1 | /*
|
---|
2 | * Class PhasorMatrix
|
---|
3 | *
|
---|
4 | * Defines a complex matrix and includes the methods
|
---|
5 | * needed for standard matrix manipulations, e.g. multiplation,
|
---|
6 | * and related procedures, e.g. solution of complex linear
|
---|
7 | * simultaneous equations
|
---|
8 | *
|
---|
9 | * See class ComplexMatrix for rectangular complex matrix manipulations
|
---|
10 | *
|
---|
11 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
12 | *
|
---|
13 | * DATE: July 2007
|
---|
14 | * AMENDED: 19 April 2008, 14 November 2010
|
---|
15 | *
|
---|
16 | * DOCUMENTATION:
|
---|
17 | * See Michael Thomas Flanagan's Java library on-line web pages:
|
---|
18 | * http://www.ee.ucl.ac.uk/~mflanaga/java/PhasorMatrix.html
|
---|
19 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
20 | *
|
---|
21 | * Copyright (c) 2007 - 2010
|
---|
22 | *
|
---|
23 | * PERMISSION TO COPY:
|
---|
24 | * Permission to use, copy and modify this software and its documentation for
|
---|
25 | * NON-COMMERCIAL purposes is granted, without fee, provided that an acknowledgement
|
---|
26 | * to the author, Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies.
|
---|
27 | *
|
---|
28 | * Dr Michael Thomas Flanagan makes no representations about the suitability
|
---|
29 | * or fitness of the software for any or for a particular purpose.
|
---|
30 | * Michael Thomas Flanagan shall not be liable for any damages suffered
|
---|
31 | * as a result of using, modifying or distributing this software or its derivatives.
|
---|
32 | *
|
---|
33 | ***************************************************************************************/
|
---|
34 |
|
---|
35 | package agents.anac.y2015.agentBuyogV2.flanagan.circuits;
|
---|
36 |
|
---|
37 | import agents.anac.y2015.agentBuyogV2.flanagan.complex.Complex;
|
---|
38 | import agents.anac.y2015.agentBuyogV2.flanagan.complex.ComplexMatrix;
|
---|
39 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Fmath;
|
---|
40 | import agents.anac.y2015.agentBuyogV2.flanagan.math.Matrix;
|
---|
41 |
|
---|
42 | public class PhasorMatrix{
|
---|
43 |
|
---|
44 | private int nrow = 0; // number of rows
|
---|
45 | private int ncol = 0; // number of columns
|
---|
46 | private Phasor matrix[][] = null; // 2-D Phasor Matrix
|
---|
47 | private int index[] = null; // row permutation index
|
---|
48 | private double dswap = 1.0D; // row swap index
|
---|
49 | private static final double TINY = 1.0e-30;
|
---|
50 |
|
---|
51 | /*********************************************************/
|
---|
52 |
|
---|
53 | // CONSTRUCTORS
|
---|
54 | // Construct a nrow x ncol matrix of complex variables all equal to zero
|
---|
55 | public PhasorMatrix(int nrow, int ncol){
|
---|
56 | this.nrow = nrow;
|
---|
57 | this.ncol = ncol;
|
---|
58 | this.matrix = Phasor.twoDarray(nrow, ncol);
|
---|
59 | this.index = new int[nrow];
|
---|
60 | for(int i=0;i<nrow;i++)this.index[i]=i;
|
---|
61 | this.dswap=1.0;
|
---|
62 | }
|
---|
63 |
|
---|
64 | // Construct a nrow x ncol matrix of complex variables all equal to the complex number const
|
---|
65 | public PhasorMatrix(int nrow, int ncol, Phasor constant){
|
---|
66 | this.nrow = nrow;
|
---|
67 | this.ncol = ncol;
|
---|
68 | this.matrix = Phasor.twoDarray(nrow, ncol, constant);
|
---|
69 | this.index = new int[nrow];
|
---|
70 | for(int i=0;i<nrow;i++)this.index[i]=i;
|
---|
71 | this.dswap=1.0;
|
---|
72 | }
|
---|
73 |
|
---|
74 | // Construct matrix with a reference to an existing nrow x ncol 2-D array of complex variables
|
---|
75 | public PhasorMatrix(Phasor[][] twoD){
|
---|
76 | this.nrow = twoD.length;
|
---|
77 | this.ncol = twoD[0].length;
|
---|
78 | for(int i=0; i<nrow; i++){
|
---|
79 | if(twoD[i].length!=ncol)throw new IllegalArgumentException("All rows must have the same length");
|
---|
80 | }
|
---|
81 | this.matrix = twoD;
|
---|
82 | this.index = new int[nrow];
|
---|
83 | for(int i=0;i<nrow;i++)this.index[i]=i;
|
---|
84 | this.dswap=1.0;
|
---|
85 | }
|
---|
86 |
|
---|
87 | // Construct matrix with a reference to the 2D matrix and permutation index of an existing PhasorMatrix bb.
