1 | /* Class BlackBox
|
---|
2 | *
|
---|
3 | * This class contains the constructor to create an instance of
|
---|
4 | * a generalised BlackBox with a single input, single output
|
---|
5 | * and a gain. It contins the methods for obtaining the
|
---|
6 | * transfer function in the s-domain and the z-domain.
|
---|
7 | *
|
---|
8 | * This class is the superclass for several sub-classes,
|
---|
9 | * e.g. Prop (P controller), PropDeriv (PD controller),
|
---|
10 | * PropInt (PI controller), PropIntDeriv (PID controller),
|
---|
11 | * FirstOrder, SecondOrder, AtoD (ADC), DtoA (DAC),
|
---|
12 | * ZeroOrderHold, DelayLine, OpenLoop (Open Loop Path),
|
---|
13 | * of use in control engineering.
|
---|
14 | *
|
---|
15 | * Author: Michael Thomas Flanagan.
|
---|
16 | *
|
---|
17 | * Created: August 2002
|
---|
18 | * Updated: 17 July 2003, 18 May 2005, 6 April 2008, 6 October 2009, 30 October 2009,
|
---|
19 | * 2-9 November 2009, 20 January 2010, 23-25 May 2010, 3 June 2010, 18 January 2011
|
---|
20 | *
|
---|
21 | *
|
---|
22 | * DOCUMENTATION:
|
---|
23 | * See Michael T Flanagan's JAVA library on-line web page:
|
---|
24 | * http://www.ee.ucl.ac.uk/~mflanaga/java/BlackBox.html
|
---|
25 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
26 | *
|
---|
27 | * Copyright (c) 2002 - 2011 Michael Thomas Flanagan
|
---|
28 | *
|
---|
29 | * PERMISSION TO COPY:
|
---|
30 | *
|
---|
31 | * Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
|
---|
32 | * provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
|
---|
33 | * and associated documentation or publications.
|
---|
34 | *
|
---|
35 | * Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice, this list of conditions
|
---|
36 | * and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
|
---|
37 | *
|
---|
38 | * Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
|
---|
39 | * the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission from the Michael Thomas Flanagan:
|
---|
40 | *
|
---|
41 | * Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
|
---|
42 | * Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
|
---|
43 | * or its derivatives.
|
---|
44 | *
|
---|
45 | ***************************************************************************************/
|
---|
46 |
|
---|
47 |
|
---|
48 | package agents.anac.y2015.agentBuyogV2.flanagan.control;
|
---|
49 |
|
---|
50 | import agents.anac.y2015.agentBuyogV2.flanagan.complex.*;
|
---|
51 | import agents.anac.y2015.agentBuyogV2.flanagan.interpolation.CubicSpline;
|
---|
52 | import agents.anac.y2015.agentBuyogV2.flanagan.io.Db;
|
---|
53 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Conv;
|
---|
54 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Fmath;
|
---|
55 | import agents.anac.y2015.agentBuyogV2.flanagan.plot.Plot;
|
---|
56 | import agents.anac.y2015.agentBuyogV2.flanagan.plot.PlotGraph;
|
---|
57 | import agents.anac.y2015.agentBuyogV2.flanagan.plot.PlotPoleZero;
|
---|
58 |
|
---|
59 |
|
---|
60 | public class BlackBox{
|
---|
61 |
|
---|
62 | protected int sampLen = 0; // Length of array of stored inputs, outputs and time
|
---|
63 | protected double[] inputT = null; // Array of input signal in the time domain
|
---|
64 | protected double[] outputT = null; // Array of output signal in the time domain
|
---|
65 | protected double[] time = null; // Array of time at which inputs were taken (seconds)
|
---|
66 | protected double forgetFactor = 1.0D; // Forgetting factor, e.g. in exponential forgetting of error values
|
---|
67 | protected double deltaT = 0.0D; // Sampling time (seconds)
|
---|
68 | protected double sampFreq = 0.0D; // Sampling frequency (Hz)
|
---|
69 | protected Complex inputS = new Complex(); // Input signal in the s-domain
|
---|
70 | protected Complex outputS = new Complex(); // Output signal in the s-domain
|
---|
71 | protected Complex sValue = new Complex(); // Laplacian s
|
---|
72 | protected Complex zValue = new Complex(); // z-transform z
|
---|
73 | protected ComplexPoly sNumer = new ComplexPoly(1.0D); // Transfer function numerator in the s-domain
|
---|
74 | protected ComplexPoly sDenom = new ComplexPoly(1.0D); // Transfer function denominator in the s-domain
|
---|
75 | protected ComplexPoly zNumer = new ComplexPoly(1.0D); // Transfer function numerator in the z-domain
|
---|
76 | protected ComplexPoly zDenom = new ComplexPoly(1.0D); // Transfer function denominator in the z-domain
|
---|
77 | protected boolean sNumerSet = false; // = true when numerator entered
|
---|
78 | protected boolean sDenomSet = false; // = true when denominator entered
|
---|
79 | protected Complex sNumerScaleFactor = Complex.plusOne();// s-domain numerator/(product of s - zeros)
|
---|
80 | protected Complex sDenomScaleFactor = Complex.plusOne();// s-domain denominator/(product of s - poles)
|
---|
81 | protected Complex sNumerWorkingFactor = Complex.plusOne();// s-domain numerator/(product of s - zeros) at that point in the program
|
---|
82 | protected Complex sDenomWorkingFactor = Complex.plusOne();// s-domain denominator/(product of s - poles) at that point in the program
|
---|
83 | protected Complex[] sPoles = null; // Poles in the s-domain
|
---|
84 | protected Complex[] sZeros = null; // Zeros in the s-domain
|
---|
85 | protected Complex[] zPoles = null; // Poles in the z-domain
|
---|
86 | protected Complex[] zZeros = null; // Zeros in the z-domain
|
---|
87 | protected int sNumerDeg = 0; // Degree of transfer function numerator in the s-domain
|
---|
88 | protected int sDenomDeg = 0; // Degree of transfer function denominator in the s-domain
|
---|
89 | protected int zNumerDeg = 0; // Degree of transfer function numerator in the z-domain
|
---|
90 | protected int zDenomDeg = 0; // Degree of transfer function denominator in the z-domain
|
---|
91 | protected double deadTime = 0.0D; // Time delay between an input and the matching output [in s-domain = exp(-s.deadTime)]
|
---|
92 | protected int orderPade = 2; // Order(1 to 4)of the pade approximation for exp(-sT)
|
---|
93 | // default option = 2
|
---|
94 | protected ComplexPoly sNumerPade = new ComplexPoly(1.0D); // Transfer function numerator in the s-domain including Pade approximation
|
---|
95 | protected ComplexPoly sDenomPade = new ComplexPoly(1.0D); // Transfer function denominator in the s-domain including Pade approximation
|
---|
96 | protected Complex[] sPolesPade = null; // Poles in the s-domain including Pade approximation
|
---|
97 | protected Complex[] sZerosPade = null; // Zeros in the s-domain including Pade approximation
|
---|
98 | protected int sNumerDegPade = 0; // Degree of transfer function numerator in the s-domain including Pade approximation
|
---|
99 | protected int sDenomDegPade = 0; // Degree of transfer function denominator in the s-domain including Pade approximation
|
---|
100 | protected boolean maptozero = true; // if true infinity s zeros map to zero
|
---|
101 | // if false infinity s zeros map to minus one
|
---|
102 | protected boolean padeAdded = false; // if true Pade poles and zeros added
|
---|
103 | // if false No Pade poles and zeros added
|
---|
104 | protected double integrationSum=0.0D; // Stored integration sum in numerical integrations
|
---|
105 | protected int integMethod = 1; // numerical integration method
|
---|
106 | // = 0 Trapezium Rule [default option]
|
---|
107 | // = 1 Backward Rectangular Rule
|
---|
108 | // = 2 Foreward Rectangular Rule
|
---|
109 | protected int ztransMethod = 0; // z trasform method
|
---|
110 | // = 0 s -> z mapping (ad hoc procedure) from the continuous time domain erived s domain functions
|
---|
111 | // = 1 specific z transform, e.g. of a difference equation
|
---|
112 | protected String name = "BlackBox"; // Superclass or subclass name, e.g. pid, pd, firstorder.
|
---|
113 | // user may rename an instance of the superclass or subclass
|
---|
114 | protected String fixedName = "BlackBox"; // Super class or subclass permanent name, e.g. pid, pd, firstorder.
|
---|
115 | // user must NOT change fixedName in any instance of the superclass or subclass
|
---|
116 | // fixedName is used as an identifier in classes such as OpenPath, ClosedLoop
|
---|
117 | protected int nPlotPoints = 400; // number of points used tp lot response curves, e.g. step input response curve
|
---|
118 |
|
---|
119 | protected String[] subclassName = {"BlackBox", "OpenLoop", "ClosedLoop", "Prop", "PropDeriv", "PropInt", "PropIntDeriv", "FirstOrder", "SecondOrder", "Compensator", "LowPassPassive", "HighPassPassive", "Transducer", "DelayLine", "ZeroOrderHold", "AtoD", "DtoA"};
|
---|
120 | protected int nSubclasses = subclassName.length; // number of subclasses plus superclass
|
---|
121 | protected int subclassIndex = 0; // = 0 BlackBox
|
---|
122 | // = 1 OpenLoop
|
---|
123 | // = 2 ClosedLoop
|
---|
124 | // = 3 Prop
|
---|
125 | // = 4 PropDeriv
|
---|
126 | // = 5 PropInt
|
---|
127 | // = 6 PropIntDeriv
|
---|
128 | // = 7 FirstOrder
|
---|
129 | // = 8 SecondOrder
|
---|
130 | // = 9 Compensator
|
---|
131 | // = 10 LowPassPassive
|
---|
132 | // = 11 HighPassPassive
|
---|
133 | // = 12 Transducer
|
---|
134 | // = 13 DelayLine
|
---|
135 | // = 14 ZeroOrderHold
|
---|
136 | // = 15 AtoD
|
---|
137 | // = 16 DtoA
|
---|
138 |
|
---|
139 | // Constructor
|
---|
140 | public BlackBox(){
|
---|
141 | }
|
---|
142 |
|
---|
143 | // Constructor with fixedName supplied
|
---|
144 | // for use by subclasses
|
---|
145 | public BlackBox(String name){
|
---|
146 | this.name = name;
|
---|
147 | this.fixedName = name;
|
---|
148 | this.setSubclassIndex();
|
---|
149 | }
|
---|
150 |
|
---|
151 | // Set subclass index
|
---|
152 | protected void setSubclassIndex(){
|
---|
153 | boolean test = true;
|
---|
154 | int i = 0;
|
---|
155 | while(test){
|
---|
156 | if(this.fixedName.equals(subclassName[i])){
|
---|
157 | this.subclassIndex = i;
|
---|
158 | test = false;
|
---|
159 | }
|
---|
160 | else{
|
---|
161 | i++;
|
---|
162 | if(i>=this.nSubclasses){
|
---|
163 | System.out.println("Subclass name, " + this.fixedName + ", not recognised as a recorder subclass");
|
---|
164 | System.out.println("Subclass, " + this.fixedName + ", handled as BlackBox");
|
---|
165 | this.subclassIndex = i;
|
---|
166 | test = false;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | }
|
---|
171 |
|
---|
172 | // Set the transfer function numerator in the s-domain
|
---|
173 | // Enter as an array of real (double) coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
174 | public void setSnumer(double[] coeff){
|
---|
175 | this.sNumerDeg = coeff.length-1;
|
---|
176 | this.sNumer = new ComplexPoly(coeff);
|
---|
177 | this.sNumerSet = true;
|
---|
178 | this.calcPolesZerosS();
|
---|
179 | this.addDeadTimeExtras();
|
---|
180 | }
|
---|
181 |
|
---|
182 | // Method to set extra terms to s-domain numerator and denominator and
|
---|
183 | // to calculate extra zeros and poles if the dead time is not zero.
