---|
74 |
|
---|
75 | public void setFinalValueOfX(double xn){
|
---|
76 | this.xn = xn;
|
---|
77 | }
|
---|
78 |
|
---|
79 | public void setInitialValueOfY(double y0){
|
---|
80 | this.setInitialValuesOfY(y0);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public void setInitialValueOfY(double[] yy0){
|
---|
84 | this.setInitialValuesOfY(yy0);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public void setInitialValuesOfY(double y0){
|
---|
88 | this.y0 = y0;
|
---|
89 | this.yy0 = new double[1];
|
---|
90 | this.yy0[0] = y0;
|
---|
91 | this.nODE = 1;
|
---|
92 | }
|
---|
93 |
|
---|
94 | public void setInitialValuesOfY(double[] yy0){
|
---|
95 | this.yy0 = yy0;
|
---|
96 | this.nODE = yy0.length;
|
---|
97 | if(this.nODE==1)this.y0 = yy0[0];
|
---|
98 | }
|
---|
99 |
|
---|
100 | public void setStepSize(double step){
|
---|
101 | this.step = step;
|
---|
102 | }
|
---|
103 |
|
---|
104 | public void setToleranceScalingFactor(double relTol){
|
---|
105 | this.relTol = relTol;
|
---|
106 | }
|
---|
107 |
|
---|
108 | public void setToleranceAdditionFactor(double absTol){
|
---|
109 | this.absTol = absTol;
|
---|
110 | }
|
---|
111 |
|
---|
112 | public void setMaximumIterations(int maxIter){
|
---|
113 | this.maxIter = maxIter;
|
---|
114 | }
|
---|
115 |
|
---|
116 | public int getNumberOfIterations(){
|
---|
117 | return this.nIter;
|
---|
118 | }
|
---|
119 |
|
---|
120 | public static void resetNstepsMultiplier(int multiplier){
|
---|
121 | RungeKutta.nStepsMultiplier = multiplier;
|
---|
122 | }
|
---|
123 |
|
---|
124 | // Fourth order Runge-Kutta for a single ordinary differential equation
|
---|
125 | // Non-static method
|
---|
126 | public double fourthOrder(DerivFunction g){
|
---|
127 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
128 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
129 | if(Double.isNaN(this.y0))throw new IllegalArgumentException("No initial y value has been entered");
|
---|
130 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
131 |
|
---|
132 | double k1 = 0.0D, k2 = 0.0D, k3 = 0.0D, k4 = 0.0D;
|
---|
133 | double x = 0.0D, y = this.y0;
|
---|
134 |
|
---|
135 | // Calculate nsteps
|
---|
136 | double ns = (this.xn - this.x0)/this.step;
|
---|
137 | ns = Math.rint(ns);
|
---|
138 | int nsteps = (int) ns; // number of steps
|
---|
139 | this.nIter = nsteps;
|
---|
140 | double stepUsed = (this.xn - this.x0)/ns;
|
---|
141 |
|
---|
142 | for(int i=0; i<nsteps; i++){
|
---|
143 | x = this.x0 + i*stepUsed;
|
---|
144 |
|
---|
145 | k1 = stepUsed*g.deriv(x, y);
|
---|
146 | k2 = stepUsed*g.deriv(x + stepUsed/2, y + k1/2);
|
---|
147 | k3 = stepUsed*g.deriv(x + stepUsed/2, y + k2/2);
|
---|
148 | k4 = stepUsed*g.deriv(x + stepUsed, y + k3);
|
---|
149 |
|
---|
150 | y += k1/6 + k2/3 + k3/3 + k4/6;
|
---|
151 | }
|
---|
152 | return y;
|
---|
153 | }
|
---|
154 |
|
---|
155 |
|
---|
156 | // Fourth order Runge-Kutta for a single ordinary differential equation (ODE)
|
---|
157 | // Static method
|
---|
158 | public static double fourthOrder(DerivFunction g, double x0, double y0, double xn, double h){
|
---|
159 |
|
---|
160 | RungeKutta rk = new RungeKutta();
|
---|
161 | rk.setInitialValueOfX(x0);
|
---|