|
---|
88 | public PhasorMatrix(PhasorMatrix bb){
|
---|
89 | this.nrow = bb.nrow;
|
---|
90 | this.ncol = bb.ncol;
|
---|
91 | this.matrix = bb.matrix;
|
---|
92 | this.index = bb.index;
|
---|
93 | this.dswap = bb.dswap;
|
---|
94 | }
|
---|
95 |
|
---|
96 |
|
---|
97 | // SET VALUES
|
---|
98 | // Set the matrix with a copy of an existing nrow x ncol 2-D matrix of Phasor variables
|
---|
99 | public void setTwoDarray(Phasor[][] aarray){
|
---|
100 | if(this.nrow != aarray.length)throw new IllegalArgumentException("row length of this PhasorMatrix differs from that of the 2D array argument");
|
---|
101 | if(this.ncol != aarray[0].length)throw new IllegalArgumentException("column length of this PhasorMatrix differs from that of the 2D array argument");
|
---|
102 | for(int i=0; i<nrow; i++){
|
---|
103 | if(aarray[i].length!=ncol)throw new IllegalArgumentException("All rows must have the same length");
|
---|
104 | for(int j=0; j<ncol; j++){
|
---|
105 | this.matrix[i][j]=Phasor.copy(aarray[i][j]);
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | // Set an individual array element
|
---|
111 | // i = row index
|
---|
112 | // j = column index
|
---|
113 | // aa = value of the element
|
---|
114 | public void setElement(int i, int j, Phasor aa){
|
---|
115 | this.matrix[i][j]=Phasor.copy(aa);
|
---|
116 | }
|
---|
117 |
|
---|
118 | // Set an individual array element
|
---|
119 | // i = row index
|
---|
120 | // j = column index
|
---|
121 | // aa = magnitude of the element
|
---|
122 | // bb = phase of the element
|
---|
123 | public void setElement(int i, int j, double aa, double bb){
|
---|
124 | this.matrix[i][j].reset(aa, bb);
|
---|
125 | }
|
---|
126 |
|
---|
127 | // Set a sub-matrix starting with row index i, column index j
|
---|
128 |
|
---|
129 | public void setSubMatrix(int i, int j, Phasor[][] subMatrix){
|
---|
130 | int k = subMatrix.length;
|
---|
131 | int l = subMatrix[0].length;
|
---|
132 | if(i>k)throw new IllegalArgumentException("row indices inverted");
|
---|
133 | if(j>l)throw new IllegalArgumentException("column indices inverted");
|
---|
134 | int n=k-i+1, m=l-j+1;
|
---|
135 | for(int p=0; p<n; p++){
|
---|
136 | for(int q=0; q<m; q++){
|
---|
137 | this.matrix[i+p][j+q] = Phasor.copy(subMatrix[p][q]);
|
---|
138 | }
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | // Set a sub-matrix starting with row index i, column index j
|
---|
143 | // and ending with row index k, column index l
|
---|
144 | public void setSubMatrix(int i, int j, int k, int l, Phasor[][] subMatrix){
|
---|
145 | if(i+k-1>=this.nrow)throw new IllegalArgumentException("Sub-matrix position is outside the row bounds of this Matrix");
|
---|
146 | if(j+l-1>=this.ncol)throw new IllegalArgumentException("Sub-matrix position is outside the column bounds of this Matrix");
|
---|
147 | int n=k-i+1, m=l-j+1;
|
---|
148 | for(int p=0; p<n; p++){
|
---|
149 | for(int q=0; q<m; q++){
|
---|
150 | this.matrix[i+p][j+q] = Phasor.copy(subMatrix[p][q]);
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 |
|
---|
156 | // Set a sub-matrix
|
---|