|
---|
184 | protected void addDeadTimeExtras()
|
---|
185 | {
|
---|
186 | this.sNumerDegPade = this.sNumerDeg;
|
---|
187 | this.sNumerPade = this.sNumer.copy();
|
---|
188 | this.sDenomDegPade = this.sDenomDeg;
|
---|
189 | this.sDenomPade = this.sDenom.copy();
|
---|
190 |
|
---|
191 | if(this.deadTime==0.0D){
|
---|
192 | this.transferPolesZeros();
|
---|
193 | }
|
---|
194 | else{
|
---|
195 | this.pade();
|
---|
196 | }
|
---|
197 |
|
---|
198 | }
|
---|
199 |
|
---|
200 | // Set the transfer function numerator in the s-domain
|
---|
201 | // Enter as an array of Complex coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
202 | public void setSnumer(Complex[] coeff){
|
---|
203 | this.sNumerDeg = coeff.length-1;
|
---|
204 | this.sNumer = new ComplexPoly(coeff);
|
---|
205 | this.sNumerSet = true;
|
---|
206 | this.calcPolesZerosS();
|
---|
207 | this.addDeadTimeExtras();
|
---|
208 |
|
---|
209 |
|
---|
210 | }
|
---|
211 |
|
---|
212 | // Set the transfer function numerator in the s-domain
|
---|
213 | // Enter as an existing instance of ComplexPoly
|
---|
214 | public void setSnumer(ComplexPoly coeff){
|
---|
215 | this.sNumerDeg = coeff.getDeg();
|
---|
216 | this.sNumer = ComplexPoly.copy(coeff);
|
---|
217 | this.sNumerSet = true;
|
---|
218 | this.calcPolesZerosS();
|
---|
219 | this.addDeadTimeExtras();
|
---|
220 | }
|
---|
221 |
|
---|
222 | // Set the transfer function denominator in the s-domain
|
---|
223 | // Enter as an array of real (double) coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
224 | public void setSdenom(double[] coeff){
|
---|
225 | this.sDenomDeg = coeff.length-1;
|
---|
226 | this.sDenom = new ComplexPoly(coeff);
|
---|
227 | this.sDenomSet = true;
|
---|
228 | this.calcPolesZerosS();
|
---|
229 | this.addDeadTimeExtras();
|
---|
230 | }
|
---|
231 |
|
---|
232 | // Set the transfer function denomonator in the s-domain
|
---|
233 | // Enter as an array of Complex coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
234 | public void setSdenom(Complex[] coeff){
|
---|
235 | this.sDenomDeg = coeff.length-1;
|
---|
236 | this.sDenom = new ComplexPoly(coeff);
|
---|
237 | this.sDenomSet = true;
|
---|
238 | this.calcPolesZerosS();
|
---|
239 | this.addDeadTimeExtras();
|
---|
240 |
|
---|
241 | }
|
---|
242 |
|
---|
243 | // Set the transfer function denominator in the s-domain
|
---|
244 | // Enter as an existing instance of ComplexPoly
|
---|
245 | public void setSdenom(ComplexPoly coeff){
|
---|
246 | this.sDenomDeg = coeff.getDeg();
|
---|
247 | this.sDenom = coeff.copy();
|
---|
248 | this.sDenomSet = true;
|
---|
249 | this.calcPolesZerosS();
|
---|
250 | this.addDeadTimeExtras();
|
---|
251 | }
|
---|
252 |
|
---|
253 | // calculate constant converting product of root terms to the value of the polynomial
|
---|
254 | public static Complex scaleFactor(ComplexPoly poly, Complex[] roots){
|
---|
255 | int nRoots = roots.length;
|
---|
256 |
|
---|
257 | // calculate mean of the poles
|
---|
258 | Complex mean = new Complex(0.0D, 0.0);
|
---|
259 | for(int i=0; i<nRoots; i++)mean = mean.plus(roots[i]);
|
---|
260 | mean = mean.over(nRoots);
|
---|
261 | // check that mean != a root; increase mean by 1.5 till != any pole
|
---|
262 | boolean test = true;
|
---|
263 | int ii=0;
|
---|
264 | while(test){
|
---|
265 | if(mean.isEqual(roots[ii])){
|
---|
266 | if(mean.isEqual(Complex.zero())){
|
---|
267 | for(int i=0; i<nRoots; i++)mean = mean.plus(roots[i].abs());
|
---|
268 | if(mean.isEqual(Complex.zero()))mean=Complex.plusOne();
|
---|
269 | }
|
---|
270 | else{
|
---|
271 | mean = mean.times(1.5D);
|
---|
272 | }
|
---|
273 | ii=0;
|
---|
274 | }
|
---|
275 | else{
|
---|
276 | ii++;
|
---|
277 | if(ii>nRoots-1)test = false;
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | // calculate product of roots-mean
|
---|
282 | Complex product = new Complex(1.0D, 0.0);
|
---|
283 | for(int i=0; i<nRoots; i++)product = product.times(mean.minus(roots[i]));
|
---|
284 |
|
---|
285 | // evaluate the polynomial at mean value
|
---|
286 | Complex eval = poly.evaluate(mean);
|
---|
287 |
|
---|
288 | // Calculate scaleFactor
|
---|
289 | return eval.over(product);
|
---|
290 | }
|
---|
291 |
|
---|
292 | // Get numerator scale factor
|
---|
293 | public Complex getSnumerScaleFactor(){
|
---|
294 | if(this.sNumerScaleFactor==null)this.calcPolesZerosS();
|
---|
295 | return this.sNumerScaleFactor;
|
---|
296 | }
|
---|
297 |
|
---|
298 | // Get denominator scale factor
|
---|
299 | public Complex getSdenomScaleFactor(){
|
---|
300 | if(this.sDenomScaleFactor==null)this.calcPolesZerosS();
|
---|
301 | return this.sDenomScaleFactor;
|
---|
302 | }
|
---|
303 |
|
---|
304 | // Set the dead time
|
---|
305 | public void setDeadTime(double deadtime){
|
---|
306 | this.deadTime = deadtime;
|
---|
307 | this.pade();
|
---|
308 | }
|
---|
309 |
|
---|
310 | // Set the dead time and the Pade approximation order
|
---|
311 | public void setDeadTime(double deadtime, int orderPade){
|
---|
312 | this.deadTime = deadtime;
|
---|
313 | if(orderPade>5){
|
---|
314 | orderPade=4;
|
---|
315 | System.out.println("BlackBox does not support Pade approximations above an order of 4");
|
---|
316 | System.out.println("The order has been set to 4");
|
---|
317 | }
|
---|
318 | if(orderPade<1){
|
---|
319 | orderPade=1;
|
---|
320 | System.out.println("Pade approximation order was less than 1");
|
---|
321 | System.out.println("The order has been set to 1");
|
---|
322 | }
|
---|
323 | this.orderPade = orderPade;
|
---|
324 | this.pade();
|
---|
325 | }
|
---|
326 |
|
---|
327 | // Set the Pade approximation order
|
---|
328 | public void setPadeOrder(int orderPade){
|
---|
329 | if(orderPade>5){
|
---|
330 | orderPade=4;
|
---|
331 | System.out.println("BlackBox does not support Pade approximations above an order of 4");
|
---|
332 | System.out.println("The order has been set to 4");
|
---|
333 | }
|
---|
334 | if(orderPade<1){
|
---|
335 | orderPade=2;
|
---|
336 | System.out.println("Pade approximation order was less than 1");
|
---|
337 | System.out.println("The order has been set to 2");
|
---|
338 | }
|
---|
339 | this.orderPade = orderPade;
|
---|
340 | this.pade();
|
---|
341 | }
|
---|
342 |
|
---|
343 | // Get the dead time
|
---|
344 | public double getDeadTime(){
|
---|
345 | return this.deadTime;
|
---|
346 | }
|
---|
347 |
|
---|
348 | // Get the Pade approximation order
|
---|
349 | public int getPadeOrder(){
|
---|
350 | return this.orderPade;
|
---|
351 | }
|
---|
352 |
|
---|
353 | // Resets the s-domain Pade inclusive numerator and denominator adding a Pade approximation
|
---|
354 | // Also calculates and stores additional zeros and poles arising from the Pade approximation
|
---|
355 | protected void pade(){
|
---|
356 | ComplexPoly sNumerExtra = null;
|
---|
357 | ComplexPoly sDenomExtra = null;
|
---|
358 | Complex[] newZeros = null;
|
---|
359 | Complex[] newPoles = null;
|
---|
360 | switch(orderPade){
|
---|
361 | case 1: this.sNumerDegPade = this.sNumerDeg + 1;
|
---|
362 | this.sDenomDegPade = this.sDenomDeg + 1;
|
---|
363 | this.sNumerPade = new ComplexPoly(sNumerDegPade);
|
---|
364 | this.sDenomPade = new ComplexPoly(sDenomDegPade);
|
---|
365 | sNumerExtra = new ComplexPoly(1.0D, -this.deadTime/2.0D);
|
---|
366 | sDenomExtra = new ComplexPoly(1.0D, this.deadTime/2.0D);
|
---|
367 | this.sNumerPade = this.sNumer.times(sNumerExtra);
|
---|
368 | this.sDenomPade = this.sDenom.times(sDenomExtra);
|
---|
369 | newZeros = Complex.oneDarray(1);
|
---|
370 | newZeros[0].reset(2.0/this.deadTime, 0.0D);
|
---|
371 | newPoles = Complex.oneDarray(1);
|
---|
372 | newPoles[0].reset(-2.0/this.deadTime, 0.0D);
|
---|
373 | break;
|
---|
374 | case 2: this.sNumerDegPade = this.sNumerDeg + 2;
|
---|
375 | this.sDenomDegPade = this.sDenomDeg + 2;
|
---|
376 | this.sNumerPade = new ComplexPoly(sNumerDegPade);
|
---|
377 | this.sDenomPade = new ComplexPoly(sDenomDegPade);
|
---|
378 | sNumerExtra = new ComplexPoly(1.0D, -this.deadTime/2.0D, Math.pow(this.deadTime, 2)/12.0D);
|
---|
379 | sDenomExtra = new ComplexPoly(1.0D, this.deadTime/2.0D, Math.pow(this.deadTime, 2)/12.0D);
|
---|
380 | this.sNumerPade = this.sNumer.times(sNumerExtra);
|
---|
381 | this.sDenomPade = this.sDenom.times(sDenomExtra);
|
---|
382 | newZeros = sNumerExtra.rootsNoMessages();
|
---|
383 | newPoles = sDenomExtra.rootsNoMessages();
|
---|
384 | break;
|
---|
385 | case 3: this.sNumerDegPade = this.sNumerDeg + 3;
|
---|
386 | this.sDenomDegPade = this.sDenomDeg + 3;
|
---|
387 | this.sNumerPade = new ComplexPoly(sNumerDegPade);
|
---|
388 | this.sDenomPade = new ComplexPoly(sDenomDegPade);
|
---|
389 | double[] termn3 = new double[4];
|
---|
390 | termn3[0] = 1.0D;
|
---|
391 | termn3[1] = -this.deadTime/2.0D;
|
---|
392 | termn3[2] = Math.pow(this.deadTime, 2)/10.0D;
|
---|
393 | termn3[3] = -Math.pow(this.deadTime, 3)/120.0D;
|
---|
394 | sNumerExtra = new ComplexPoly(termn3);
|
---|
395 | this.sNumerPade = this.sNumer.times(sNumerExtra);
|
---|
396 | newZeros = sNumerExtra.rootsNoMessages();
|
---|
397 | double[] termd3 = new double[4];
|
---|
398 | termd3[0] = 1.0D;
|
---|
399 | termd3[1] = this.deadTime/2.0D;
|
---|
400 | termd3[2] = Math.pow(this.deadTime, 2)/10.0D;
|
---|
401 | termd3[3] = Math.pow(this.deadTime, 3)/120.0D;
|
---|
402 | sDenomExtra = new ComplexPoly(termd3);
|
---|
403 | this.sDenomPade = this.sDenom.times(sDenomExtra);
|
---|
404 | newPoles = sDenomExtra.rootsNoMessages();
|
---|
405 | break;
|
---|
406 | case 4: this.sNumerDegPade = this.sNumerDeg + 4;
|
---|
407 | this.sDenomDegPade = this.sDenomDeg + 4;
|
---|
408 | this.sNumerPade = new ComplexPoly(sNumerDegPade);
|
---|
409 | this.sDenomPade = new ComplexPoly(sDenomDegPade);
|
---|
410 | double[] termn4 = new double[5];
|
---|
411 | termn4[0] = 1.0D;
|
---|
412 | termn4[1] = -this.deadTime/2.0D;
|
---|
413 | termn4[2] = 3.0D*Math.pow(this.deadTime, 2)/28.0D;
|
---|
414 | termn4[3] = -Math.pow(this.deadTime, 3)/84.0D;
|
---|
415 | termn4[4] = Math.pow(this.deadTime, 4)/1680.0D;
|
---|
416 | sNumerExtra = new ComplexPoly(termn4);
|
---|
417 | this.sNumerPade = this.sNumer.times(sNumerExtra);
|
---|
418 | newZeros = sNumerExtra.rootsNoMessages();
|
---|
419 | double[] termd4 = new double[5];
|
---|
420 | termd4[0] = 1.0D;
|
---|
421 | termd4[1] = this.deadTime/2.0D;
|
---|
422 | termd4[2] = 3.0D*Math.pow(this.deadTime, 2)/28.0D;
|
---|
423 | termd4[3] = Math.pow(this.deadTime, 3)/84.0D;
|
---|
424 | termd4[4] = Math.pow(this.deadTime, 4)/1680.0D;
|
---|
425 | sDenomExtra = new ComplexPoly(termd4);
|
---|
426 | this.sDenomPade = this.sDenom.times(sDenomExtra);
|
---|
427 | newPoles = sDenomExtra.rootsNoMessages();
|
---|
428 | break;
|
---|
429 | default: this.orderPade = 2;
|
---|
430 | this.sNumerDegPade = this.sNumerDeg + 2;
|
---|
431 | this.sDenomDegPade = this.sDenomDeg + 2;
|
---|
432 | this.sNumerPade = new ComplexPoly(sNumerDegPade);
|
---|
433 | this.sDenomPade = new ComplexPoly(sDenomDegPade);
|
---|
434 | sNumerExtra = new ComplexPoly(1.0D, -this.deadTime/2.0D, Math.pow(this.deadTime, 2)/12.0D);
|
---|
435 | sDenomExtra = new ComplexPoly(1.0D, this.deadTime/2.0D, Math.pow(this.deadTime, 2)/12.0D);
|
---|
436 | this.sNumerPade = this.sNumer.times(sNumerExtra);
|
---|
437 | this.sDenomPade = this.sDenom.times(sDenomExtra);
|
---|
438 | newZeros = sNumerExtra.rootsNoMessages();
|
---|
439 | newPoles = sDenomExtra.rootsNoMessages();
|
---|
440 | break;
|
---|
441 | }
|
---|
442 |
|
---|
443 | // store zeros and poles arising from the Pade term
|
---|
444 | if(this.sNumerPade!=null && this.sNumerDegPade>0){
|
---|
445 | sZerosPade = Complex.oneDarray(sNumerDegPade);
|
---|
446 | for(int i=0; i<sNumerDeg; i++){
|
---|
447 | sZerosPade[i] = sZeros[i].copy();
|
---|
448 | }
|
---|
449 | for(int i=0; i<this.orderPade; i++){
|
---|
450 | sZerosPade[i+sNumerDeg] = newZeros[i].copy();
|
---|
451 | }
|
---|
452 | }
|
---|
453 |
|
---|
454 | if(this.sDenomPade!=null && this.sDenomDegPade>0){
|
---|
455 | sPolesPade = Complex.oneDarray(sDenomDegPade);
|
---|
456 | for(int i=0; i<sDenomDeg; i++){
|
---|
457 | sPolesPade[i] = sPoles[i].copy();
|
---|
458 | }
|
---|
459 | for(int i=0; i<this.orderPade; i++){
|
---|
460 | sPolesPade[i+sDenomDeg] = newPoles[i].copy();
|
---|
461 | }
|
---|
462 | }
|
---|
463 | this.zeroPoleCancellation();
|
---|
464 | this.padeAdded = true;
|
---|
465 | }
|
---|
466 |
|
---|
467 | // Copies s-domain poles and zeros from the s-domain arrays to the s-domain Pade arrays
|
---|
468 | // used when deadTime is zero
|
---|
469 | protected void transferPolesZeros(){
|
---|
470 |
|
---|
471 | this.sNumerDegPade = this.sNumerDeg;
|
---|
472 | this.sNumerPade = this.sNumer.copy();
|
---|
473 | if(this.sNumerDeg>0 && this.sZeros!=null){
|
---|
474 | this.sZerosPade = Complex.oneDarray(this.sNumerDeg);
|
---|
475 | for(int i=0; i<this.sNumerDeg; i++)this.sZerosPade[i] = this.sZeros[i].copy();
|
---|
476 | }
|
---|
477 |
|
---|
478 | this.sDenomDegPade = this.sDenomDeg;
|
---|
479 | this.sDenomPade = this.sDenom.copy();
|
---|
480 | if(this.sDenomDeg>0 && this.sPoles!=null){
|
---|
481 | this.sPolesPade = Complex.oneDarray(this.sDenomDeg);
|
---|
482 | for(int i=0; i<this.sDenomDeg; i++)this.sPolesPade[i] = this.sPoles[i].copy();
|
---|
483 | }
|
---|
484 | this.zeroPoleCancellation();
|
---|
485 | this.padeAdded = true;
|
---|
486 |
|
---|
487 | }
|
---|
488 |
|
---|
489 | // Get the Pade approximation order
|
---|
490 | public int orderPade(){
|
---|
491 | return this.orderPade;
|
---|
492 | }
|
---|
493 |
|
---|
494 | // Warning message if dead time greater than sampling period
|
---|
495 | protected boolean deadTimeWarning(String method){
|
---|
496 | boolean warning = false; // warning true if dead time is greater than the sampling period
|
---|
497 | // false if not
|
---|
498 | if(this.deadTime>this.deltaT){
|
---|
499 | System.out.println(this.name+"."+method+": The dead time is greater than the sampling period");
|
---|
500 | System.out.println("Dead time: "+this.deadTime);
|
---|
501 | System.out.println("Sampling period: "+this.deltaT);
|
---|
502 | System.out.println("!!! The results of this program may not be physically meaningful !!!");
|
---|
503 | warning = true;
|
---|
504 | }
|
---|
505 | return warning;
|
---|
506 | }
|
---|
507 |
|
---|
508 | // Perform z transform for a given delta T
|
---|
509 | // Uses maptozAdHoc in this class but may be overridden in a subclass
|
---|
510 | public void zTransform(double deltat){
|
---|
511 | this.mapstozAdHoc(deltat);
|
---|
512 | }
|
---|
513 |
|
---|
514 | // Perform z transform using an already set delta T
|
---|
515 | // Uses maptozAdHoc in this class but may be overridden in a subclass
|
---|
516 | public void zTransform(){
|
---|
517 | this.mapstozAdHoc();
|
---|
518 | }
|
---|
519 |
|
---|
520 | // Map s-plane zeros and poles of the transfer function onto the z-plane using the ad-hoc method
|
---|
521 | // for a given sampling period.