162 | rk.setFinalValueOfX(xn);
|
---|
163 | rk.setInitialValueOfY(y0);
|
---|
164 | rk.setStepSize(h);
|
---|
165 |
|
---|
166 | return rk.fourthOrder(g);
|
---|
167 | }
|
---|
168 |
|
---|
169 | // Fourth order Runge-Kutta for n (nODE) ordinary differential equations (ODE)
|
---|
170 | // Non-static method
|
---|
171 | public double[] fourthOrder(DerivnFunction g){
|
---|
172 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
173 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
174 | if(this.yy0==null)throw new IllegalArgumentException("No initial y values have been entered");
|
---|
175 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
176 |
|
---|
177 | double[] k1 =new double[this.nODE];
|
---|
178 | double[] k2 =new double[this.nODE];
|
---|
179 | double[] k3 =new double[this.nODE];
|
---|
180 | double[] k4 =new double[this.nODE];
|
---|
181 | double[] y =new double[this.nODE];
|
---|
182 | double[] yd =new double[this.nODE];
|
---|
183 | double[] dydx =new double[this.nODE];
|
---|
184 | double x = 0.0D;
|
---|
185 |
|
---|
186 | // Calculate nsteps
|
---|
187 | double ns = (this.xn - this.x0)/this.step;
|
---|
188 | ns = Math.rint(ns);
|
---|
189 | int nsteps = (int) ns;
|
---|
190 | this.nIter = nsteps;
|
---|
191 | double stepUsed = (this.xn - this.x0)/ns;
|
---|
192 |
|
---|
193 | // initialise
|
---|
194 | for(int i=0; i<this.nODE; i++)y[i] = this.yy0[i];
|
---|
195 |
|
---|
196 | // iteration over allowed steps
|
---|
197 | for(int j=0; j<nsteps; j++){
|
---|
198 | x = this.x0 + j*stepUsed;
|
---|
199 | dydx = g.derivn(x, y);
|
---|
200 | for(int i=0; i<this.nODE; i++)k1[i] = stepUsed*dydx[i];
|
---|
201 |
|
---|
202 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + k1[i]/2;
|
---|
203 | dydx = g.derivn(x + stepUsed/2, yd);
|
---|
204 | for(int i=0; i<this.nODE; i++)k2[i] = stepUsed*dydx[i];
|
---|
205 |
|
---|
206 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + k2[i]/2;
|
---|
207 | dydx = g.derivn(x + stepUsed/2, yd);
|
---|
208 | for(int i=0; i<this.nODE; i++)k3[i] = stepUsed*dydx[i];
|
---|
209 |
|
---|
210 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + k3[i];
|
---|
211 | dydx = g.derivn(x + stepUsed, yd);
|
---|
212 | for(int i=0; i<this.nODE; i++)k4[i] = stepUsed*dydx[i];
|
---|
213 |
|
---|
214 | for(int i=0; i<this.nODE; i++)y[i] += k1[i]/6 + k2[i]/3 + k3[i]/3 + k4[i]/6;
|
---|
215 |
|
---|
216 | }
|
---|
217 | return y;
|
---|
218 | }
|
---|
219 |
|
---|
220 | // Fourth order Runge-Kutta for n ordinary differential equations (ODE)
|
---|
221 | // Static method
|
---|
222 | public static double[] fourthOrder(DerivnFunction g, double x0, double[] y0, double xn, double h){
|
---|
223 |
|
---|
224 | RungeKutta rk = new RungeKutta();
|
---|
225 | rk.setInitialValueOfX(x0);
|
---|
226 | rk.setFinalValueOfX(xn);
|
---|
227 | rk.setInitialValuesOfY(y0);
|
---|
228 | rk.setStepSize(h);
|
---|
229 |
|
---|
230 | return rk.fourthOrder(g);
|
---|
231 | }
|
---|
232 |
|
---|
233 |
|
---|
234 | // Runge-Kutta-Cash-Karp for a single ordinary differential equation (ODE)
|
---|
235 | // Non-static method
|
---|
236 | public double cashKarp(DerivFunction g){
|
---|
237 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