157 | // row = array of row indices
|
---|
158 | // col = array of column indices
|
---|
159 | public void setSubMatrix(int[] row, int[] col, Phasor[][] subMatrix){
|
---|
160 | int n=row.length;
|
---|
161 | int m=col.length;
|
---|
162 | for(int p=0; p<n; p++){
|
---|
163 | for(int q=0; q<m; q++){
|
---|
164 | this.matrix[row[p]][col[q]] = Phasor.copy(subMatrix[p][q]);
|
---|
165 | }
|
---|
166 | }
|
---|
167 | }
|
---|
168 |
|
---|
169 | // SPECIAL MATRICES
|
---|
170 | // Construct a Phasor identity matrix
|
---|
171 | public static PhasorMatrix identityMatrix(int nrow){
|
---|
172 | PhasorMatrix u = new PhasorMatrix(nrow, nrow);
|
---|
173 | for(int i=0; i<nrow; i++){
|
---|
174 | u.matrix[i][i]=Phasor.plusOne();
|
---|
175 | }
|
---|
176 | return u;
|
---|
177 | }
|
---|
178 |
|
---|
179 | // Construct a Phasor scalar matrix
|
---|
180 | public static PhasorMatrix scalarMatrix(int nrow, Phasor diagconst){
|
---|
181 | PhasorMatrix u = new PhasorMatrix(nrow, nrow);
|
---|
182 | Phasor[][] uarray = u.getArrayReference();
|
---|
183 | for(int i=0; i<nrow; i++){
|
---|
184 | for(int j=i; j<nrow; j++){
|
---|
185 | if(i==j){
|
---|
186 | uarray[i][j]=Phasor.copy(diagconst);
|
---|
187 | }
|
---|
188 | }
|
---|
189 | }
|
---|
190 | return u;
|
---|
191 | }
|
---|
192 |
|
---|
193 | // Construct a Phasor diagonal matrix
|
---|
194 | public static PhasorMatrix diagonalMatrix(int nrow, Phasor[] diag){
|
---|
195 | if(diag.length!=nrow)throw new IllegalArgumentException("matrix dimension differs from diagonal array length");
|
---|
196 | PhasorMatrix u = new PhasorMatrix(nrow, nrow);
|
---|
197 | Phasor[][] uarray = u.getArrayReference();
|
---|
198 | for(int i=0; i<nrow; i++){
|
---|
199 | for(int j=i; j<nrow; j++){
|
---|
200 | if(i==j){
|
---|
201 | uarray[i][j]=Phasor.copy(diag[i]);
|
---|
202 | }
|
---|
203 | }
|
---|
204 | }
|
---|
205 | return u;
|
---|
206 | }
|
---|
207 |
|
---|
208 | // COLUMN MATRICES
|
---|
209 | // Converts a 1-D array of Phasor to a column matrix
|
---|
210 | public static PhasorMatrix columnMatrix(Phasor[] darray){
|
---|
211 | int nr = darray.length;
|
---|
212 | PhasorMatrix pp = new PhasorMatrix(nr, 1);
|
---|
213 | for(int i=0; i<nr; i++)pp.matrix[i][0] = darray[i];
|
---|
214 | return pp;
|
---|
215 | }
|
---|
216 |
|
---|
217 | // ROW MATRICES
|
---|
218 | // Converts a 1-D array of Phasor to a row matrix
|
---|
219 | public static PhasorMatrix rowMatrix(Phasor[] darray){
|
---|
220 | int nc = darray.length;
|
---|
221 | PhasorMatrix pp = new PhasorMatrix(1, nc);
|
---|
222 | for(int i=0; i<nc; i++)pp.matrix[0][i] = darray[i];
|
---|
223 | return pp;
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | // GET VALUES
|
---|
228 | // Return the number of rows
|
---|
229 | public int getNrow(){
|
---|
230 | return this.nrow;
|
---|
231 | }
|
---|
232 |
|
---|
233 | // Return the number of columns
|
---|
234 | public int getNcol(){
|
---|
235 | return this.ncol;
|
---|
236 | }
|
---|
237 |
|
---|
238 | // Return a reference to the internal 2-D array
|
---|
239 | public Phasor[][] getArrayReference(){
|
---|
240 | return this.matrix;
|