|
---|
522 | // References:
|
---|
523 | // John Dorsey, Continuous and Discrete Control Systems, pp 490-491, McGraw Hill (2002)
|
---|
524 | // J R Leigh, Applied Digital Control, pp 78-80, Prentice-Hall (1985)
|
---|
525 | public void mapstozAdHoc(double deltaT){
|
---|
526 | this.deltaT = deltaT;
|
---|
527 | this.mapstozAdHoc();
|
---|
528 | }
|
---|
529 |
|
---|
530 | // Map s-plane zeros and poles of the transfer function onto the z-plane using the ad-hoc method
|
---|
531 | // for an already set sampling period.
|
---|
532 | // References:
|
---|
533 | // John Dorsey, Continuous and Discrete Control Systems, pp 490-491, McGraw Hill (2002)
|
---|
534 | // J R Leigh, Applied Digital Control, pp 78-80, Prentice-Hall (1985)
|
---|
535 | public void mapstozAdHoc(){
|
---|
536 |
|
---|
537 | this.deadTimeWarning("mapstozAdHoc");
|
---|
538 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
539 |
|
---|
540 | // Calculate z-poles
|
---|
541 | this.zDenomDeg = this.sDenomDegPade;
|
---|
542 | ComplexPoly root = new ComplexPoly(1);
|
---|
543 | this.zDenom = new ComplexPoly(this.zDenomDeg);
|
---|
544 | if(zDenomDeg>0){
|
---|
545 | this.zPoles = Complex.oneDarray(this.zDenomDeg);
|
---|
546 | for(int i=0; i<this.zDenomDeg; i++){
|
---|
547 | zPoles[i]=Complex.exp(this.sPolesPade[i].times(this.deltaT));
|
---|
548 | }
|
---|
549 | this.zDenom = ComplexPoly.rootsToPoly(zPoles);
|
---|
550 | }
|
---|
551 |
|
---|
552 | // Calculate z-zeros
|
---|
553 | // number of zeros from infinity poles
|
---|
554 | int infZeros = this.sDenomDegPade;
|
---|
555 | // check that total zeros does not exceed total poles
|
---|
556 | if(infZeros+this.sNumerDegPade>this.sDenomDegPade)infZeros=this.sDenomDegPade-this.sNumerDegPade;
|
---|
557 | // total number of zeros
|
---|
558 | this.zNumerDeg = this.sNumerDegPade + infZeros;
|
---|
559 | this.zNumer = new ComplexPoly(zNumerDeg);
|
---|
560 | this.zZeros = Complex.oneDarray(zNumerDeg);
|
---|
561 | // zero values
|
---|
562 | if(this.zNumerDeg>0){
|
---|
563 | for(int i=0; i<this.sNumerDegPade; i++){
|
---|
564 | zZeros[i]=Complex.exp(sZerosPade[i].times(this.deltaT));
|
---|
565 | }
|
---|
566 | if(infZeros>0){
|
---|
567 | if(maptozero){
|
---|
568 | for(int i=this.sNumerDegPade; i<this.zNumerDeg; i++){
|
---|
569 | zZeros[i]=Complex.zero();
|
---|
570 | }
|
---|
571 | }
|
---|
572 | else{
|
---|
573 | for(int i=this.sNumerDegPade; i<this.zNumerDeg; i++){
|
---|
574 | zZeros[i]=Complex.minusOne();
|
---|
575 | }
|
---|
576 | }
|
---|
577 | }
|
---|
578 | this.zNumer = ComplexPoly.rootsToPoly(this.zZeros);
|
---|
579 | }
|
---|
580 |
|
---|
581 | // Match s and z steady state gains
|
---|
582 | this.sValue=Complex.zero();
|
---|
583 | this.zValue=Complex.plusOne();
|
---|
584 | boolean testzeros = true;
|
---|
585 | while(testzeros){
|
---|
586 | testzeros = false;
|
---|
587 | if(this.sDenomDegPade>0){
|
---|
588 | for(int i=0; i<this.sDenomDegPade; i++){
|
---|
589 | if(this.sPolesPade[i].truncate(3).equals(this.sValue.truncate(3)))testzeros=true;
|
---|
590 | }
|
---|
591 | }
|
---|
592 | if(!testzeros && this.sNumerDegPade>0){
|
---|
593 | for(int i=0; i<this.sDenomDegPade; i++){
|
---|
594 | if(this.sZerosPade[i].truncate(3).equals(this.sValue.truncate(3)))testzeros=true;
|
---|
595 | }
|
---|
596 | }
|
---|
597 | if(!testzeros && this.zDenomDeg>0){
|
---|
598 | for(int i=0; i<this.zDenomDeg; i++){
|
---|
599 | if(this.zPoles[i].truncate(3).equals(this.zValue.truncate(3)))testzeros=true;
|
---|
600 | }
|
---|
601 | }
|
---|
602 | if(!testzeros && this.zNumerDeg>0){
|
---|
603 | for(int i=0; i<this.zDenomDeg; i++){
|
---|
604 | if(this.zZeros[i].truncate(3).equals(this.zValue.truncate(3)))testzeros=true;
|
---|
605 | }
|
---|
606 | }
|
---|
607 | if(testzeros){
|
---|
608 | this.sValue = this.sValue.plus(Complex.plusJay()).truncate(3);
|
---|
609 | this.zValue = Complex.exp(this.sValue.times(this.deltaT).truncate(3));
|
---|
610 | }
|
---|
611 | }
|
---|
612 | Complex gs = this.evalTransFunctS(this.sValue);
|
---|
613 | Complex gz = this.evalTransFunctZ(this.zValue);
|
---|
614 | Complex constant = gs.over(gz);
|
---|
615 | ComplexPoly constantPoly = new ComplexPoly(constant);
|
---|
616 | this.zNumer = this.zNumer.times(constantPoly);
|
---|
617 | }
|
---|
618 |
|
---|
619 | // Set the map infinity zeros to zero or -1 option
|
---|
620 | // maptozero: if true infinity s zeros map to zero
|
---|
621 | // if false infinity s zeros map to minus one
|
---|
622 | // default value = false
|
---|
623 | public void setMaptozero(boolean maptozero){
|
---|
624 | this.maptozero = maptozero;
|
---|
625 | }
|
---|
626 |
|
---|
627 | // Set the transfer function numerator in the z-domain
|
---|
628 | // Enter as an array of real (double) coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
629 | public void setZnumer(double[] coeff){
|
---|
630 | this.zNumerDeg = coeff.length-1;
|
---|
631 | this.zNumer = new ComplexPoly(coeff);
|
---|
632 | this.zZeros = this.zNumer.rootsNoMessages();
|
---|
633 | }
|
---|
634 |
|
---|
635 | // Set the transfer function numerator in the z-domain
|
---|
636 | // Enter as an array of Complex coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
637 | public void setZnumer(Complex[] coeff){
|
---|
638 | this.zNumerDeg = coeff.length-1;
|
---|
639 | this.zNumer = new ComplexPoly(coeff);
|
---|
640 | this.zZeros = this.zNumer.rootsNoMessages();
|
---|
641 | }
|
---|
642 |
|
---|
643 | // Set the transfer function numerator in the z-domain
|
---|
644 | // Enter as an existing instance of ComplexPoly
|
---|
645 | public void setZnumer(ComplexPoly coeff){
|
---|
646 | this.zNumerDeg = coeff.getDeg();
|
---|
647 | this.zNumer = ComplexPoly.copy(coeff);
|
---|
648 | this.zZeros = this.zNumer.rootsNoMessages();
|
---|
649 | }
|
---|
650 |
|
---|
651 | // Set the transfer function denominator in the z-domain
|
---|
652 | // Enter as an array of real (double) coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
653 | public void setZdenom(double[] coeff){
|
---|
654 | this.zDenomDeg = coeff.length-1;
|
---|
655 | this.zDenom = new ComplexPoly(coeff);
|
---|
656 | this.zPoles = this.zDenom.rootsNoMessages();
|
---|
657 | }
|
---|
658 |
|
---|
659 | // Set the transfer function denomonatot in the z-domain
|
---|
660 | // Enter as an array of Complex coefficients of the polynomial a + bs +c.s.s + d.s.s.s + ....
|
---|
661 | public void setZdenom(Complex[] coeff){
|
---|
662 | this.zDenomDeg = coeff.length-1;
|
---|
663 | this.zDenom = new ComplexPoly(coeff);
|
---|
664 | this.zPoles = this.zDenom.rootsNoMessages();
|
---|
665 | }
|
---|
666 |
|
---|
667 | // Set the transfer function denominator in the z-domain
|
---|
668 | // Enter as an existing instance of ComplexPoly
|
---|
669 | public void setZdenom(ComplexPoly coeff){
|
---|
670 | this.zDenomDeg = coeff.getDeg();
|
---|
671 | this.zDenom = ComplexPoly.copy(coeff);
|
---|
672 | this.zPoles = this.zDenom.rootsNoMessages();
|
---|
673 | }
|
---|
674 |
|
---|
675 | // Set the sampling period
|
---|
676 | public void setDeltaT(double deltaT ){
|
---|
677 | if(this.deltaT==0.0){
|
---|
678 | this.deltaT=deltaT;
|
---|
679 | this.sampFreq=1.0D/this.deltaT;
|
---|
680 | this.deadTimeWarning("setDeltaT");
|
---|
681 | }
|
---|
682 | else{
|
---|
683 |
|
---|
684 | String question = "BlackBox setDeltaT: Do you wish to replace the deltaT value, " + this.deltaT + " with " + deltaT;
|
---|
685 | if(Db.yesNo(question)){
|
---|
686 | this.deltaT=deltaT;
|
---|
687 | this.sampFreq=1.0D/this.deltaT;
|
---|
688 | this.deadTimeWarning("setDeltaT");
|
---|
689 | if(this.time!=null){
|
---|
690 | int holdS = this.sampLen;
|
---|
691 | this.sampLen = (int)Math.round(time[this.sampLen-1]/this.deltaT);
|
---|
692 | double[] holdT = Conv.copy(time);
|
---|
693 | double[] holdI = Conv.copy(inputT);
|
---|
694 | this.time = new double[this.sampLen];
|
---|
695 | this.inputT = new double[this.sampLen];
|
---|
696 | CubicSpline cs = new CubicSpline(holdT, holdI);
|
---|
697 | this.time[0] = holdT[0];
|
---|
698 | this.inputT[0] = holdI[0];
|
---|
699 | for(int i=1; i<this.sampLen-1; i++){
|
---|
700 | this.time[i] = this.time[i-1] = this.deltaT;
|
---|
701 | this.inputT[i] = cs.interpolate(this.time[i]);
|
---|
702 | }
|
---|
703 | this.time[sampLen-1] = holdT[holdS];
|
---|
704 | this.inputT[sampLen-1] = holdI[holdS];
|
---|
705 | }
|
---|
706 | }
|
---|
707 | }
|
---|
708 | }
|
---|
709 |
|
---|
710 | // Set the forgetting factor
|
---|
711 | public void setForgetFactor(double forget){
|
---|
712 | this.forgetFactor = forget;
|
---|
713 | }
|
---|
714 |
|
---|
715 | // Set the sampling frequency
|
---|
716 | public void setSampFreq(double sfreq ){
|
---|
717 | this.sampFreq=sfreq;
|
---|
718 | this.setDeltaT(1.0D/sfreq);
|
---|
719 | }
|
---|
720 |
|
---|
721 | // Set the Laplacian s value (s - Complex)
|
---|
722 | public void setS(Complex s){
|
---|
723 | this.sValue = Complex.copy(s);
|
---|
724 | }
|
---|
725 |
|
---|
726 | // Set the Laplacian s value (s - real + imaginary parts)
|
---|
727 | public void setS(double sr, double si){
|
---|
728 | this.sValue.reset(sr,si);
|
---|
729 | }
|
---|
730 |
|
---|
731 | // Set the Laplacian s value (s - imag, real = 0.0)
|
---|
732 | public void setS(double si){
|
---|
733 | this.sValue.reset(0.0D, si);
|
---|
734 | }
|
---|
735 |
|
---|
736 | // Set the z-transform z value (z - Complex)
|
---|
737 | public void setZ(Complex z){
|
---|
738 | this.zValue = Complex.copy(z);
|
---|
739 | }
|
---|
740 |
|
---|
741 | // Set the z-transform z value (z - real + imaginary parts)
|
---|
742 | public void setZ(double zr, double zi){
|
---|
743 | this.zValue.reset(zr,zi);
|
---|
744 | }
|
---|
745 |
|
---|
746 | // Set the z transform method
|
---|
747 | // 0 = s to z mapping (ad hoc procedure)
|
---|
748 | // 1 = specific z transform, e.g. z transform of a difference equation
|
---|
749 | public void setZtransformMethod(int ztransMethod){
|
---|
750 | if(ztransMethod<0 || ztransMethod>1){
|
---|
751 | System.out.println("z transform method option number " + ztransMethod + " not recognised");
|
---|
752 | System.out.println("z tr methodansform option number set in BlackBox to the default value of 0 (s -> z ad hoc mapping)");
|
---|
753 | this.integMethod = 0;
|
---|
754 | }
|
---|
755 | else{
|
---|
756 | this.ztransMethod = ztransMethod;
|
---|
757 | }
|
---|
758 | }
|
---|
759 |
|
---|
760 | // Set the integration method [number option]
|
---|
761 | // 0 = trapezium, 1 = Backward rectangular, 2 = Foreward rectangular
|
---|
762 | public void setIntegrateOption(int integMethod){
|
---|
763 | if(integMethod<0 || integMethod>2){
|
---|
764 | System.out.println("integration method option number " + integMethod + " not recognised");
|
---|
765 | System.out.println("integration method option number set in BlackBox to the default value of 0 (trapezium rule)");
|
---|
766 | this.integMethod = 0;
|
---|
767 | }
|
---|
768 | else{
|
---|
769 | this.integMethod = integMethod;
|
---|
770 | }
|
---|
771 | }
|
---|
772 |
|
---|
773 | // Set the integration method [String option]
|
---|
774 | // trapezium; trapezium, tutin. Backward rectangular; back backward. Foreward rectangular; foreward, fore
|
---|
775 | // Continuous time equivalent: continuous, cont
|
---|
776 | public void setIntegrateOption(String integMethodS){
|
---|
777 | if(integMethodS.equals("trapezium") || integMethodS.equals("Trapezium") ||integMethodS.equals("tutin") || integMethodS.equals("Tutin")){
|
---|
778 | this.integMethod = 0;
|
---|
779 | }
|
---|
780 | else{
|
---|
781 | if(integMethodS.equals("backward") || integMethodS.equals("Backward") ||integMethodS.equals("back") || integMethodS.equals("Back")){
|
---|
782 | this.integMethod = 1;
|
---|
783 | }
|
---|
784 | else{
|
---|
785 | if(integMethodS.equals("foreward") || integMethodS.equals("Foreward") ||integMethodS.equals("fore") || integMethodS.equals("Fore")){
|
---|
786 | this.integMethod = 2;
|
---|
787 | }
|
---|
788 | else{
|
---|
789 | System.out.println("integration method option " + integMethodS + " not recognised");
|
---|
790 | System.out.println("integration method option number set in PID to the default value of 0 (trapezium rule)");
|
---|
791 | this.integMethod = 0;
|
---|
792 | }
|
---|
793 | }
|
---|
794 | }
|
---|
795 | }
|
---|
796 |
|
---|
797 | // Reset the length of the arrays storing the times, time domain inputs and time domain outputs
|
---|
798 | public void setSampleLength(int samplen){
|
---|
799 | if(samplen==0)throw new IllegalArgumentException("Entered sample length must be greater than zero");
|
---|
800 | if(samplen==1)samplen=2;