238 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
239 | if(Double.isNaN(this.y0))throw new IllegalArgumentException("No initial y value has been entered");
|
---|
240 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
241 |
|
---|
242 | double k1 = 0.0D, k2 = 0.0D, k3 = 0.0D, k4 = 0.0D, k5 = 0.0D, k6 = 0.0D;
|
---|
243 | double y = this.y0, y5 = 0.0D, y6 = 0.0D, yd = 0.0D, dydx = 0.0D;
|
---|
244 | double x = this.x0, err = 0.0D, delta = 0.0D, tol = 0.0D;
|
---|
245 | int counter = 0;
|
---|
246 |
|
---|
247 | if(this.maxIter==-1){
|
---|
248 | this.maxIter = (int)(RungeKutta.nStepsMultiplier*(this.xn - this.x0)/this.step);
|
---|
249 | }
|
---|
250 | double stepUsed = this.step;
|
---|
251 |
|
---|
252 |
|
---|
253 | while(x<this.xn){
|
---|
254 | counter++;
|
---|
255 | if(counter>this.maxIter)throw new ArithmeticException("Maximum number of iterations exceeded");
|
---|
256 | dydx = g.deriv(x, y);
|
---|
257 | k1 = stepUsed*dydx;
|
---|
258 |
|
---|
259 | yd = y + k1/5.0;
|
---|
260 | dydx = g.deriv(x + stepUsed/5.0, yd);
|
---|
261 | k2 = stepUsed*dydx;
|
---|
262 |
|
---|
263 | yd = y + (3.0*k1 + 9.0*k2)/40.0;
|
---|
264 | dydx = g.deriv(x + 3.0*stepUsed/10.0, yd);
|
---|
265 | k3 = stepUsed*dydx;
|
---|
266 |
|
---|
267 | yd = y + (3.0*k1 - 9.0*k2 + 12.0*k3)/10.0;
|
---|
268 | dydx = g.deriv(x + 3.0*stepUsed/5.0, yd);
|
---|
269 | k4 = stepUsed*dydx;
|
---|
270 |
|
---|
271 | yd = y -11.0*k1/54.0 + 5.0*k2/2.0 - 70.0*k3/27.0 + 35.0*k4/27.0;
|
---|
272 | dydx = g.deriv(x + stepUsed, yd);
|
---|
273 | k5 = stepUsed*dydx;
|
---|
274 |
|
---|
275 | yd = y + 1631.0*k1/55296.0 + 175.0*k2/512.0 + 575.0*k3/13824.0 + 44275.0*k4/110592.0 + 253.0*k5/4096.0;
|
---|
276 | dydx = g.deriv(x + 7.0*stepUsed/8.0, yd);
|
---|
277 | k6 = stepUsed*dydx;
|
---|
278 |
|
---|
279 | y5 = y + 2825.0*k1/27648.0 + 18575.0*k3/48384.0 + 13525.0*k4/55296.0 + 277.0*k5/14336.0 + k6/4.0;
|
---|
280 | y6 = y + 37*k1/378.0 + 250.0*k3/621.0 + 125.0*k4/594.0 + 512.0*k6/1771.0;
|
---|
281 | err = Math.abs(y6 - y5);
|
---|
282 | tol= err/(Math.abs(y5)*this.relTol + this.absTol);
|
---|
283 | if(tol<=1.0){
|
---|
284 | x += stepUsed;
|
---|
285 | delta = RungeKutta.safetyFactor*Math.pow(tol, RungeKutta.incrementFactor);
|
---|
286 | if(delta>4.0){
|
---|
287 | stepUsed*= 4.0;
|
---|
288 | }else if(delta >1.0){
|
---|
289 | stepUsed*=delta;
|
---|
290 | }
|
---|
291 | if(x+stepUsed > this.xn)stepUsed = this.xn - x;
|
---|
292 | y = y5;
|
---|
293 | }
|
---|
294 | else{
|
---|
295 | delta = RungeKutta.safetyFactor*Math.pow(tol,RungeKutta.decrementFactor);
|
---|
296 | if(delta < 0.1){
|
---|
297 | stepUsed *= 0.1;
|
---|
298 | }
|
---|
299 | else{
|
---|
300 | stepUsed *= delta;
|
---|
301 | }
|
---|
302 | }
|
---|
303 | }
|
---|
304 | this.nIter = counter;
|
---|
305 | return y;
|
---|
306 | }
|
---|
307 |
|
---|
308 | // Runge-Kutta-Cash-Karp for a single ordinary differential equation (ODE)
|
---|
309 | // Static method
|
---|
310 | public static double cashKarp(DerivFunction g, double x0, double y0, double xn, double h, double absTol, double relTol, int maxIter){
|
---|
311 |
|
---|
312 | RungeKutta rk = new RungeKutta();
|
---|
313 | rk.setInitialValueOfX(x0);
|
---|
314 | rk.setFinalValueOfX(xn);