---|
241 | }
|
---|
242 |
|
---|
243 | // Return a reference to the internal 2-D array
|
---|
244 | public Phasor[][] getArray(){
|
---|
245 | return this.matrix;
|
---|
246 | }
|
---|
247 |
|
---|
248 | // Return a reference to the internal 2-D array
|
---|
249 | // included for backward compatibility with earlier incorrect documentation
|
---|
250 | public Phasor[][] getArrayPointer(){
|
---|
251 | return this.matrix;
|
---|
252 | }
|
---|
253 |
|
---|
254 | // Return a copy of the internal 2-D array
|
---|
255 | public Phasor[][] getArrayCopy(){
|
---|
256 | Phasor[][] c = new Phasor[this.nrow][this.ncol];
|
---|
257 | for(int i=0; i<nrow; i++){
|
---|
258 | for(int j=0; j<ncol; j++){
|
---|
259 | c[i][j]=Phasor.copy(matrix[i][j]);
|
---|
260 | }
|
---|
261 | }
|
---|
262 | return c;
|
---|
263 | }
|
---|
264 |
|
---|
265 | // Return a single element of the internal 2-D array
|
---|
266 | public Phasor getElementReference(int i, int j){
|
---|
267 | return this.matrix[i][j];
|
---|
268 | }
|
---|
269 |
|
---|
270 | // Return a reference to a single element of the internal 2-D array
|
---|
271 | // included for backward compatibility with earlier incorrect documentation
|
---|
272 | public Phasor getElementPointer(int i, int j){
|
---|
273 | return this.matrix[i][j];
|
---|
274 | }
|
---|
275 |
|
---|
276 | // Return a copy of a single element of the internal 2-D array
|
---|
277 | public Phasor getElementCopy(int i, int j){
|
---|
278 | return Phasor.copy(this.matrix[i][j]);
|
---|
279 | }
|
---|
280 |
|
---|
281 | // Return a sub-matrix starting with row index i, column index j
|
---|
282 | // and ending with column index k, row index l
|
---|
283 | public PhasorMatrix getSubMatrix(int i, int j, int k, int l){
|
---|
284 | if(i+k-1>=this.nrow)throw new IllegalArgumentException("Sub-matrix position is outside the row bounds of this Matrix");
|
---|
285 | if(j+l-1>=this.ncol)throw new IllegalArgumentException("Sub-matrix position is outside the column bounds of this Matrix");
|
---|
286 |
|
---|
287 | int n=k-i+1, m=l-j+1;
|
---|
288 | PhasorMatrix subMatrix = new PhasorMatrix(n, m);
|
---|
289 | Phasor[][] sarray = subMatrix.getArrayReference();
|
---|
290 | for(int p=0; p<n; p++){
|
---|
291 | for(int q=0; q<m; q++){
|
---|
292 | sarray[p][q]=Phasor.copy(this.matrix[i+p][j+q]);
|
---|
293 | }
|
---|
294 | }
|
---|
295 | return subMatrix;
|
---|
296 | }
|
---|
297 |
|
---|
298 | // Return a sub-matrix
|
---|
299 | // row = array of row indices
|
---|
300 | // col = array of column indices
|
---|
301 | public PhasorMatrix getSubMatrix(int[] row, int[] col){
|
---|
302 | int n = row.length;
|
---|
303 | int m = col.length;
|
---|
304 | PhasorMatrix subMatrix = new PhasorMatrix(n, m);
|
---|
305 | Phasor[][] sarray = subMatrix.getArrayReference();
|
---|
306 | for(int i=0; i<n; i++){
|
---|
307 | for(int j=0; j<m; j++){
|
---|
308 | sarray[i][j]=Phasor.copy(this.matrix[row[i]][col[j]]);
|
---|
309 | }
|
---|
310 | }
|
---|
311 | return subMatrix;
|
---|
312 | }
|
---|
313 |
|
---|
314 | // Return a reference to the permutation index array
|
---|