|
---|
801 | if(this.sampLen==0){
|
---|
802 | this.sampLen = samplen;
|
---|
803 | this.time = new double[samplen];
|
---|
804 | this.inputT = new double[samplen];
|
---|
805 | this.outputT = new double[samplen];
|
---|
806 | }
|
---|
807 | else{
|
---|
808 | String question = "BlackBox setSampleLength: Do you wish to replace the sample length, " + this.sampLen + " with " + samplen;
|
---|
809 | if(Db.yesNo(question)){
|
---|
810 | int holdS = this.sampLen;
|
---|
811 | this.sampLen=samplen;
|
---|
812 | if(this.time!=null){
|
---|
813 | this.deltaT = this.time[holdS-1]/(samplen-1);
|
---|
814 | double[] holdT = Conv.copy(time);
|
---|
815 | double[] holdI = Conv.copy(inputT);
|
---|
816 | this.time = new double[this.sampLen];
|
---|
817 | this.inputT = new double[this.sampLen];
|
---|
818 | CubicSpline cs = new CubicSpline(holdT, holdI);
|
---|
819 | this.time[0] = holdT[0];
|
---|
820 | this.inputT[0] = holdI[0];
|
---|
821 | for(int i=1; i<this.sampLen-1; i++){
|
---|
822 | this.time[i] = this.time[i-1] = this.deltaT;
|
---|
823 | this.inputT[i] = cs.interpolate(this.time[i]);
|
---|
824 | }
|
---|
825 | this.time[sampLen-1] = holdT[holdS];
|
---|
826 | this.inputT[sampLen-1] = holdI[holdS];
|
---|
827 | }
|
---|
828 | }
|
---|
829 | }
|
---|
830 | }
|
---|
831 |
|
---|
832 | // Reset the name of the black box
|
---|
833 | public void setName(String name){
|
---|
834 | this.name=name;
|
---|
835 | }
|
---|
836 |
|
---|
837 | // Enter a single current time domain time and input value
|
---|
838 | public void setInputT(double ttime, double inputt){
|
---|
839 | if(this.deltaT==0.0){
|
---|
840 | this.time = new double[2];
|
---|
841 | this.time[0] = 0.0;
|
---|
842 | this.time[1] = ttime;
|
---|
843 | this.inputT = new double[2];
|
---|
844 | this.inputT[0] = inputt;
|
---|
845 | this.inputT[1] = inputt;
|
---|
846 | this.outputT = new double[2];
|
---|
847 | this.sampLen = 2;
|
---|
848 | // this.deltaT = ttime;
|
---|
849 | // this.sampFreq = 1.0/this.deltaT;
|
---|
850 | }
|
---|
851 | else{
|
---|
852 | double delta = this.deltaT;
|
---|
853 | this.sampLen = (int)Math.round(ttime/delta);
|
---|
854 | this.deltaT = ttime/sampLen;
|
---|
855 | if(!Fmath.isEqualWithinLimits(this.deltaT, delta, delta*1e-3)){
|
---|
856 | System.out.println("BlackBox setInputT method; deltaT has been reset from " + delta + " to " + this.deltaT);
|
---|
857 | }
|
---|
858 | this.sampFreq = 1.0/this.deltaT;
|
---|
859 | this.time = new double[this.sampLen];
|
---|
860 | this.time[this.sampLen-1]=ttime;
|
---|
861 | this.inputT = new double[this.sampLen];
|
---|
862 | this.inputT[this.sampLen-1]=inputt;
|
---|
863 | this.outputT = new double[this.sampLen];
|
---|
864 | for(int i=sampLen-2; i>0; i--){
|
---|
865 | this.time[i]= this.time[i+1]-deltaT;
|
---|
866 | this.inputT[i]=inputt;
|
---|
867 | }
|
---|
868 | this.time[0]=0.0;
|
---|
869 | this.inputT[0]=inputt;
|
---|
870 | }
|
---|
871 | }
|
---|
872 |
|
---|
873 | // Enter a set of current time domain times and input values
|
---|
874 | public void setInputT(double[] ttime, double[] inputt){
|
---|
875 | int samplen = ttime.length;
|
---|
876 | if(samplen!=inputt.length)throw new IllegalArgumentException("time and input arrays are of different lengths: " + samplen + ", " + inputt.length);
|
---|
877 | if(samplen==1){
|
---|
878 | this.setInputT(ttime[0], inputt[0]);
|
---|
879 | }
|
---|
880 | else{
|
---|
881 | this.sampLen = samplen;
|
---|
882 | this.time = ttime;
|
---|
883 | this.inputT = inputt;
|
---|
884 | this.outputT = new double[this.sampLen];
|
---|
885 | this.deltaT = ttime[this.sampLen]/(this.sampLen - 1);
|
---|
886 | this.sampFreq = 1.0/this.deltaT;
|
---|
887 | }
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 |
|
---|
892 | // Reset s-domain input
|
---|
893 | public void setInputS(Complex input){
|
---|
894 | this.inputS=input;
|
---|
895 | }
|
---|
896 |
|
---|
897 | // Reset all inputs, outputs and times to zero
|
---|
898 | public void resetZero(){
|
---|
899 | for(int i=0; i<this.sampLen-1; i++){
|
---|
900 | this.outputT[i] = 0.0D;
|
---|
901 | this.inputT[i] = 0.0D;
|
---|
902 | this.time[i] = 0.0D;
|
---|
903 | }
|
---|
904 | this.outputS = Complex.zero();
|
---|
905 | this.inputS = Complex.zero();
|
---|
906 | this.deltaT = 0.0;
|
---|
907 | this.sampLen = 0;
|
---|
908 | }
|
---|
909 |
|
---|
910 | // Calculate the zeros and poles in the s-domain
|
---|
911 | // does not include Pade approximation term
|
---|
912 | protected void calcPolesZerosS(){
|
---|
913 | if(this.sNumer!=null){
|
---|
914 | if(this.sNumer.getDeg()>0)this.sZeros = this.sNumer.rootsNoMessages();
|
---|
915 | if(this.sZeros!=null){
|
---|
916 | this.sNumerScaleFactor = BlackBox.scaleFactor(this.sNumer, this.sZeros);
|
---|
917 | }
|
---|
918 | else{
|
---|
919 | this.sNumerScaleFactor = this.sNumer.coeffCopy(0);
|
---|
920 | }
|
---|
921 | }
|
---|
922 |
|
---|
923 | if(this.sDenom!=null){
|
---|
924 | if(this.sDenom.getDeg()>0)this.sPoles = this.sDenom.rootsNoMessages();
|
---|
925 | if(this.sPoles!=null){
|
---|
926 | this.sDenomScaleFactor = BlackBox.scaleFactor(this.sDenom, this.sPoles);
|
---|
927 | }
|
---|
928 | else{
|
---|
929 | this.sDenomScaleFactor = this.sDenom.coeffCopy(0);
|
---|
930 | }
|
---|
931 | }
|
---|
932 | if(this.sNumerPade!=null){
|
---|
933 | if(this.sNumerPade.getDeg()>0)this.sZerosPade = this.sNumerPade.rootsNoMessages();
|
---|
934 | }
|
---|
935 | if(this.sDenomPade!=null){
|
---|
936 | if(this.sDenomPade.getDeg()>0)this.sPolesPade = this.sDenomPade.rootsNoMessages();
|
---|
937 | }
|
---|
938 | }
|
---|
939 |
|
---|
940 | // Eliminates identical poles and zeros in the s-domain
|
---|
941 | protected void zeroPoleCancellation(){
|
---|
942 | boolean check = false;
|
---|
943 | boolean testI = true;
|
---|
944 | boolean testJ = true;
|
---|
945 | int i=0;
|
---|
946 | int j=0;
|
---|
947 |
|
---|
948 | if(this.sNumerDegPade==0 || this.sDenomDegPade==0)testI=false;
|
---|
949 | if(this.sZerosPade==null || this.sPolesPade==null)testI=false;
|
---|
950 | while(testI){
|
---|
951 | j=0;
|
---|
952 | while(testJ){
|
---|
953 | if(this.sZerosPade[i].isEqual(this.sPolesPade[j])){
|
---|
954 | for(int k=j+1; k<this.sDenomDegPade; k++)this.sPolesPade[k-1] = this.sPolesPade[k].copy();
|
---|
955 | this.sDenomDegPade--;
|
---|
956 | for(int k=i+1; k<this.sNumerDegPade; k++)this.sZerosPade[k-1] = this.sZerosPade[k].copy();
|
---|
957 | this.sNumerDegPade--;
|
---|
958 | check = true;
|
---|
959 | testJ=false;
|
---|
960 | i--;
|
---|
961 | }
|
---|
962 | else{
|
---|
963 | j++;
|
---|
964 | if(j>this.sDenomDegPade-1)testJ=false;
|
---|
965 | }
|
---|
966 | }
|
---|
967 | i++;
|
---|
968 | if(i>this.sNumerDegPade-1)testI=false;
|
---|
969 | }
|
---|
970 | if(check){
|
---|
971 | if(this.sNumerDegPade==0){
|
---|
972 | this.sNumerPade = new ComplexPoly(1.0D);
|
---|
973 | }
|
---|
974 | else{
|
---|
975 | Complex[] holdn = Complex.oneDarray(sNumerDegPade);
|
---|
976 | for(int ii=0; ii<sNumerDegPade; ii++)holdn[i] = this.sZerosPade[ii].copy();
|
---|
977 | this.sZerosPade = holdn;
|
---|
978 | this.sNumerPade = ComplexPoly.rootsToPoly(this.sZerosPade);
|
---|
979 | }
|
---|
980 | if(this.sDenomDegPade==0){
|
---|
981 | this.sDenomPade = new ComplexPoly(1.0D);
|
---|
982 | }
|
---|
983 | else{
|
---|
984 | Complex[] holdd = Complex.oneDarray(sDenomDegPade);
|
---|
985 | for(int ii=0; ii<sDenomDegPade; ii++)holdd[i] = this.sPolesPade[ii].copy();
|
---|
986 | this.sPolesPade = holdd;
|
---|
987 | this.sDenomPade = ComplexPoly.rootsToPoly(this.sPolesPade);
|
---|
988 | }
|
---|
989 | }
|
---|
990 |
|
---|
991 | check = false;
|
---|
992 | testI = true;
|
---|
993 | testJ = true;
|
---|
994 | i=0;
|
---|
995 | j=0;
|
---|
996 |
|
---|
997 | if(this.sNumerDeg==0 || this.sDenomDeg==0)testI=false;
|
---|
998 | if(this.sZeros==null || this.sPoles==null)testI=false;
|
---|
999 | while(testI){
|
---|
1000 | j=0;
|
---|
1001 | while(testJ){
|
---|
1002 | if(this.sZeros[i].isEqual(this.sPoles[j])){
|
---|
1003 | for(int k=j+1; k<this.sDenomDeg; k++)this.sPoles[k-1] = this.sPoles[k].copy();
|
---|
1004 | this.sDenomDeg--;
|
---|
1005 | for(int k=i+1; k<this.sNumerDeg; k++)this.sZeros[k-1] = this.sZeros[k].copy();
|
---|
1006 | this.sNumerDeg--;
|
---|
1007 | check = true;
|
---|
1008 | testJ=false;
|
---|
1009 | i--;
|
---|
1010 | }
|
---|
1011 | else{
|
---|
1012 | j++;
|
---|
1013 | if(j>this.sDenomDeg-1)testJ=false;
|
---|
1014 | }
|
---|
1015 | }
|
---|
1016 | i++;
|
---|
1017 | if(i>this.sNumerDeg-1)testI=false;
|
---|
1018 | }
|
---|
1019 | if(check){
|
---|
1020 | if(this.sNumerDeg==0){
|
---|
1021 | this.sNumer = new ComplexPoly(1.0D);
|
---|
1022 | }
|
---|
1023 | else{
|
---|
1024 | Complex[] holdn = Complex.oneDarray(sNumerDeg);
|
---|
1025 | for(int ii=0; ii<sNumerDeg; ii++)holdn[i] = this.sZeros[ii].copy();
|
---|
1026 | this.sZeros = holdn;
|
---|
1027 | this.sNumer = ComplexPoly.rootsToPoly(this.sZeros);
|
---|
1028 | this.sNumerWorkingFactor = this.sNumerScaleFactor;
|
---|
1029 | }
|
---|
1030 | if(this.sDenomDeg==0){
|
---|
1031 | this.sDenom = new ComplexPoly(1.0D);
|
---|
1032 | }
|
---|
1033 | else{
|
---|
1034 | Complex[] holdd = Complex.oneDarray(sDenomDeg);
|
---|
1035 | for(int ii=0; ii<sDenomDeg; ii++)holdd[i] = this.sPoles[ii].copy();
|
---|
1036 | this.sPoles = holdd;
|
---|
1037 | this.sDenom = ComplexPoly.rootsToPoly(this.sPoles);
|
---|
1038 | this.sDenomWorkingFactor = this.sDenomScaleFactor;
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | // Get steadty state value for a unit step input
|
---|
1044 | public double getSeadyStateValue(){
|
---|
1045 | Complex num = this.sNumer.evaluate(Complex.zero());
|
---|
1046 | Complex den = this.sDenom.evaluate(Complex.zero());
|
---|
1047 | Complex ssc = num.over(den);
|
---|
1048 | double ssdr = ssc.getReal();
|
---|
1049 | double ssdi = ssc.getImag();
|
---|
1050 | if(Math.abs(ssdi)>Math.abs(ssdr)*0.01){
|
---|
1051 | System.out.println("method getSteadyStateValue: The imaginary part, " + ssdi + ", is greater than 1 per cent of the the real part, " + ssdr);
|
---|
1052 | System.out.println("Magnitude has been returned");
|
---|
1053 | }
|
---|
1054 | return ssc.abs();
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | // Get steadty state value for a step input of magnitude, mag
|
---|
1058 | public double getSeadyStateValue(double mag){
|
---|
1059 | Complex num = this.sNumer.evaluate(Complex.zero());
|
---|
1060 | Complex den = this.sDenom.evaluate(Complex.zero());
|
---|
1061 | Complex ssc = num.over(den);
|
---|
1062 | double ssdr = ssc.getReal();
|
---|
1063 | double ssdi = ssc.getImag();
|
---|
1064 | if(Math.abs(ssdi)>Math.abs(ssdr)*0.01){
|
---|
1065 | System.out.println("method getSteadyStateValue: The imaginary part, " + ssdi + ", is greater than 1 per cent of the the real part, " + ssdr);
|
---|
1066 | System.out.println("Magnitude has been returned");
|
---|
1067 | }
|
---|
1068 | return mag*ssc.abs();
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 |
|
---|
1072 |
|
---|
1073 | // Evaluate the s-domain tranfer function for the present value of s
|
---|
1074 | // deadtime evaluated as exponential term
|
---|
1075 | public Complex evalTransFunctS(){
|
---|
1076 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1077 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1078 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1079 | Complex lagterm = Complex.plusOne();
|
---|
1080 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1081 | return num.over(den).times(lagterm);
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | // Evaluate the s-domain tranfer function for a given Complex value of s
|
---|
1085 | public Complex evalTransFunctS(Complex sValue){
|
---|
1086 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1087 | this.sValue = Complex.copy(sValue);
|
---|
1088 | Complex num = this.sNumer.evaluate(sValue);
|
---|
1089 | Complex den = this.sDenom.evaluate(sValue);
|
---|
1090 | Complex lagterm = Complex.plusOne();
|
---|
1091 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1092 | return num.over(den).times(lagterm);
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | // Evaluate the s-domain tranfer function for a sine wave input at a given frequency (s^-1)
|
---|
1096 | public Complex evalTransFunctS(double freq){
|
---|
1097 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1098 | this.sValue.reset(0.0D, 2.0D*Math.PI*freq);
|
---|
1099 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1100 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1101 | Complex lagterm = Complex.plusOne();
|
---|