|
---|
315 | rk.setInitialValueOfY(y0);
|
---|
316 | rk.setStepSize(h);
|
---|
317 | rk.setToleranceScalingFactor(relTol);
|
---|
318 | rk.setToleranceAdditionFactor(absTol);
|
---|
319 | rk.setMaximumIterations(maxIter);
|
---|
320 |
|
---|
321 | return rk.cashKarp(g);
|
---|
322 | }
|
---|
323 |
|
---|
324 | // Runge-Kutta-Cash-Karp for a single ordinary differential equation (ODE)
|
---|
325 | // Static method
|
---|
326 | // maximum iteration default option
|
---|
327 | public static double cashKarp(DerivFunction g, double x0, double y0, double xn, double h, double absTol, double relTol){
|
---|
328 |
|
---|
329 | int maxIter = (int)(RungeKutta.nStepsMultiplier*(xn - x0)/h);
|
---|
330 |
|
---|
331 | RungeKutta rk = new RungeKutta();
|
---|
332 | rk.setInitialValueOfX(x0);
|
---|
333 | rk.setFinalValueOfX(xn);
|
---|
334 | rk.setInitialValueOfY(y0);
|
---|
335 | rk.setStepSize(h);
|
---|
336 | rk.setToleranceScalingFactor(relTol);
|
---|
337 | rk.setToleranceAdditionFactor(absTol);
|
---|
338 | rk.setMaximumIterations(maxIter);
|
---|
339 |
|
---|
340 | return rk.cashKarp(g);
|
---|
341 | }
|
---|
342 |
|
---|
343 | // Runge-Kutta-Cash-Karp for n ordinary differential equations (ODEs)
|
---|
344 | // Non-static method
|
---|
345 | public double[] cashKarp(DerivnFunction g){
|
---|
346 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
347 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
348 | if(this.yy0==null)throw new IllegalArgumentException("No initial y values have been entered");
|
---|
349 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
350 |
|
---|
351 | double[] k1 =new double[this.nODE];
|
---|
352 | double[] k2 =new double[this.nODE];
|
---|
353 | double[] k3 =new double[this.nODE];
|
---|
354 | double[] k4 =new double[this.nODE];
|
---|
355 | double[] k5 =new double[this.nODE];
|
---|
356 | double[] k6 =new double[this.nODE];
|
---|
357 | double[] y =new double[this.nODE];
|
---|
358 | double[] y6 =new double[this.nODE];
|
---|
359 | double[] y5 =new double[this.nODE];
|
---|
360 | double[] yd =new double[this.nODE];
|
---|
361 | double[] dydx =new double[this.nODE];
|
---|
362 |
|
---|
363 | double err = 0.0D, maxerr = 0.0D, delta = 0.0D, tol = 1.0D;
|
---|
364 | int counter = 0;
|
---|
365 |
|
---|
366 | // initialise
|
---|
367 | for(int i=0; i<this.nODE; i++)y[i] = this.yy0[i];
|
---|
368 | double x = this.x0;
|
---|
369 | if(this.maxIter==-1){
|
---|
370 | this.maxIter = (int)(RungeKutta.nStepsMultiplier*(this.xn - this.x0)/this.step);
|
---|
371 | }
|
---|
372 | double stepUsed = this.step;
|
---|
373 |
|
---|
374 | while(x<this.xn){
|
---|
375 | counter++;
|
---|
376 | if(counter>this.maxIter)throw new ArithmeticException("Maximum number of iterations exceeded");
|
---|
377 |
|
---|
378 | dydx = g.derivn(x, y);
|
---|
379 | for(int i=0; i<this.nODE; i++)k1[i] = stepUsed*dydx[i];
|
---|
380 |
|
---|
381 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + k1[i]/5.0;
|
---|
382 | dydx = g.derivn(x + stepUsed/5.0, yd);
|
---|
383 | for(int i=0; i<this.nODE; i++)k2[i] = stepUsed*dydx[i];
|
---|
384 |
|
---|
385 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + (3.0*k1[i] + 9.0*k2[i])/40.0;
|
---|
386 | dydx = g.derivn(x + 3.0*stepUsed/10.0, yd);