315 | public int[] getIndexReference(){
|
---|
316 | return this.index;
|
---|
317 | }
|
---|
318 |
|
---|
319 | // Return a reference to the permutation index array
|
---|
320 | public int[] getIndexPointer(){
|
---|
321 | return this.index;
|
---|
322 | }
|
---|
323 |
|
---|
324 | // Return a copy of the permutation index array
|
---|
325 | public int[] getIndexCopy(){
|
---|
326 | int[] indcopy = new int[this.nrow];
|
---|
327 | for(int i=0; i<this.nrow; i++){
|
---|
328 | indcopy[i]=this.index[i];
|
---|
329 | }
|
---|
330 | return indcopy;
|
---|
331 | }
|
---|
332 |
|
---|
333 | // Return the row swap index
|
---|
334 | public double getSwap(){
|
---|
335 | return this.dswap;
|
---|
336 | }
|
---|
337 |
|
---|
338 | // COPY
|
---|
339 | // Copy a PhasorMatrix [static method]
|
---|
340 | public static PhasorMatrix copy(PhasorMatrix a){
|
---|
341 | if(a==null){
|
---|
342 | return null;
|
---|
343 | }
|
---|
344 | else{
|
---|
345 | int nr = a.getNrow();
|
---|
346 | int nc = a.getNcol();
|
---|
347 | Phasor[][] aarray = a.getArrayReference();
|
---|
348 | PhasorMatrix b = new PhasorMatrix(nr,nc);
|
---|
349 | b.nrow = nr;
|
---|
350 | b.ncol = nc;
|
---|
351 | Phasor[][] barray = b.getArrayReference();
|
---|
352 | for(int i=0; i<nr; i++){
|
---|
353 | for(int j=0; j<nc; j++){
|
---|
354 | barray[i][j]=Phasor.copy(aarray[i][j]);
|
---|
355 | }
|
---|
356 | }
|
---|
357 | for(int i=0; i<nr; i++)b.index[i] = a.index[i];
|
---|
358 | return b;
|
---|
359 | }
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Copy a PhasorMatrix [instance method]
|
---|
363 | public PhasorMatrix copy(){
|
---|
364 | if(this==null){
|
---|
365 | return null;
|
---|
366 | }
|
---|
367 | else{
|
---|
368 | int nr = this.nrow;
|
---|
369 | int nc = this.ncol;
|
---|
370 | PhasorMatrix b = new PhasorMatrix(nr,nc);
|
---|
371 | Phasor[][] barray = b.getArrayReference();
|
---|
372 | b.nrow = nr;
|
---|
373 | b.ncol = nc;
|
---|
374 | for(int i=0; i<nr; i++){
|
---|
375 | for(int j=0; j<nc; j++){
|
---|
376 | barray[i][j]=Phasor.copy(this.matrix[i][j]);
|
---|
377 | }
|
---|
378 | }
|
---|
379 | for(int i=0; i<nr; i++)b.index[i] = this.index[i];
|
---|
380 | return b;
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 | // Clone a PhasorMatrix
|
---|
385 | public Object clone(){
|
---|
386 | if(this==null){
|
---|
387 | return null;
|
---|
388 | }
|
---|
389 | else{
|
---|
390 | int nr = this.nrow;
|
---|
391 | int nc = this.ncol;
|
---|
392 | PhasorMatrix b = new PhasorMatrix(nr,nc);
|
---|
393 | Phasor[][] barray = b.getArrayReference();
|
---|
394 | b.nrow = nr;
|
---|
395 | b.ncol = nc;
|
---|
396 | for(int i=0; i<nr; i++){
|
---|
397 | for(int j=0; j<nc; j++){
|
---|
398 | barray[i][j]=Phasor.copy(this.matrix[i][j]);
|
---|
399 | }
|
---|
400 | }
|
---|
401 | for(int i=0; i<nr; i++)b.index[i] = this.index[i];
|
---|
402 | return (Object) b;
|
---|
403 | }
|
---|
404 | }
|
---|
405 |
|
---|
406 | // CONVERSIONS
|
---|
407 | // Converts a 1-D array of Phasors to a row phasor matrix
|
---|
408 | public static PhasorMatrix toPhasorRowMatrix(Phasor[] parray){
|
---|
409 | int nc = parray.length;