1102 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1103 | return num.over(den).times(lagterm);
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | // Evaluate the magnitude of the s-domain tranfer function for the present value of s
|
---|
1107 | public double evalMagTransFunctS(){
|
---|
1108 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1109 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1110 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1111 | Complex lagterm = Complex.plusOne();
|
---|
1112 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1113 | return (num.over(den).times(lagterm)).abs();
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | // Evaluate the magnitude of the s-domain tranfer function for a given Complex value of s
|
---|
1117 | public double evalMagTransFunctS(Complex sValue){
|
---|
1118 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1119 | this.sValue = Complex.copy(sValue);
|
---|
1120 | Complex num = this.sNumer.evaluate(sValue);
|
---|
1121 | Complex den = this.sDenom.evaluate(sValue);
|
---|
1122 | Complex lagterm = Complex.plusOne();
|
---|
1123 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1124 | return (num.over(den).times(lagterm)).abs();
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | // Evaluate the magnitude of the s-domain tranfer function for a sine wave input at a given frequency (s^-1)
|
---|
1128 | public double evalMagTransFunctS(double freq){
|
---|
1129 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1130 | this.sValue.reset(0.0D, 2.0D*Math.PI*freq);
|
---|
1131 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1132 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1133 | Complex lagterm = Complex.plusOne();
|
---|
1134 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1135 | return (num.over(den).times(lagterm)).abs();
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | // Evaluate the phase of the s-domain tranfer function for the present value of s
|
---|
1139 | public double evalPhaseTransFunctS(){
|
---|
1140 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1141 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1142 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1143 | Complex lagterm = Complex.plusOne();
|
---|
1144 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1145 | return (num.over(den).times(lagterm)).arg();
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | // Evaluate the phase of the s-domain tranfer function for a given Complex value of s
|
---|
1149 | public double evalPhaseTransFunctS(Complex sValue){
|
---|
1150 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1151 | this.sValue = Complex.copy(sValue);
|
---|
1152 | Complex num = this.sNumer.evaluate(sValue);
|
---|
1153 | Complex den = this.sDenom.evaluate(sValue);
|
---|
1154 | Complex lagterm = Complex.plusOne();
|
---|
1155 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1156 | return (num.over(den).times(lagterm)).arg();
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | // Evaluate the phase of the s-domain tranfer function for a sine wave input at a given frequency (s^-1)
|
---|
1160 | public double evalPhaseTransFunctS(double freq){
|
---|
1161 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1162 | this.sValue.reset(0.0D, 2.0D*Math.PI*freq);
|
---|
1163 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1164 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1165 | Complex lagterm = Complex.plusOne();
|
---|
1166 | if(this.deadTime!=0)lagterm = Complex.exp(this.sValue.times(-this.deadTime));
|
---|
1167 | return (num.over(den).times(lagterm)).arg();
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | // Evaluate the z-domain tranfer function for the present value of z
|
---|
1171 | public Complex evalTransFunctZ(){
|
---|
1172 | Complex num = this.zNumer.evaluate(this.zValue);
|
---|
1173 | Complex den = this.zDenom.evaluate(this.zValue);
|
---|
1174 | return num.over(den);
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | // Evaluate the z-domain tranfer function for a given Complex value of z
|
---|
1178 | public Complex evalTransFunctZ(Complex zValue){
|
---|
1179 | this.zValue = Complex.copy(zValue);
|
---|
1180 | Complex num = this.zNumer.evaluate(zValue);
|
---|
1181 | Complex den = this.zDenom.evaluate(zValue);
|
---|
1182 | return num.over(den);
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | // Evaluate the magnitude of the z-domain tranfer function for the present value of z
|
---|
1186 | public double evalMagTransFunctZ(){
|
---|
1187 | Complex num = this.zNumer.evaluate(this.zValue);
|
---|
1188 | Complex den = this.zDenom.evaluate(this.zValue);
|
---|
1189 | return num.over(den).abs();
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | // Evaluate the magnitude of the z-domain tranfer function for a given Complex value of z
|
---|
1193 | public double evalMagTransFunctZ(Complex zValue){
|
---|
1194 | this.zValue = Complex.copy(zValue);
|
---|
1195 | Complex num = this.zNumer.evaluate(zValue);
|
---|
1196 | Complex den = this.zDenom.evaluate(zValue);
|
---|
1197 | return num.over(den).abs();
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | // Evaluate the phase of the z-domain tranfer function for the present value of z
|
---|
1201 | public double evalPhaseTransFunctZ(){
|
---|
1202 | Complex num = this.zNumer.evaluate(this.zValue);
|
---|
1203 | Complex den = this.zDenom.evaluate(this.zValue);
|
---|
1204 | return num.over(den).arg();
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | // Evaluate the phase of the z-domain tranfer function for a given Complex value of z
|
---|
1208 | public double evalPhaseTransFunctZ(Complex zValue){
|
---|
1209 | this.zValue = Complex.copy(zValue);
|
---|
1210 | Complex num = this.zNumer.evaluate(zValue);
|
---|
1211 | Complex den = this.zDenom.evaluate(zValue);
|
---|
1212 | return num.over(den).arg();
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | // Get the integration method option
|
---|
1216 | public int getIntegMethod(){
|
---|
1217 | return this.integMethod;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | // Get the z transform method option
|
---|
1221 | public int getZtransformMethod(){
|
---|
1222 | return this.ztransMethod;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | // Get the length of the time, input (time domain) and output (time domain) arrays
|
---|
1226 | public int getSampleLength(){
|
---|
1227 | return this.sampLen;
|
---|
1228 | }
|
---|
1229 |
|
---|
1230 | // Get the forgetting factor
|
---|
1231 | public double getForgetFactor(){
|
---|
1232 | return this.forgetFactor;
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 | // Get the current time
|
---|
1236 | public double getCurrentTime(){
|
---|
1237 | return this.time[this.sampLen-1];
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | // Get the time array
|
---|
1241 | public double[] getTime(){
|
---|
1242 | return this.time;
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | // Get the current time domain input
|
---|
1246 | public double getCurrentInputT(){
|
---|
1247 | return this.inputT[this.sampLen-1];
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 | // Get the time domain input array
|
---|
1251 | public double[] getInputT(){
|
---|
1252 | return this.inputT;
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | // Get the s-domain input
|
---|
1256 | public Complex getInputS(){
|
---|
1257 | return this.inputS;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | // Get the sampling period
|
---|
1261 | public double getDeltaT(){
|
---|
1262 | return this.deltaT;
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | // Get the sampling frequency
|
---|
1266 | public double getSampFreq(){
|
---|
1267 | return this.sampFreq;
|
---|
1268 | }
|
---|
1269 |
|
---|
1270 | // Get the Laplacian s value
|
---|
1271 | public Complex getS(){
|
---|
1272 | return this.sValue;
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | // Get the z-transform z value
|
---|
1276 | public Complex getZ(){
|
---|
1277 | return this.zValue;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | // Get the degree of the original s-domain numerator polynomial
|
---|
1281 | public int getSnumerDeg(){
|
---|
1282 | return this.sNumerDeg;
|
---|
1283 | }
|
---|
1284 |
|
---|
1285 | // Get the degree of the s-domain numerator polynomial after any dead time Pade approximation added
|
---|
1286 | public int getSnumerPadeDeg(){
|
---|
1287 | return this.sNumerDegPade;
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | // Get the degree of the original s-domain denominator polynomial
|
---|
1291 | public int getSdenomDeg(){
|
---|
1292 | return this.sDenomDeg;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | // Get the degree of the s-domain denominator polynomial after any dead time Pade approximation added
|
---|
1296 | public int getSdenomPadeDeg(){
|
---|
1297 | return this.sDenomDegPade;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | // Get the original s-domain numerator polynomial
|
---|
1301 | public ComplexPoly getSnumer(){
|
---|
1302 | return this.sNumer.times(this.sNumerWorkingFactor);
|
---|
1303 | }
|
---|
1304 |
|
---|
1305 | // Get the s-domain numerator polynomial after any dead time Pade approximation added
|
---|
1306 | public ComplexPoly getSnumerPade(){
|
---|
1307 | return this.sNumerPade.times(this.sNumerWorkingFactor);
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | // Get the original s-domain denominator polynomial
|
---|
1311 | public ComplexPoly getSdenom(){
|
---|
1312 | return this.sDenom.times(this.sDenomWorkingFactor);
|
---|
1313 | }
|
---|
1314 |
|
---|
1315 | // Get the s-domain denominator polynomial after any dead time Pade approximation added
|
---|
1316 | public ComplexPoly getSdenomPade(){
|
---|
1317 | return this.sDenomPade.times(this.sDenomWorkingFactor);
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | // Get the degree of the z-domain numerator polynomial
|
---|
1321 | public int getZnumerDeg(){
|
---|
1322 | return this.zNumerDeg;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | // Get the degree of the z-domain denominator polynomial
|
---|
1326 | public int getZdenomDeg(){
|
---|
1327 | return this.zDenomDeg;
|
---|
1328 | }
|
---|
1329 |
|
---|
1330 | // Get the z-domain numerator polynomial
|
---|
1331 | public ComplexPoly getZnumer(){
|
---|
1332 | return this.zNumer;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | // Get the z-domain denominator polynomial
|
---|
1336 | public ComplexPoly getZdenom(){
|
---|
1337 | return this.zDenom;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | // Get the s-domain zeros without any Pade zeros
|
---|
1341 | public Complex[] getZerosS(){
|
---|
1342 | if(this.sZeros==null)this.calcPolesZerosS();
|
---|
1343 | if(this.sZeros==null){
|
---|
1344 | System.out.println("Method BlackBox.getZerosS:");
|
---|
1345 | System.out.println("There are either no s-domain zeros for this transfer function");
|
---|
1346 | System.out.println("or the s-domain numerator polynomial has not been set");
|
---|
1347 | System.out.println("null returned");
|
---|
1348 | return null;
|
---|
1349 | }
|
---|
1350 | else{
|
---|
1351 | return this.sZeros;
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | // Get the s-domain zeros plusany Pade zeros
|
---|
1357 | public Complex[] getZerosPadeS(){
|
---|
1358 | if(this.sZeros==null)this.calcPolesZerosS();
|
---|
1359 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1360 | if(this.sZerosPade==null){
|
---|
1361 | System.out.println("Method BlackBox.getZerosPadeS:");
|
---|
1362 | System.out.println("There are either no s-domain zeros for this transfer function");
|
---|
1363 | System.out.println("or the s-domain numerator polynomial has not been set");
|
---|
1364 | System.out.println("null returned");
|
---|
1365 | return null;
|
---|
1366 | }
|
---|
1367 | else{
|
---|
1368 | return this.sZerosPade;
|
---|
1369 | }
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | // Get the s-domain poles without any Pade poles
|
---|
1373 | public Complex[] getPolesS(){
|
---|
1374 | if(this.sPoles==null)this.calcPolesZerosS();
|
---|
1375 | if(this.sPoles==null){
|
---|
1376 | System.out.println("Method BlackBox.getPolesS:");
|
---|
1377 | System.out.println("There are either no s-domain poles for this transfer function");
|
---|
1378 | System.out.println("or the s-domain denominator polynomial has not been set");
|
---|
1379 | System.out.println("null returned");
|
---|
1380 | return null;
|
---|
1381 | }
|
---|
1382 | else{