|
---|
387 | for(int i=0; i<this.nODE; i++)k3[i] = stepUsed*dydx[i];
|
---|
388 |
|
---|
389 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + (3.0*k1[i] - 9.0*k2[i] + 12.0*k3[i])/10.0;
|
---|
390 | dydx = g.derivn(x + 3.0*stepUsed/5.0, yd);
|
---|
391 | for(int i=0; i<this.nODE; i++)k4[i] = stepUsed*dydx[i];
|
---|
392 |
|
---|
393 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] -11.0*k1[i]/54.0 + 5.0*k2[i]/2.0 - 70.0*k3[i]/27.0 + 35.0*k4[i]/27.0;
|
---|
394 | dydx = g.derivn(x + stepUsed, yd);
|
---|
395 | for(int i=0; i<this.nODE; i++)k5[i] = stepUsed*dydx[i];
|
---|
396 |
|
---|
397 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + 1631.0*k1[i]/55296.0 + 175.0*k2[i]/512.0 + 575.0*k3[i]/13824.0 + 44275.0*k4[i]/110592.0 + 253.0*k5[i]/4096.0;
|
---|
398 | dydx = g.derivn(x + 7.0*stepUsed/8.0, yd);
|
---|
399 | for(int i=0; i<this.nODE; i++)k6[i] = stepUsed*dydx[i];
|
---|
400 |
|
---|
401 | maxerr=0.0D;
|
---|
402 | for(int i=0; i<this.nODE; i++){
|
---|
403 | y5[i] = y[i] + 2825.0*k1[i]/27648.0 + 18575.0*k3[i]/48384.0 + 13525.0*k4[i]/55296.0 + 277.0*k5[i]/14336.0 + k6[i]/4.0;
|
---|
404 | y6[i] = y[i] + 37*k1[i]/378.0 + 250.0*k3[i]/621.0 + 125.0*k4[i]/594.0 + 512.0*k6[i]/1771.0;
|
---|
405 | err = Math.abs(y6[i] - y5[i]);
|
---|
406 | tol= Math.abs(y5[i])*this.relTol + this.absTol;
|
---|
407 | maxerr = Math.max(maxerr,err/tol);
|
---|
408 | }
|
---|
409 | if(maxerr<=1.0D){
|
---|
410 | x += stepUsed;
|
---|
411 | delta = RungeKutta.safetyFactor*Math.pow(maxerr, RungeKutta.incrementFactor);
|
---|
412 | if(delta>4.0){
|
---|
413 | stepUsed*= 4.0;
|
---|
414 | }
|
---|
415 | else if (delta > 1.0){
|
---|
416 | stepUsed*=delta;
|
---|
417 | }
|
---|
418 | if(x+stepUsed > this.xn)stepUsed = this.xn-x;
|
---|
419 | y = Conv.copy(y5);
|
---|
420 | }
|
---|
421 | else{
|
---|
422 | delta = RungeKutta.safetyFactor*Math.pow(maxerr,RungeKutta.decrementFactor);
|
---|
423 | if(delta < 0.1D){
|
---|
424 | stepUsed *= 0.1;
|
---|
425 | }
|
---|
426 | else{
|
---|
427 | stepUsed *= delta;
|
---|
428 | }
|
---|
429 | }
|
---|
430 | }
|
---|
431 | this.nIter = counter;
|
---|
432 | return y;
|
---|
433 | }
|
---|
434 |
|
---|
435 | // Runge-Kutta-Cash-Karp for n ordinary differential equations (ODEs)
|
---|
436 | // Static method
|
---|
437 | public static double[] cashKarp(DerivnFunction g, double x0, double[] y0, double xn, double h, double absTol, double relTol, int maxIter){
|
---|
438 |
|
---|
439 | RungeKutta rk = new RungeKutta();
|
---|
440 | rk.setInitialValueOfX(x0);
|
---|
441 | rk.setFinalValueOfX(xn);
|
---|
442 | rk.setInitialValuesOfY(y0);
|
---|
443 | rk.setStepSize(h);
|
---|
444 | rk.setToleranceScalingFactor(relTol);
|
---|
445 | rk.setToleranceAdditionFactor(absTol);
|
---|
446 | rk.setMaximumIterations(maxIter);
|
---|
447 |
|
---|
448 | return rk.cashKarp(g);
|
---|
449 | }
|
---|
450 |
|
---|
451 | public static double[] cashKarp(DerivnFunction g, double x0, double[] y0, double xn, double h, double absTol, double relTol){
|
---|
452 |
|
---|
453 | double nsteps = (xn - x0)/h;
|
---|
454 | int maxIter = (int) nsteps*RungeKutta.nStepsMultiplier;
|
---|
455 |
|
---|
456 | return cashKarp(g, x0, y0, xn, h, absTol, relTol, maxIter);