|
---|
410 | PhasorMatrix pp = new PhasorMatrix(1, nc);
|
---|
411 | for(int i=0; i<nc; i++)pp.matrix[0][i] = parray[i].copy();
|
---|
412 | return pp;
|
---|
413 | }
|
---|
414 |
|
---|
415 | // Converts a 1-D array of Complex to a row phasor matrix
|
---|
416 | public static PhasorMatrix toPhasorRowMatrix(Complex[] carray){
|
---|
417 | int nc = carray.length;
|
---|
418 | PhasorMatrix pp = new PhasorMatrix(1, nc);
|
---|
419 | for(int i=0; i<nc; i++)pp.matrix[0][i] = Phasor.toPhasor(carray[i]).copy();
|
---|
420 | return pp;
|
---|
421 | }
|
---|
422 |
|
---|
423 | // Converts a 1-D array of doubles to a row phasor matrix
|
---|
424 | public static PhasorMatrix toPhasorRowMatrix(double[] darray){
|
---|
425 | int nc = darray.length;
|
---|
426 | PhasorMatrix pp = new PhasorMatrix(1, nc);
|
---|
427 | for(int i=0; i<nc; i++)pp.matrix[0][i] = new Phasor(darray[i], 0.0D);
|
---|
428 | return pp;
|
---|
429 | }
|
---|
430 |
|
---|
431 | // Converts a 1-D array of Phasors to a column phasor matrix
|
---|
432 | public static PhasorMatrix toPhasorColumnMatrix(Phasor[] parray){
|
---|
433 | int nr = parray.length;
|
---|
434 | PhasorMatrix pp = new PhasorMatrix(nr, 1);
|
---|
435 | for(int i=0; i<nr; i++)pp.matrix[i][0] = parray[i].copy();
|
---|
436 | return pp;
|
---|
437 | }
|
---|
438 |
|
---|
439 | // Converts a 1-D array of Complex to a column phasor matrix
|
---|
440 | public static PhasorMatrix toPhasorColumnMatrix(Complex[] carray){
|
---|
441 | int nr = carray.length;
|
---|
442 | PhasorMatrix pp = new PhasorMatrix(nr, 1);
|
---|
443 | for(int i=0; i<nr; i++)pp.matrix[i][0] = Phasor.toPhasor(carray[i]).copy();
|
---|
444 | return pp;
|
---|
445 | }
|
---|
446 |
|
---|
447 | // Converts a 1-D array of doubles to a column phasor matrix
|
---|
448 | public static PhasorMatrix toPhasorColumnMatrix(double[] darray){
|
---|
449 | int nr = darray.length;
|
---|
450 | PhasorMatrix pp = new PhasorMatrix(nr, 1);
|
---|
451 | for(int i=0; i<nr; i++)pp.matrix[i][0] = new Phasor(darray[i], 0.0D);
|
---|
452 | return pp;
|
---|
453 | }
|
---|
454 |
|
---|
455 | // Converts a complex matrix (ComplexMatrix) to a phasor matrix (PhasorMatix)
|
---|
456 | public static PhasorMatrix toPhasorMatrix(ComplexMatrix cc){
|
---|
457 | PhasorMatrix pp = new PhasorMatrix(cc.getNrow(), cc.getNcol() );
|
---|
458 | pp.index = cc.getIndexCopy();
|
---|
459 | pp.dswap = cc.getSwap();
|
---|
460 | for(int i=0; i<pp.nrow; i++){
|
---|
461 | for(int j=0; j<pp.ncol; i++){
|
---|
462 | pp.matrix[i][j] = Phasor.toPhasor(cc.getElementCopy(i,j));
|
---|
463 | }
|
---|
464 | }
|
---|
465 | return pp;
|
---|
466 | }
|
---|
467 |
|
---|
468 | // Converts a 2D complex array to a phasor matrix (PhasorMatix)
|
---|
469 | public static PhasorMatrix toPhasorMatrix(Complex[][] carray){
|
---|
470 | ComplexMatrix cc = new ComplexMatrix(carray);
|
---|
471 | PhasorMatrix pp = new PhasorMatrix(cc.getNrow(), cc.getNcol() );
|
---|
472 | for(int i=0; i<pp.nrow; i++){
|
---|
473 | for(int j=0; j<pp.ncol; i++){
|
---|
474 | pp.matrix[i][j] = Phasor.toPhasor(cc.getElementCopy(i,j));
|
---|