|
---|
1383 | return this.sPoles;
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | // Get the s-domain poles plus any Pade poles
|
---|
1388 | public Complex[] getPolesPadeS(){
|
---|
1389 | if(this.sPoles==null)this.calcPolesZerosS();
|
---|
1390 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1391 | if(this.sPolesPade==null){
|
---|
1392 | System.out.println("Method BlackBox.getPolesPadeS:");
|
---|
1393 | System.out.println("There are either no s-domain poles for this transfer function");
|
---|
1394 | System.out.println("or the s-domain denominator polynomial has not been set");
|
---|
1395 | System.out.println("null returned");
|
---|
1396 | return null;
|
---|
1397 | }
|
---|
1398 | else{
|
---|
1399 | return this.sPolesPade;
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 |
|
---|
1404 | // Get the z-domain zeros
|
---|
1405 | public Complex[] getZerosZ(){
|
---|
1406 | if(this.zZeros==null){
|
---|
1407 | System.out.println("Method BlackBox.getZerosZ:");
|
---|
1408 | System.out.println("There are either no z-domain zeros for this transfer function");
|
---|
1409 | System.out.println("or the z-domain numerator polynomial has not been set");
|
---|
1410 | System.out.println("null returned");
|
---|
1411 | return null;
|
---|
1412 | }
|
---|
1413 | else{
|
---|
1414 | return this.zZeros;
|
---|
1415 | }
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | // Get the z-domain poles
|
---|
1419 | public Complex[] getPolesZ(){
|
---|
1420 | if(this.zPoles==null){
|
---|
1421 | System.out.println("Method BlackBox.getPolesZ:");
|
---|
1422 | System.out.println("There are either no z-domain poles for this transfer function");
|
---|
1423 | System.out.println("or the z-domain denominator polynomial has not been set");
|
---|
1424 | System.out.println("null returned");
|
---|
1425 | return null;
|
---|
1426 | }
|
---|
1427 | else{
|
---|
1428 | return this.zPoles;
|
---|
1429 | }
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 | // Get the map infinity zeros to zero or -1 option
|
---|
1433 | // maptozero: if true infinity s zeros map to zero
|
---|
1434 | // if false infinity s zeros map to minus one
|
---|
1435 | public boolean getMaptozero(){
|
---|
1436 | return this.maptozero;
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | // Get the name of the black box
|
---|
1440 | public String getName(){
|
---|
1441 | return this.name;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 | // Plot the poles and zeros of the BlackBox transfer function in the s-domain
|
---|
1445 | // Excludes any Pade poles and zeros
|
---|
1446 | public void plotPoleZeroS(){
|
---|
1447 | if(this.sNumer==null)throw new IllegalArgumentException("s domain numerator has not been set");
|
---|
1448 | if(this.sDenom==null)throw new IllegalArgumentException("s domain denominator has not been set");
|
---|
1449 | PlotPoleZero ppz = new PlotPoleZero(this.sNumer, this.sDenom);
|
---|
1450 | ppz.setS();
|
---|
1451 | ppz.pzPlot(this.name);
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | // Plot the poles and zeros of the BlackBox transfer function in the s-domain
|
---|
1455 | // Includes Pade poles and zeros
|
---|
1456 | public void plotPoleZeroPadeS(){
|
---|
1457 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1458 | if(this.sNumerPade==null)throw new IllegalArgumentException("s domain numerator has not been set");
|
---|
1459 | if(this.sDenomPade==null)throw new IllegalArgumentException("s domain denominator has not been set");
|
---|
1460 | PlotPoleZero ppz = new PlotPoleZero(this.sNumerPade, this.sDenomPade);
|
---|
1461 | ppz.setS();
|
---|
1462 | ppz.pzPlot(this.name);
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | // Plot the poles and zeros of the BlackBox transfer function in the z-domain
|
---|
1466 | public void plotPoleZeroZ(){
|
---|
1467 | PlotPoleZero ppz = new PlotPoleZero(this.zNumer, this.zDenom);
|
---|
1468 | if(this.zNumer==null)throw new IllegalArgumentException("z domain numerator has not been set");
|
---|
1469 | if(this.zDenom==null)throw new IllegalArgumentException("z domain denominator has not been set");
|
---|
1470 | ppz.setZ();
|
---|
1471 | ppz.pzPlot(this.name);
|
---|
1472 | }
|
---|
1473 |
|
---|
1474 | // Bode plots for the magnitude and phase of the s-domain transfer function
|
---|
1475 | public void plotBode(double lowFreq, double highFreq){
|
---|
1476 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1477 | int nPoints = 100;
|
---|
1478 | double[][] cdata = new double[2][nPoints];
|
---|
1479 | double[] logFreqArray = new double[nPoints+1];
|
---|
1480 | double logLow = Fmath.log10(2.0D*Math.PI*lowFreq);
|
---|
1481 | double logHigh = Fmath.log10(2.0D*Math.PI*highFreq);
|
---|
1482 | double incr = (logHigh - logLow)/((double)nPoints-1.0D);
|
---|
1483 | double freqArray = lowFreq;
|
---|
1484 | logFreqArray[0]=logLow;
|
---|
1485 | for(int i=0; i<nPoints; i++){
|
---|
1486 | freqArray=Math.pow(10,logFreqArray[i]);
|
---|
1487 | cdata[0][i]=logFreqArray[i];
|
---|
1488 | cdata[1][i]=20.0D*Fmath.log10(this.evalMagTransFunctS(freqArray/(2.0*Math.PI)));
|
---|
1489 | logFreqArray[i+1]=logFreqArray[i]+incr;
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | PlotGraph pgmag = new PlotGraph(cdata);
|
---|
1493 | pgmag.setGraphTitle("Bode Plot = magnitude versus log10[radial frequency]");
|
---|
1494 | pgmag.setGraphTitle2(this.name);
|
---|
1495 | pgmag.setXaxisLegend("Log10[radial frequency]");
|
---|
1496 | pgmag.setYaxisLegend("Magnitude[Transfer Function]");
|
---|
1497 | pgmag.setYaxisUnitsName("dB");
|
---|
1498 | pgmag.setPoint(0);
|
---|
1499 | pgmag.setLine(3);
|
---|
1500 | pgmag.plot();
|
---|
1501 | for(int i=0; i<nPoints; i++){
|
---|
1502 | freqArray=Math.pow(10,logFreqArray[i]);
|
---|
1503 | cdata[0][i]=logFreqArray[i];
|
---|
1504 | cdata[1][i]=this.evalPhaseTransFunctS(freqArray)*180.0D/Math.PI;
|
---|
1505 | }
|
---|
1506 | PlotGraph pgphase = new PlotGraph(cdata);
|
---|
1507 | pgphase.setGraphTitle("Bode Plot = phase versus log10[radial frequency]");
|
---|
1508 | pgphase.setGraphTitle2(this.name);
|
---|
1509 | pgphase.setXaxisLegend("Log10[radial frequency]");
|
---|
1510 | pgphase.setYaxisLegend("Phase[Transfer Function]");
|
---|
1511 | pgphase.setYaxisUnitsName("degrees");
|
---|
1512 | pgphase.setPoint(0);
|
---|
1513 | pgmag.setLine(3);
|
---|
1514 | pgphase.plot();
|
---|
1515 |
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | // Get the current time domain output for a given input and given time
|
---|
1519 | // resets deltaT
|
---|
1520 | public double getCurrentOutputT(double ttime, double inp){
|
---|
1521 | this.setInputT(ttime, inp);
|
---|
1522 | return this.getCurrentOutputT();
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | // Get the current time domain output for the stored input
|
---|
1526 | public double getCurrentOutputT(){
|
---|
1527 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1528 |
|
---|
1529 | ComplexPoly numerI = this.sNumerPade.times(new Complex(this.inputT[this.sampLen-1], 0.0));
|
---|
1530 | Complex[] polyC = {Complex.zero(), Complex.plusOne()};
|
---|
1531 | ComplexPoly polyH = new ComplexPoly(polyC);
|
---|
1532 | ComplexPoly denomI = this.sDenomPade.times(polyH);
|
---|
1533 |
|
---|
1534 | Complex[][] coeffT = BlackBox.inverseTransform(numerI, denomI, this.sNumerWorkingFactor, this.sDenomScaleFactor);
|
---|
1535 |
|
---|
1536 | Complex tempc = Complex.zero();
|
---|
1537 | for(int j=0; j<coeffT[0].length; j++){
|
---|
1538 | tempc.plusEquals(BlackBox.timeTerm(this.time[this.sampLen-1], coeffT[0][j], coeffT[1][j], coeffT[2][j]));
|
---|
1539 | }
|
---|
1540 | double outReal = tempc.getReal();
|
---|
1541 | double outImag = tempc.getImag();
|
---|
1542 | double temp;
|
---|
1543 | boolean outTest=true;
|
---|
1544 | if(outImag==0.0D)outTest=false;
|
---|
1545 | if(outTest){
|
---|
1546 | temp=Math.max(Math.abs(outReal),Math.abs(outImag));
|
---|
1547 | if(Math.abs((outReal-outImag)/temp)>1.e-5){
|
---|
1548 | outTest=false;
|
---|
1549 | }
|
---|
1550 | else{
|
---|
1551 | System.out.println("output in Blackbox.getCurrentOutputT() has a significant imaginary part");
|
---|
1552 | System.out.println("time = " + this.time[this.sampLen-1] + " real = " + outReal + " imag = " + outImag);
|
---|
1553 | System.out.println("Output equated to the real part");
|
---|
1554 | }
|
---|
1555 | }
|
---|
1556 | //for(int i=0; i<this.sampLen-2; i++)this.outputT[i]=this.outputT[i+1];
|
---|
1557 | this.outputT[this.sampLen-1] = outReal;
|
---|
1558 | return this.outputT[this.sampLen-1];
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | // Get the time domain output array
|
---|
1562 | public double[] getOutputT(){
|
---|
1563 | return this.outputT;
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | // Get the s-domain output for the stored input and s value.
|
---|
1567 | public Complex getOutputS(){
|
---|
1568 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1569 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1570 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1571 | this.outputS = num.over(den).times(this.inputS);
|
---|
1572 | if(this.deadTime!=0)this.outputS = this.outputS.times(Complex.exp(this.sValue.times(-this.deadTime)));
|
---|
1573 | return this.outputS;
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | // Get the s-domain output for a given s value and input.
|
---|
1577 | public Complex getOutputS(Complex svalue, Complex inputs){
|
---|
1578 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1579 | this.inputS = inputs;
|
---|
1580 | this.sValue = svalue;
|
---|
1581 | Complex num = this.sNumer.evaluate(this.sValue);
|
---|
1582 | Complex den = this.sDenom.evaluate(this.sValue);
|
---|
1583 | this.outputS = num.over(den).times(this.inputS);
|
---|
1584 | if(this.deadTime!=0)this.outputS = this.outputS.times(Complex.exp(this.sValue.times(-this.deadTime)));
|
---|
1585 | return this.outputS;
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 | // Reset the number of points used in plotting a response curve
|
---|
1589 | public void setNplotPoints(int nPoints){
|
---|
1590 | this.nPlotPoints = nPoints;
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 | // Return the number of points used in plotting a response curve
|
---|
1594 | public int getNplotPoints(){
|
---|
1595 | return this.nPlotPoints;
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | // Plots the time course for an impulse input
|
---|
1599 | public void impulseInput(double impulseMag, double finalTime){
|
---|
1600 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1601 |
|
---|
1602 | // Multiply transfer function by impulse magnitude (impulseMag)
|
---|
1603 | ComplexPoly impulseN = new ComplexPoly(0);
|
---|
1604 | impulseN.resetCoeff(0, Complex.plusOne().times(impulseMag));
|
---|
1605 | ComplexPoly numerT = this.sNumerPade.times(impulseN);
|
---|
1606 | ComplexPoly denomT = this.sDenomPade.copy();
|
---|
1607 | String graphtitle1 = "Impulse Input Transient: Impulse magnitude = "+impulseMag;
|
---|
1608 | String graphtitle2 = this.getName();
|
---|
1609 | BlackBox.transientResponse(this.nPlotPoints, finalTime, this.deadTime, numerT, denomT, graphtitle1, graphtitle2, this.sNumerWorkingFactor, this.sDenomScaleFactor);
|
---|
1610 | }
|
---|
1611 |
|
---|
1612 | // Plots the time course for a unit impulse input
|
---|
1613 | public void impulseInput(double finalTime){
|
---|
1614 | this.impulseInput(1.0D, finalTime);
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 | // Plots the time course for a step input
|
---|
1618 | public void stepInput(double stepMag, double finalTime){
|
---|
1619 | Complex sNumer0 = this.sNumerPade.coeffCopy(0);
|
---|
1620 | Complex sDenom0 = this.sDenomPade.coeffCopy(0);
|
---|
1621 | boolean test0 = false;
|
---|
1622 | if(Complex.isReal(sNumer0) && Complex.isReal(sDenom0))test0=true;
|
---|
1623 |
|
---|
1624 | if(sNumerDeg==0 && sDenomDeg==0 && test0){
|
---|
1625 | // Calculate time course outputs
|
---|
1626 | int n = 51; // number of points on plot
|
---|
1627 | double incrT = finalTime/(double)(n-2); // plotting increment
|
---|
1628 | double cdata[][] = new double [2][n]; // plotting array
|
---|
1629 |
|
---|
1630 | cdata[0][0]=0.0D;
|
---|
1631 | cdata[0][1]=0.0D;
|
---|
1632 | for(int i=2; i<n; i++){
|
---|
1633 | cdata[0][i]=cdata[0][i-1]+incrT;
|
---|
1634 | }
|
---|
1635 | double kpterm = sNumer0.getReal()*stepMag/sDenom0.getReal();
|
---|
1636 | cdata[1][0]=0.0D;
|
---|
1637 | for(int i=1; i<n; i++){
|
---|
1638 | cdata[1][i] = kpterm;
|
---|
1639 | }
|
---|