|
---|
457 | }
|
---|
458 |
|
---|
459 | // Runge-Kutta-Fehlberg for a single ordinary differential equation (ODE)
|
---|
460 | // Non-static method
|
---|
461 | public double fehlberg(DerivFunction g){
|
---|
462 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
463 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
464 | if(Double.isNaN(this.y0))throw new IllegalArgumentException("No initial y value has been entered");
|
---|
465 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
466 |
|
---|
467 | double k1 = 0.0D, k2 = 0.0D, k3 = 0.0D, k4 = 0.0D, k5 = 0.0D, k6 = 0.0D;
|
---|
468 | double x = this.x0, y = this.y0, y5 = 0.0D, y6 = 0.0D, err = 0.0D, delta = 0.0D, tol = 0.0D;
|
---|
469 | int counter = 0;
|
---|
470 |
|
---|
471 | if(this.maxIter==-1){
|
---|
472 | this.maxIter = (int)(RungeKutta.nStepsMultiplier*(this.xn - this.x0)/this.step);
|
---|
473 | }
|
---|
474 | double stepUsed = this.step;
|
---|
475 |
|
---|
476 | while(x<this.xn){
|
---|
477 | counter++;
|
---|
478 | if(counter>this.maxIter)throw new ArithmeticException("Maximum number of iterations exceeded");
|
---|
479 | k1 = stepUsed*g.deriv(x, y);
|
---|
480 | k2 = stepUsed*g.deriv(x + stepUsed/4.0, y + k1/4.0);
|
---|
481 | k3 = stepUsed*g.deriv(x + 3.0*stepUsed/8.0, y + (3.0*k1 + 9.0*k2)/32.0);
|
---|
482 | k4 = stepUsed*g.deriv(x + 12.0*stepUsed/13.0, y + (1932.0*k1 - 7200.0*k2 + 7296.0*k3)/2197.0);
|
---|
483 | k5 = stepUsed*g.deriv(x + stepUsed, y + 439.0*k1/216.0 - 8.0*k2 + 3680.0*k3/513.0 - 845*k4/4104.0);
|
---|
484 | k6 = stepUsed*g.deriv(x + 0.5*stepUsed, y - 8.0*k1/27.0 + 2.0*k2 - 3544.0*k3/2565.0 + 1859.0*k4/4104.0 - 11.0*k5/40.0);
|
---|
485 |
|
---|
486 | y5 = y + 25.0*k1/216.0 + 1408.0*k3/2565.0 + 2197.0*k4/4104.0 - k5/5.0;
|
---|
487 | y6 = y + 16.0*k1/135.0 + 6656.0*k3/12825.0 + 28561.0*k4/56430.0 - 9.0*k5/50.0 + 2.0*k6/55.0;
|
---|
488 | err = Math.abs(y6 - y5);
|
---|
489 | tol= err/(Math.abs(y5)*this.relTol + this.absTol);
|
---|
490 | if(tol<=1.0){
|
---|
491 | x += stepUsed;
|
---|
492 | delta = RungeKutta.safetyFactor*Math.pow(tol, RungeKutta.incrementFactor);
|
---|
493 | if(delta>4.0){
|
---|
494 | stepUsed*= 4.0;
|
---|
495 | }else if(delta <1.0){
|
---|
496 | stepUsed*=delta;
|
---|
497 | }
|
---|
498 | if(x+stepUsed > this.xn)stepUsed = this.xn-x;
|
---|
499 | y = y5;
|
---|
500 | }
|
---|
501 | else{
|
---|
502 | delta = RungeKutta.safetyFactor*Math.pow(tol,RungeKutta.decrementFactor);
|
---|
503 | if(delta < 0.1){
|
---|
504 | stepUsed *= 0.1;
|
---|
505 | }
|
---|
506 | else{
|
---|
507 | stepUsed *= delta;
|
---|
508 | }
|
---|
509 | }
|
---|
510 | }
|
---|
511 | this.nIter = counter;
|
---|
512 | return y;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // Runge-Kutta-Fehlberg for a single ordinary differential equation (ODE)
|
---|
516 | // Static method
|
---|
517 | public static double fehlberg(DerivFunction g, double x0, double y0, double xn, double h, double absTol, double relTol, int maxIter){
|
---|
518 | RungeKutta rk = new RungeKutta();
|
---|
519 | rk.setInitialValueOfX(x0);
|
---|
520 | rk.setFinalValueOfX(xn);
|
---|
521 | rk.setInitialValueOfY(y0);
|
---|
522 | rk.setStepSize(h);
|
---|
523 | rk.setToleranceScalingFactor(relTol);