475 | }
|
---|
476 | }
|
---|
477 | return pp;
|
---|
478 | }
|
---|
479 |
|
---|
480 | // Converts a matrix of doubles (Matrix) to a phasor matrix (PhasorMatix)
|
---|
481 | public static PhasorMatrix toPhasorMatrix(Matrix marray){
|
---|
482 | int nr = marray.getNrow();
|
---|
483 | int nc = marray.getNcol();
|
---|
484 |
|
---|
485 | PhasorMatrix pp = new PhasorMatrix(nr, nc);
|
---|
486 | for(int i=0; i<nr; i++){
|
---|
487 | for(int j=0; j<nc; j++){
|
---|
488 | pp.matrix[i][j].reset(marray.getElementCopy(i, j), 0.0D);
|
---|
489 | }
|
---|
490 | }
|
---|
491 | return pp;
|
---|
492 | }
|
---|
493 |
|
---|
494 | // Converts a 2D array of doubles to a phasor matrix (PhasorMatix)
|
---|
495 | public static PhasorMatrix toPhasorMatrix(double[][] darray){
|
---|
496 | int nr = darray.length;
|
---|
497 | int nc = darray[0].length;
|
---|
498 | for(int i=1; i<nr; i++){
|
---|
499 | if(darray[i].length!=nc)throw new IllegalArgumentException("All rows must have the same length");
|
---|
500 | }
|
---|
501 | PhasorMatrix pp = new PhasorMatrix(nr, nc);
|
---|
502 | for(int i=0; i<pp.nrow; i++){
|
---|
503 | for(int j=0; j<pp.ncol; j++){
|
---|
504 | pp.matrix[i][j].reset(darray[i][j], 0.0D);
|
---|
505 | }
|
---|
506 | }
|
---|
507 | return pp;
|
---|
508 | }
|
---|
509 |
|
---|
510 | // Converts a phasor matrix (PhasorMatix) to a complex matrix (ComplexMatrix) - instance method
|
---|
511 | public ComplexMatrix toComplexMatrix(){
|
---|
512 | int nr = this.getNrow();
|
---|
513 | int nc = this.getNcol();
|
---|
514 | ComplexMatrix cc = new ComplexMatrix(nr, nc);
|
---|
515 | for(int i=0; i<nr; i++){
|
---|
516 | for(int j=0; j<nc; i++){
|
---|
517 | cc.setElement(i, j, this.matrix[i][j].toRectangular());
|
---|
518 | }
|
---|
519 | }
|
---|
520 | return cc;
|
---|
521 | }
|
---|
522 |
|
---|
523 | // Converts a phasor matrix (PhasorMatix) to a complex matrix (ComplexMatrix) - static method
|
---|
524 | public static ComplexMatrix toComplexMatrix(PhasorMatrix pp){
|
---|
525 | int nr = pp.getNrow();
|
---|
526 | int nc = pp.getNcol();
|
---|
527 | ComplexMatrix cc = new ComplexMatrix(nr, nc);
|
---|
528 | for(int i=0; i<nr; i++){
|
---|
529 | for(int j=0; j<nc; i++){
|
---|
530 | cc.setElement(i, j, pp.matrix[i][j].toRectangular());
|
---|
531 | }
|
---|
532 | }
|
---|
533 | return cc;
|
---|
534 | }
|
---|
535 |
|
---|
536 |
|
---|
537 | // ADDITION
|
---|
538 | // Add this matrix to matrix B. This matrix remains unaltered
|
---|
539 | public PhasorMatrix plus(PhasorMatrix bmat){
|
---|
540 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
541 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
542 | }
|
---|
543 | int nr=bmat.nrow;
|
---|
544 | int nc=bmat.ncol;
|
---|
545 | PhasorMatrix cmat = new PhasorMatrix(nr,nc);
|
---|
546 | Phasor[][] carray = cmat.getArrayReference();
|
---|
547 | for(int i=0; i<nr; i++){
|
---|
548 | for(int j=0; j<nc; j++){
|
---|
549 | carray[i][j]=this.matrix[i][j].plus(bmat.matrix[i][j]);
|
---|
550 | }
|
---|
551 | }
|
---|
552 | return cmat;
|
---|
553 | }
|
---|
554 |
|
---|
555 | // Add this matrix to a Phasor 2-D array.