1640 | if(this.deadTime!=0.0D)for(int i=0; i<n; i++)cdata[0][i] += this.deadTime;
|
---|
1641 |
|
---|
1642 | // Plot
|
---|
1643 | PlotGraph pg = new PlotGraph(cdata);
|
---|
1644 |
|
---|
1645 | pg.setGraphTitle("Step Input Transient: Step magnitude = "+stepMag);
|
---|
1646 | pg.setGraphTitle2(this.getName());
|
---|
1647 | pg.setXaxisLegend("Time");
|
---|
1648 | pg.setXaxisUnitsName("s");
|
---|
1649 | pg.setYaxisLegend("Output");
|
---|
1650 | pg.setPoint(0);
|
---|
1651 | pg.setLine(3);
|
---|
1652 | pg.plot();
|
---|
1653 |
|
---|
1654 | }
|
---|
1655 | else{
|
---|
1656 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1657 | // Multiply transfer function by step magnitude (stepMag)/s
|
---|
1658 | ComplexPoly numerT = this.sNumer.times(stepMag);
|
---|
1659 | Complex[] polyC = {Complex.zero(), Complex.plusOne()};
|
---|
1660 | ComplexPoly polyH = new ComplexPoly(polyC);
|
---|
1661 | ComplexPoly denomT = this.sDenom.times(polyH);
|
---|
1662 | String graphtitle1 = "Step Input Transient: Step magnitude = "+stepMag;
|
---|
1663 | String graphtitle2 = this.getName();
|
---|
1664 |
|
---|
1665 | BlackBox.transientResponse(this.nPlotPoints, finalTime, this.deadTime, numerT, denomT, graphtitle1, graphtitle2, this.sNumerWorkingFactor, this.sDenomScaleFactor);
|
---|
1666 | }
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 | // Plots the time course for a unit step input
|
---|
1670 | public void stepInput(double finalTime){
|
---|
1671 | this.stepInput(1.0D, finalTime);
|
---|
1672 | }
|
---|
1673 |
|
---|
1674 | // Plots the time course for an nth order ramp input (a.t^n)
|
---|
1675 | public void rampInput(double rampGradient, int rampOrder, double finalTime){
|
---|
1676 | if(!this.padeAdded)this.transferPolesZeros();
|
---|
1677 |
|
---|
1678 | // Multiply transfer function by ramp input (rampGradient)(rampOrder!)/s^(ramporder+1)
|
---|
1679 | ComplexPoly numerT = this.sNumer.times(rampGradient*Fmath.factorial(rampOrder));
|
---|
1680 | Complex[] polyC = Complex.oneDarray(rampOrder+1);
|
---|
1681 | for(int i=0; i<rampOrder; i++)polyC[i] = Complex.zero();
|
---|
1682 | polyC[rampOrder] = Complex.plusOne();
|
---|
1683 | ComplexPoly polyH = new ComplexPoly(polyC);
|
---|
1684 | ComplexPoly denomT = this.sDenom.times(polyH);
|
---|
1685 | String graphtitle1 = "";
|
---|
1686 | if(rampGradient!=1.0D){
|
---|
1687 | if(rampOrder!=1){
|
---|
1688 | graphtitle1 += "nth order ramp (at^n) input transient: a = "+rampGradient+" n = "+rampOrder;
|
---|
1689 | }
|
---|
1690 | else{
|
---|
1691 | graphtitle1 += "First order ramp (at) input transient: a = "+rampGradient;
|
---|
1692 | }
|
---|
1693 | }
|
---|
1694 | else{
|
---|
1695 | if(rampOrder!=1){
|
---|
1696 | graphtitle1 += "Unit ramp (t) input transient";
|
---|
1697 | }
|
---|
1698 | else{
|
---|
1699 | graphtitle1 += "nth order ramp (t^n) input transient: n = "+rampOrder;
|
---|
1700 | }
|
---|
1701 | }
|
---|
1702 | String graphtitle2 = this.getName();
|
---|
1703 | BlackBox.transientResponse(this.nPlotPoints, finalTime, this.deadTime, numerT, denomT, graphtitle1, graphtitle2, this.sNumerWorkingFactor, this.sDenomScaleFactor);
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | // Plots the time course for an nth order ramp input (t^n)
|
---|
1707 | public void rampInput(int rampOrder, double finalTime){
|
---|
1708 | double rampGradient = 1.0D;
|
---|
1709 | this.rampInput(rampGradient, rampOrder, finalTime);
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 | // Plots the time course for a first order ramp input (at)
|
---|
1713 | public void rampInput(double rampGradient, double finalTime){
|
---|
1714 | int rampOrder = 1;
|
---|
1715 | this.rampInput(rampGradient, rampOrder, finalTime);
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | // Plots the time course for a unit ramp input (t)
|
---|
1719 | public void rampInput(double finalTime){
|
---|
1720 | double rampGradient = 1.0D;
|
---|
1721 | int rampOrder = 1;
|
---|
1722 | this.rampInput(rampGradient, rampOrder, finalTime);
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 | // Plots the time course for a given transfer function from time t = zero for a quiescent system
|
---|
1726 | // Denominator scaling factor calculated
|
---|
1727 | public static void transientResponse(int nPoints, double finalTime, double deadTime, ComplexPoly numerT, ComplexPoly denomT, String graphtitle1, String graphtitle2){
|
---|
1728 | Complex[] roots = denomT.rootsNoMessages();
|
---|
1729 | Complex magDenom = BlackBox.scaleFactor(denomT, roots);
|
---|
1730 | Complex magNumer = Complex.plusOne();
|
---|
1731 | BlackBox.transientResponse(nPoints, finalTime, deadTime, numerT, denomT, graphtitle1, graphtitle2, magNumer, magDenom);
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 | // Plots the time course for a given transfer function from time t = zero for a quiescent system
|
---|
1735 | // Denominator scaling factor provided
|
---|
1736 | public static void transientResponse(int nPoints, double finalTime, double deadTime, ComplexPoly numerT, ComplexPoly denomT, String graphtitle1, String graphtitle2, Complex magN, Complex magD){
|
---|
1737 | // Obtain coefficients and constants of an partial fraction expansion
|
---|
1738 |
|
---|
1739 |
|
---|
1740 | Complex[][] coeffT = BlackBox.inverseTransform(numerT, denomT, magN, magD);
|
---|
1741 |
|
---|
1742 | // Calculate time course outputs
|
---|
1743 | int m = denomT.getDeg(); // number of Aexp(-at) terms
|
---|
1744 | double incrT = finalTime/(double)(nPoints-1); // plotting increment
|
---|
1745 | double cdata[][] = new double [2][nPoints]; // plotting array
|
---|
1746 | double temp = 0.0D; // working variable
|
---|
1747 | Complex tempc = new Complex(); // working variable
|
---|
1748 | double outReal = 0.0D; // real part of output
|
---|
1749 | double outImag = 0.0D; // imaginary part of output (should be zero)
|
---|
1750 | boolean outTest = true; // false if outImag=zero
|
---|
1751 |
|
---|
1752 | cdata[0][0]=0.0D;
|
---|
1753 | for(int i=1; i<nPoints; i++){
|
---|
1754 | cdata[0][i]=cdata[0][i-1]+incrT;
|
---|
1755 | }
|
---|
1756 | for(int i=0; i<nPoints; i++){
|
---|
1757 | outTest= true;
|
---|
1758 | tempc = Complex.zero();
|
---|
1759 | for(int j=0; j<m; j++){
|
---|
1760 | tempc.plusEquals(BlackBox.timeTerm(cdata[0][i], coeffT[0][j], coeffT[1][j], coeffT[2][j]));
|
---|
1761 | }
|
---|
1762 | outReal = tempc.getReal();
|
---|
1763 | outImag = tempc.getImag();
|
---|
1764 | if(outImag==0.0D)outTest=false;
|
---|
1765 | if(outTest){
|
---|
1766 | temp=Math.max(Math.abs(outReal),Math.abs(outImag));
|
---|
1767 | if(Math.abs((outReal-outImag)/temp)>1.e-5){
|
---|
1768 | outTest=false;
|
---|
1769 | }
|
---|
1770 | else{
|
---|
1771 | System.out.println("output in Blackbox.stepInput has a significant imaginary part");
|
---|
1772 | System.out.println("time = " + cdata[0][i] + " real = " + outReal + " imag = " + outImag);
|
---|
1773 | System.out.println("Output equated to the real part");
|
---|
1774 | }
|
---|
1775 | }
|
---|
1776 | cdata[1][i]=outReal;
|
---|
1777 | cdata[0][i]+=deadTime;
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | // Plot
|
---|
1781 | PlotGraph pg = new PlotGraph(cdata);
|
---|
1782 |
|
---|
1783 | pg.setGraphTitle(graphtitle1);
|
---|
1784 | pg.setGraphTitle2(graphtitle2);
|
---|
1785 | pg.setXaxisLegend("Time");
|
---|
1786 | pg.setXaxisUnitsName("s");
|
---|
1787 | pg.setYaxisLegend("Output");
|
---|
1788 | pg.setPoint(0);
|
---|
1789 | pg.setLine(3);
|
---|
1790 | pg.setNoYoffset(true);
|
---|
1791 | if(deadTime<(cdata[0][nPoints-1]-cdata[0][0]))pg.setNoXoffset(true);
|
---|
1792 | pg.setXlowFac(0.0D);
|
---|
1793 | pg.setYlowFac(0.0D);
|
---|
1794 | pg.plot();
|
---|
1795 | }
|
---|
1796 |
|
---|
1797 |
|
---|
1798 | // Returns the output term for a given time, coefficient, constant and power
|
---|
1799 | // for output = A.time^(n-1).exp(constant*time)/(n-1)!
|
---|
1800 | // Complex arguments and return
|
---|
1801 | public static Complex timeTerm(double ttime, Complex coeff, Complex constant, Complex power){
|
---|
1802 | Complex ret = new Complex();
|
---|
1803 | int n = (int)power.getReal() - 1;
|
---|
1804 | ret = coeff.times(Math.pow(ttime,n));
|
---|
1805 | ret = ret.over(Fmath.factorial(n));
|
---|
1806 | ret = ret.times(Complex.exp(constant.times(ttime)));
|
---|
1807 | return ret;
|
---|
1808 | }
|
---|
1809 |
|
---|
1810 | // Returns the output term for a given time, coefficient, constant and power
|
---|
1811 | // for output = A.time^(n-1).exp(constant*time)/(n-1)!
|
---|
1812 | // Real arguments and return
|
---|
1813 | public static double timeTerm(double ttime, double coeff, double constant, int power){
|
---|
1814 | int n = power - 1;
|
---|
1815 | double ret = coeff*Math.pow(ttime,n);
|
---|
1816 | ret = ret/Fmath.factorial(n);
|
---|
1817 | ret = ret*(Math.exp(constant*ttime));
|
---|
1818 | return ret;
|
---|
1819 | }
|
---|
1820 |
|
---|
1821 | // Returns the output term for a given time, coefficient, constant and power
|
---|
1822 | // for output = A.time^(n-1).exp(constant*time)/(n-1)!
|
---|
1823 | // Real arguments and return - all double
|
---|
1824 | public static double timeTerm(double ttime, double coeff, double constant, double power){
|
---|
1825 | double n = power - 1;
|
---|
1826 | double ret = coeff*Math.pow(ttime,n);
|
---|
1827 | ret = ret/Fmath.factorial(n);
|
---|
1828 | ret = ret*(Math.exp(constant*ttime));
|
---|
1829 | return ret;
|
---|
1830 | }
|
---|
1831 |
|
---|
1832 | // Returns the coefficients A, the constant a and the power n in the f(A.exp(-at),n) term for the
|
---|
1833 | // the inverse Laplace transform of a complex polynolial divided
|
---|
1834 | // by a complex polynomial expanded as partial fractions
|
---|
1835 | // A and a are returnd as a 2 x n double array were n is the number of terms
|
---|
1836 | // in the partial fraction. the first row contains the A values, the second the a values
|
---|
1837 | // denominator scaling factor calculated
|
---|
1838 | public static double[][] inverseTransformToReal(ComplexPoly numer, ComplexPoly denom){
|
---|
1839 | Complex[][] com = inverseTransform(numer, denom);
|
---|
1840 | int n = com[0].length;
|
---|
1841 | double[][] ret = new double[3][n];
|
---|
1842 | for(int i=0; i<n;i++){
|
---|
1843 | ret[0][i] = com[0][i].getReal();
|
---|
1844 | if(Math.abs((ret[0][i]-com[0][i].getImag())/ret[0][i])>1.e-5){
|
---|
1845 | System.out.println("BlackBox inverseTransformToReal coefficient A[" + i + "] has a significant imaginary part: " + com[0][i]);
|
---|
1846 | System.out.println("A equated to the real part");
|
---|
1847 | System.out.println("inverseTransform method may be more appropriate");
|
---|
1848 | }
|
---|
1849 | ret[1][i] = com[1][i].getReal();
|
---|
1850 | if(Math.abs((ret[1][i]-com[1][i].getImag())/ret[1][i])>1.e-5){
|
---|
1851 | System.out.println("BlackBox inverseTransformToReal coefficient a[" + i + "] has a significant imaginary part: " + com[1][i]);
|
---|
1852 | System.out.println("a equated to the real part");
|
---|
1853 | System.out.println("inverseTransform method may be more appropriate");
|
---|
1854 | }
|
---|
1855 | ret[2][i] = com[2][i].getReal();
|
---|
1856 | }
|
---|
1857 | return ret;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 |
|
---|
1861 |
|
---|
1862 | // Returns the coefficients A, the constant a and the power n in the f(A.exp(-at),n) term for the
|
---|
1863 | // the inverse Laplace transform of a complex polynolial divided
|
---|
1864 | // by a complex polynomial expanded as partial fractions
|
---|
1865 | // A and a are returnd as a 3 x n Complex array were n is the number of terms
|
---|
1866 | // in the partial fraction. The first row contains the A values, the second the a values and the third the power of the denominator
|
---|
1867 | // denominator scaling factor calculated
|
---|
1868 | public static Complex[][] inverseTransform(ComplexPoly numer, ComplexPoly denom){
|
---|
1869 | Complex[] roots = denom.rootsNoMessages();
|
---|
1870 | Complex magDenom = BlackBox.scaleFactor(denom, roots);
|
---|
1871 | Complex magNumer = Complex.plusOne();
|
---|
1872 | return inverseTransform(numer, denom, magNumer, magDenom);
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | // Returns the coefficients A, the constant a and the power n in the f(A.exp(-at),n) term for the
|
---|
1876 | // the inverse Laplace transform of a complex polynolial divided
|
---|
1877 | // by a complex polynomial expanded as partial fractions
|
---|
1878 | // A and a are returnd as a 3 x n Complex array were n is the number of terms
|
---|