|
---|
524 | rk.setToleranceAdditionFactor(absTol);
|
---|
525 | rk.setMaximumIterations(maxIter);
|
---|
526 |
|
---|
527 | return rk.fehlberg(g);
|
---|
528 | }
|
---|
529 |
|
---|
530 | // Runge-Kutta-Fehlberg for a single ordinary differential equation (ODE)
|
---|
531 | // Maximum iteration default option
|
---|
532 | // Static method
|
---|
533 | public static double fehlberg(DerivFunction g, double x0, double y0, double xn, double h, double absTol, double relTol){
|
---|
534 |
|
---|
535 | double nsteps = (xn - x0)/h;
|
---|
536 | int maxIter = (int) nsteps*RungeKutta.nStepsMultiplier;
|
---|
537 |
|
---|
538 | return fehlberg(g, x0, y0, xn, h, absTol, relTol, maxIter);
|
---|
539 | }
|
---|
540 |
|
---|
541 | // Runge-Kutta-Fehlberg for n ordinary differential equations (ODEs)
|
---|
542 | // Non-static method
|
---|
543 | public double[] fehlberg(DerivnFunction g){
|
---|
544 | if(Double.isNaN(this.x0))throw new IllegalArgumentException("No initial x value has been entered");
|
---|
545 | if(Double.isNaN(this.xn))throw new IllegalArgumentException("No final x value has been entered");
|
---|
546 | if(this.yy0==null)throw new IllegalArgumentException("No initial y values have been entered");
|
---|
547 | if(Double.isNaN(this.step))throw new IllegalArgumentException("No step size has been entered");
|
---|
548 |
|
---|
549 | double[] k1 =new double[this.nODE];
|
---|
550 | double[] k2 =new double[this.nODE];
|
---|
551 | double[] k3 =new double[this.nODE];
|
---|
552 | double[] k4 =new double[this.nODE];
|
---|
553 | double[] k5 =new double[this.nODE];
|
---|
554 | double[] k6 =new double[this.nODE];
|
---|
555 | double[] y =new double[this.nODE];
|
---|
556 | double[] y6 =new double[this.nODE];
|
---|
557 | double[] y5 =new double[this.nODE];
|
---|
558 | double[] yd =new double[this.nODE];
|
---|
559 | double[] dydx =new double[this.nODE];
|
---|
560 |
|
---|
561 | double err = 0.0D, maxerr = 0.0D, delta = 0.0D, tol = 1.0D;
|
---|
562 | int counter = 0;
|
---|
563 |
|
---|
564 | // initialise
|
---|
565 | for(int i=0; i<this.nODE; i++)y[i] = this.yy0[i];
|
---|
566 | double x = this.x0;
|
---|
567 | if(this.maxIter==-1){
|
---|
568 | this.maxIter = (int)(RungeKutta.nStepsMultiplier*(this.xn - this.x0)/this.step);
|
---|
569 | }
|
---|
570 | double stepUsed = this.step;
|
---|
571 |
|
---|
572 | while(x<this.xn){
|
---|
573 | counter++;
|
---|
574 | if(counter>maxIter)throw new ArithmeticException("Maximum number of iterations exceeded");
|
---|
575 | dydx = g.derivn(x, y);
|
---|
576 | for(int i=0; i<this.nODE; i++)k1[i] = stepUsed*dydx[i];
|
---|
577 |
|
---|
578 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + k1[i]/4.0;
|
---|
579 | dydx = g.derivn(x + stepUsed/4.0, yd);
|
---|
580 | for(int i=0; i<this.nODE; i++)k2[i] = stepUsed*dydx[i];
|
---|
581 |
|
---|
582 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + (3.0*k1[i] + 9.0*k2[i])/32.0;
|
---|
583 | dydx = g.derivn(x + 3.0*stepUsed/8.0, yd);
|
---|
584 | for(int i=0; i<this.nODE; i++)k3[i] = stepUsed*dydx[i];
|
---|
585 |
|
---|
586 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + (1932.0*k1[i] - 7200.0*k2[i] + 7296.0*k3[i])/2197.0;
|
---|
587 | dydx = g.derivn(x + 12.0*stepUsed/13.0, yd);