1879 | // in the partial fraction. The first row contains the A values, the second the a values and the third the power of the denominator
|
---|
1880 | // denominator scaling factor provided
|
---|
1881 | public static Complex[][] inverseTransform(ComplexPoly numer, ComplexPoly denom, Complex magNumer, Complex magDenom){
|
---|
1882 |
|
---|
1883 | int polesN = denom.getDeg(); // number of poles
|
---|
1884 | int zerosN = numer.getDeg(); // numer of zeros
|
---|
1885 | if(zerosN>=polesN)throw new IllegalArgumentException("The degree of the numerator is equal to or greater than the degree of the denominator");
|
---|
1886 | Complex[][] ret = Complex.twoDarray(3, polesN); // array for returning coefficients, constants and powers
|
---|
1887 |
|
---|
1888 | // Special case: input = A/(B + C)s
|
---|
1889 | if(polesN==1 && zerosN==0){
|
---|
1890 | Complex num = numer.coeffCopy(0);
|
---|
1891 | Complex den0 = denom.coeffCopy(0);
|
---|
1892 | Complex den1 = denom.coeffCopy(1);
|
---|
1893 | ret[0][0] = num.over(den1);
|
---|
1894 | ret[1][0] = Complex.minusOne().times(den0.over(den1));
|
---|
1895 | ret[2][0] = new Complex(1.0, 0.0);
|
---|
1896 | return ret;
|
---|
1897 | }
|
---|
1898 |
|
---|
1899 | int nDifferentRoots = polesN; // number of roots of different values
|
---|
1900 | int nSetsIdenticalRoots = 0; // number of sets roots of identical value
|
---|
1901 | Complex[] poles = denom.rootsNoMessages(); // poles array
|
---|
1902 | int[] polePower = new int[polesN]; // power, n, of each (s - root)^n term
|
---|
1903 | boolean[] poleSet = new boolean[polesN]; // true if root has been identified as either equal to another root
|
---|
1904 | int[] poleIdent = new int[polesN]; // same integer for identical (s-root) terms; integer = index of first case of that root
|
---|
1905 | int[] poleHighestPower = new int[polesN]; // highest pole power for that set of identical poles
|
---|
1906 | boolean[] termSet = new boolean[polesN]; // false if n in (s-root)^n is greater than 1 and less than maximum value of n for that root
|
---|
1907 | double identicalRootLimit = 1.0e-2; // roots treated as identical if equal to one part in identicalRootLimit
|
---|
1908 | int[] numberInSet = new int[polesN]; // number of poles indentical to this pole including this pole
|
---|
1909 |
|
---|
1910 | // Find identical roots within identicalRootLimit and assign power n [ (s-a)^n] to all roots
|
---|
1911 | int power = 0;
|
---|
1912 | Complex identPoleAverage = new Complex();
|
---|
1913 | int lastPowerIndex=0;
|
---|
1914 | for(int i=0; i<polesN; i++)poleSet[i]=false;
|
---|
1915 | for(int i=0; i<polesN; i++)termSet[i]=true;
|
---|
1916 | for(int i=0; i<polesN; i++){
|
---|
1917 | if(!poleSet[i]){
|
---|
1918 | power=1;
|
---|
1919 | polePower[i]=1;
|
---|
1920 | poleHighestPower[i]= 1;
|
---|
1921 | poleIdent[i]=i;
|
---|
1922 | numberInSet[i]=1;
|
---|
1923 | identPoleAverage = poles[i];
|
---|
1924 | for(int j=i+1; j<polesN; j++){
|
---|
1925 | if(!poleSet[j]){
|
---|
1926 | if(poles[i].isEqualWithinLimits(poles[j],identicalRootLimit)){
|
---|
1927 | poleIdent[j]=i;
|
---|
1928 | polePower[j]=++power;
|
---|
1929 | poleSet[j]=true;
|
---|
1930 | poleSet[i]=true;
|
---|
1931 | termSet[j]=false;
|
---|
1932 | termSet[i]=false;
|
---|
1933 | lastPowerIndex=j;
|
---|
1934 | nDifferentRoots--;
|
---|
1935 | identPoleAverage = identPoleAverage.plus(poles[j]);
|
---|
1936 | }
|
---|
1937 | else{
|
---|
1938 | poleIdent[j]=j;
|
---|
1939 | polePower[j]=1;
|
---|
1940 | }
|
---|
1941 | }
|
---|
1942 | }
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | if(poleSet[i]){
|
---|
1946 | nDifferentRoots--;
|
---|
1947 | nSetsIdenticalRoots++;
|
---|
1948 |
|
---|
1949 | // Set termSet to true if pole is recurring term with the highest power
|
---|
1950 | termSet[lastPowerIndex]=true;
|
---|
1951 |
|
---|
1952 | // Replace roots within identicalRootLimit with their average value
|
---|
1953 | identPoleAverage = identPoleAverage.over(power);
|
---|
1954 | for(int j=0; j<polesN; j++){
|
---|
1955 | if(poleSet[j] && poleIdent[j]==i){
|
---|
1956 | poles[j] = identPoleAverage;
|
---|
1957 | poleHighestPower[i] = power;
|
---|
1958 | numberInSet[j] = power;
|
---|
1959 | }
|
---|
1960 | }
|
---|
1961 | }
|
---|
1962 | }
|
---|
1963 |
|
---|
1964 | // Calculate pole average
|
---|
1965 | Complex poleAverage = Complex.zero();
|
---|
1966 | Complex absPoleAverage = Complex.zero();
|
---|
1967 | for(int i=0; i<polesN; i++){
|
---|
1968 | poleAverage = poleAverage.plus(poles[i]);
|
---|
1969 | absPoleAverage = absPoleAverage.plus(poles[i].abs());
|
---|
1970 | }
|
---|
1971 | poleAverage = poleAverage.over(polesN);
|
---|
1972 | absPoleAverage = absPoleAverage.over(polesN);
|
---|
1973 |
|
---|
1974 | // Calculate pole substitute for identical substitution values
|
---|
1975 | Complex poleSubstitute = poleAverage;
|
---|
1976 | if(poleSubstitute.isZero())poleSubstitute = absPoleAverage;
|
---|
1977 | if(poleSubstitute.isZero())poleSubstitute = Complex.plusOne();
|
---|
1978 |
|
---|
1979 | // Choose initial set of s substitution values
|
---|
1980 | Complex[] subValues = Complex.oneDarray(polesN);
|
---|
1981 | boolean[] subSet = new boolean[polesN];
|
---|
1982 | for(int i=0; i<polesN; i++)subSet[i] = false;
|
---|
1983 |
|
---|
1984 | Complex[] shifts = null;
|
---|
1985 | Complex delta = new Complex(1.7, 0.0); // root separation factor
|
---|
1986 | for(int i=0; i<polesN; i++)subValues[i] = poles[i].copy();
|
---|
1987 | int currentNumberInSet = 0;
|
---|
1988 | if(nSetsIdenticalRoots>0){
|
---|
1989 | for(int i=0; i<polesN; i++){
|
---|
1990 | if(numberInSet[i]>1 && !subSet[i]){
|
---|
1991 | currentNumberInSet = numberInSet[i];
|
---|
1992 | shifts = Complex.oneDarray(numberInSet[i]);
|
---|
1993 | int centre = numberInSet[i]/2;
|
---|
1994 | if(Fmath.isEven(numberInSet[i])){
|
---|
1995 | for(int j=0; j<centre; j++){
|
---|
1996 | shifts[centre+j] = delta.times((double)(j+1));
|
---|
1997 | shifts[centre-1-j] = shifts[centre+j].times(-1.0);
|
---|
1998 | }
|
---|
1999 | }
|
---|
2000 | else{
|
---|
2001 | shifts[centre] = Complex.zero();
|
---|
2002 | for(int j=0; j<centre; j++){
|
---|
2003 | shifts[centre+1+j] = delta.times((double)(j+1));
|
---|
2004 | shifts[centre-1-j] = shifts[centre+j].times(-1.0);
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 | int kk = 0;
|
---|
2008 | for(int j=0; j<polesN; j++){
|
---|
2009 | if(!subSet[j] && numberInSet[j]==currentNumberInSet){
|
---|
2010 | Complex incr = poles[j];
|
---|
2011 | if(incr.isZero())incr = poleSubstitute;
|
---|
2012 | subValues[j] = shifts[kk].times(incr);
|
---|
2013 | subSet[j] = true;
|
---|
2014 | kk++;
|
---|
2015 |
|
---|
2016 | }
|
---|
2017 | }
|
---|
2018 | }
|
---|
2019 | }
|
---|
2020 | }
|
---|
2021 |
|
---|
2022 | // Check for identical and very close substitution values
|
---|
2023 | boolean testii = true;
|
---|
2024 | int ii = 0;
|
---|
2025 | int nAttempts = 0;
|
---|
2026 | while(testii){
|
---|
2027 | int jj = ii + 1;
|
---|
2028 | boolean testjj = true;
|
---|
2029 | while(testjj){
|
---|
2030 | if(subValues[ii].isEqualWithinLimits(subValues[jj],identicalRootLimit)){
|
---|
2031 | subValues[ii] = subValues[ii].plus(poleSubstitute.times((double)nAttempts));
|
---|
2032 | nAttempts++;
|
---|
2033 | ii=0;
|
---|
2034 | testjj = false;
|
---|
2035 | if(nAttempts>1000000)throw new IllegalArgumentException("a non repeating set of substitution values could not be foumd");
|
---|
2036 | }
|
---|
2037 | else{
|
---|
2038 | jj++;
|
---|
2039 | }
|
---|
2040 | if(jj>=polesN)testjj = false;
|
---|
2041 | }
|
---|
2042 | ii++;
|
---|
2043 | if(ii>=polesN-1)testii = false;
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 | // Set up the linear equations
|
---|
2047 | // Create vector and matrix arrays
|
---|
2048 | Complex[][] mat = Complex.twoDarray(polesN, polesN);
|
---|
2049 | Complex[] vec = Complex.oneDarray(polesN);
|
---|
2050 |
|
---|
2051 | // Fill vector
|
---|
2052 | for(int i=0; i<polesN; i++){
|
---|
2053 | if(zerosN>0){
|
---|
2054 | vec[i] = numer.evaluate(subValues[i]);
|
---|
2055 | }
|
---|
2056 | else{
|
---|
2057 | vec[i] = numer.coeffCopy(0);
|
---|
2058 | }
|
---|
2059 | }
|
---|
2060 |
|
---|
2061 | // fill matrix
|
---|
2062 | for(int i=0; i<polesN; i++){
|
---|
2063 | for(int j=0; j<polesN; j++){
|
---|
2064 | Complex denomTerm = Complex.plusOne();
|
---|
2065 | int powerD = 0;
|
---|
2066 | for(int k=0; k<polesN; k++){
|
---|
2067 | if(termSet[k]){
|
---|
2068 | if(j!=k){
|
---|
2069 | if(polePower[k]==1){
|
---|
2070 | denomTerm = denomTerm.times(subValues[i].minus(poles[k]));
|
---|
2071 | }
|
---|
2072 | else{
|
---|
2073 | denomTerm = denomTerm.times(Complex.pow(subValues[i].minus(poles[k]), polePower[k]));
|
---|
2074 | }
|
---|
2075 | }
|
---|
2076 | else{
|
---|
2077 | if(polePower[j]<poleHighestPower[j]){
|
---|
2078 | powerD = poleHighestPower[j] - polePower[j];
|
---|
2079 | if(powerD==1){
|
---|
2080 | denomTerm = denomTerm.times(subValues[i].minus(poles[k]));
|
---|
2081 | }
|
---|
2082 | else{
|
---|
2083 | if(powerD!=0){
|
---|
2084 | denomTerm = denomTerm.times(Complex.pow(subValues[i].minus(poles[k]), powerD));
|
---|
2085 | }
|
---|
2086 | }
|
---|
2087 | }
|
---|
2088 | }
|
---|
2089 | }
|
---|
2090 | }
|
---|
2091 | mat[i][j] = denomTerm;
|
---|
2092 | }
|
---|
2093 |
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 |
|
---|
2097 | // Solve linear equations
|
---|
2098 | ComplexMatrix cmat = new ComplexMatrix(mat);
|
---|
2099 | Complex[] terms = cmat.solveLinearSet(vec);
|
---|
2100 |
|
---|
2101 | // fill ret for returning
|
---|
2102 | for(int i=0; i<polesN; i++){
|
---|
2103 | ret[0][i]=terms[i].times(magNumer).over(magDenom);
|
---|
2104 | ret[1][i]=poles[i];
|
---|
2105 | ret[2][i].reset(polePower[i],0.0D);
|
---|
2106 | }
|
---|
2107 | return ret;
|
---|
2108 |
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | // Deep copy
|
---|
2112 | public BlackBox copy(){
|
---|
2113 | if(this==null){
|
---|
2114 | return null;
|
---|
2115 | }
|
---|
2116 | else{
|
---|
2117 | BlackBox bb = new BlackBox();
|
---|
2118 | this.copyBBvariables(bb);
|
---|
2119 | return bb;
|
---|
2120 | }
|
---|
2121 | }
|
---|
2122 |
|
---|
2123 | // Copies BlackBox variables
|
---|
2124 | public void copyBBvariables(BlackBox bb){
|
---|
2125 |
|
---|
2126 | bb.sampLen = this.sampLen;
|
---|
2127 | bb.inputT = Conv.copy(this.inputT);
|
---|
2128 | bb.outputT = Conv.copy(this.outputT);
|
---|
2129 | bb.time = Conv.copy(this.time);
|
---|
2130 | bb.forgetFactor = this.forgetFactor;
|
---|
2131 | bb.deltaT = this.deltaT;
|
---|
2132 | bb.sampFreq = this.sampFreq;
|
---|
2133 | bb.inputS = this.inputS.copy();
|
---|
2134 | bb.outputS = this.outputS.copy();
|
---|
2135 | bb.sValue = this.sValue.copy();
|
---|
2136 | bb.zValue = this.zValue.copy();
|
---|
2137 | bb.sNumer = this.sNumer.copy();
|
---|
2138 | bb.sDenom = this.sDenom.copy();
|
---|
2139 | bb.zNumer = this.zNumer.copy();
|
---|
2140 | bb.zDenom = this.zDenom.copy();
|
---|
2141 | bb.sNumerSet = this.sNumerSet;
|
---|
2142 | bb.sDenomSet = this.sDenomSet;
|
---|
2143 | bb.sNumerScaleFactor = this.sNumerScaleFactor;
|
---|
2144 | bb.sDenomScaleFactor = this.sDenomScaleFactor;
|
---|
2145 | bb.sPoles = Complex.copy(this.sPoles);
|
---|
2146 | bb.sZeros = Complex.copy(this.sZeros);
|
---|
2147 | bb.zPoles = Complex.copy(this.zPoles);
|
---|
2148 | bb.zZeros = Complex.copy(this.zZeros);
|
---|
2149 | bb.sNumerDeg = this.sNumerDeg;
|
---|
2150 | bb.sDenomDeg = this.sDenomDeg;
|
---|
2151 | bb.zNumerDeg = this.zNumerDeg;
|
---|
2152 | bb.zDenomDeg = this.zDenomDeg;
|
---|
2153 | bb.deadTime = this.deadTime;
|
---|
2154 | bb.orderPade = this.orderPade;
|
---|
2155 | bb.sNumerPade = this.sNumerPade.copy();
|
---|
2156 | bb.sDenomPade = this.sDenomPade.copy();
|
---|
2157 | bb.sPolesPade = Complex.copy(this.sPolesPade);
|
---|
2158 | bb.sZerosPade = Complex.copy(this.sZerosPade);
|
---|
2159 | bb.sNumerDegPade = this.sNumerDegPade;
|
---|
2160 | bb.sDenomDegPade = this.sDenomDegPade;
|
---|
2161 | bb.maptozero = this.maptozero;
|
---|
2162 | bb.padeAdded = this.padeAdded;
|
---|
2163 | bb.integrationSum = this.integrationSum;
|
---|
2164 | bb.integMethod = this.integMethod;
|
---|
2165 | bb.ztransMethod = this.ztransMethod;
|
---|
2166 | bb.name = this.name;
|
---|
2167 | bb.fixedName = this.fixedName;
|
---|
2168 | bb.nPlotPoints = this.nPlotPoints;
|
---|
2169 |
|
---|
2170 | }
|
---|
2171 |
|
---|
2172 |
|
---|
2173 | // Clone - overrides Java.Object method clone
|
---|
2174 | public Object clone(){
|
---|
2175 | return (Object)this.copy();
|
---|
2176 | }
|
---|
2177 | }
|
---|
2178 |
|
---|