|
---|
588 | for(int i=0; i<this.nODE; i++)k4[i] = stepUsed*dydx[i];
|
---|
589 |
|
---|
590 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] + 439.0*k1[i]/216.0 - 8.0*k2[i] + 3680.0*k3[i]/513.0 - 845*k4[i]/4104.0;
|
---|
591 | dydx = g.derivn(x + stepUsed, yd);
|
---|
592 | for(int i=0; i<this.nODE; i++)k5[i] = stepUsed*dydx[i];
|
---|
593 |
|
---|
594 | for(int i=0; i<this.nODE; i++)yd[i] = y[i] - 8.0*k1[i]/27.0 + 2.0*k2[i] - 3544.0*k3[i]/2565.0 + 1859.0*k4[i]/4104.0 - 11.0*k5[i]/40.0;
|
---|
595 | dydx = g.derivn(x + 0.5*stepUsed, yd);
|
---|
596 | for(int i=0; i<this.nODE; i++)k6[i] = stepUsed*dydx[i];
|
---|
597 |
|
---|
598 | maxerr=0.0D;
|
---|
599 | for(int i=0; i<this.nODE; i++){
|
---|
600 | y5[i] = y[i] + 25.0*k1[i]/216.0 + 1408.0*k3[i]/2565.0 + 2197.0*k4[i]/4104.0 - k5[i]/5.0;
|
---|
601 | y6[i] = y[i] + 16.0*k1[i]/135.0 + 6656.0*k3[i]/12825.0 + 28561.0*k4[i]/56430.0 - 9.0*k5[i]/50.0 + 2.0*k6[i]/55.0;
|
---|
602 | err = Math.abs(y6[i] - y5[i]);
|
---|
603 | tol= y5[i]*this.relTol + this.absTol;
|
---|
604 | maxerr = Math.max(maxerr,err/tol);
|
---|
605 | }
|
---|
606 |
|
---|
607 | if(maxerr<=1.0D){
|
---|
608 | x += stepUsed;
|
---|
609 | delta = RungeKutta.safetyFactor*Math.pow(maxerr, RungeKutta.incrementFactor);
|
---|
610 | if(delta>4.0){
|
---|
611 | stepUsed*= 4.0;
|
---|
612 | }
|
---|
613 | else if(delta > 1.0){
|
---|
614 | stepUsed*=delta;
|
---|
615 | }
|
---|
616 | if(x+stepUsed > this.xn)stepUsed = this.xn-x;
|
---|
617 | y = Conv.copy(y5);
|
---|
618 | }
|
---|
619 | else{
|
---|
620 | delta = RungeKutta.safetyFactor*Math.pow(maxerr,RungeKutta.decrementFactor);
|
---|
621 | if(delta < 0.1){
|
---|
622 | stepUsed *= 0.1;
|
---|
623 | }
|
---|
624 | else{
|
---|
625 | stepUsed *= delta;
|
---|
626 | }
|
---|
627 | }
|
---|
628 | }
|
---|
629 | this.nIter = counter;
|
---|
630 | return y;
|
---|
631 | }
|
---|
632 |
|
---|
633 | // Runge-Kutta-Fehlberg for n (this.nODE) ordinary differential equations (ODEs)
|
---|
634 | // Static method
|
---|
635 | public static double[] fehlberg(DerivnFunction g, double x0, double[] y0, double xn, double h, double absTol, double relTol, int maxIter){
|
---|
636 |
|
---|
637 | RungeKutta rk = new RungeKutta();
|
---|
638 | rk.setInitialValueOfX(x0);
|
---|
639 | rk.setFinalValueOfX(xn);
|
---|
640 | rk.setInitialValuesOfY(y0);
|
---|
641 | rk.setStepSize(h);
|
---|
642 | rk.setToleranceScalingFactor(relTol);
|
---|
643 | rk.setToleranceAdditionFactor(absTol);
|
---|
644 | rk.setMaximumIterations(maxIter);
|
---|
645 |
|
---|
646 | return rk.fehlberg(g);
|
---|
647 | }
|
---|
648 |
|
---|
649 | // Runge-Kutta-Fehlberg for n (this.nODE) ordinary differential equations (ODEs)
|
---|
650 | // Static method
|
---|
651 | // maximum iteration default option
|
---|
652 | public static double[] fehlberg(DerivnFunction g, double x0, double[] y0, double xn, double h, double absTol, double relTol){
|
---|
653 |
|
---|
654 | double nsteps = (xn - x0)/h;
|
---|
655 | int maxIter = (int) nsteps*RungeKutta.nStepsMultiplier;
|
---|
656 |
|
---|
657 | return fehlberg(g, x0, y0, xn, h, absTol, relTol, maxIter);
|
---|
658 | }
|
---|
659 | }
|
---|
660 |
|
---|
661 |
|
---|
662 |
|
---|
663 |
|
---|