|
---|
556 | public PhasorMatrix plus(Phasor[][] bmat){
|
---|
557 | int nr=bmat.length;
|
---|
558 | int nc=bmat[0].length;
|
---|
559 | if((this.nrow!=nr)||(this.ncol!=nc)){
|
---|
560 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
561 | }
|
---|
562 | PhasorMatrix cmat = new PhasorMatrix(nr,nc);
|
---|
563 | Phasor[][] carray = cmat.getArrayReference();
|
---|
564 | for(int i=0; i<nr; i++){
|
---|
565 | for(int j=0; j<nc; j++){
|
---|
566 | carray[i][j]=this.matrix[i][j].plus(bmat[i][j]);
|
---|
567 | }
|
---|
568 | }
|
---|
569 | return cmat;
|
---|
570 | }
|
---|
571 |
|
---|
572 | // Add this PhasorMatrix to a ComplexMatrix.
|
---|
573 | public PhasorMatrix plus(ComplexMatrix bmat){
|
---|
574 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
575 | return this.plus(pmat);
|
---|
576 | }
|
---|
577 |
|
---|
578 | // Add this PhasorMatrix to a 2D array of Complex.
|
---|
579 | public PhasorMatrix plus(Complex[][] bmat){
|
---|
580 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
581 | return this.plus(pmat);
|
---|
582 | }
|
---|
583 |
|
---|
584 | // Add this PhasorMatrix to a Matrix.
|
---|
585 | public PhasorMatrix plus(Matrix bmat){
|
---|
586 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
587 | return this.plus(pmat);
|
---|
588 | }
|
---|
589 |
|
---|
590 | // Add this PhasorMatrix to a 2D array of double.
|
---|
591 | public PhasorMatrix plus(double[][] bmat){
|
---|
592 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
593 | return this.plus(pmat);
|
---|
594 | }
|
---|
595 |
|
---|
596 | // Add a PhasorMatrix to this matrix [equivalence of +=]
|
---|
597 | public void plusEquals(PhasorMatrix bmat){
|
---|
598 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
599 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
600 | }
|
---|
601 | int nr=bmat.nrow;
|
---|
602 | int nc=bmat.ncol;
|
---|
603 |
|
---|
604 | for(int i=0; i<nr; i++){
|
---|
605 | for(int j=0; j<nc; j++){
|
---|
606 | this.matrix[i][j].plusEquals(bmat.matrix[i][j]);
|
---|
607 | }
|
---|
608 | }
|
---|
609 | }
|
---|
610 |
|
---|
611 | // Add a 2D array of Phasors to this matrix [equivalence of +=]
|
---|
612 | public void plusEquals(Phasor[][] bmat){
|
---|
613 | PhasorMatrix pmat = new PhasorMatrix(bmat);
|
---|
614 | this.plusEquals(pmat);
|
---|
615 | }
|
---|
616 |
|
---|
617 | // Add a ComplexMatrix of complex to this matrix [equivalence of +=]
|
---|
618 | public void plusEquals(ComplexMatrix bmat){
|
---|
619 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
620 | this.plusEquals(pmat);
|
---|
621 | }
|
---|
622 |
|
---|
623 | // Add a 2D array of complex to this matrix [equivalence of +=]
|
---|
624 | public void plusEquals(Complex[][] bmat){
|
---|
625 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
626 | this.plusEquals(pmat);
|
---|
627 | }
|
---|
628 |
|
---|
629 | // Add a Matrix to this PhasorMatrix [equivalence of +=]
|
---|
630 | public void plusEquals(Matrix bmat){
|
---|
631 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
632 | this.plusEquals(pmat);
|
---|
633 | }
|
---|
634 |
|
---|
635 | // Add a 2D array of doubles to this matrix [equivalence of +=]
|
---|
636 | public void plusEquals(double[][] bmat){
|
---|
637 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
638 | this.plusEquals(pmat);
|
---|
639 | }
|
---|
640 |
|
---|
641 | // SUBTRACTION
|
---|
642 | // Subtract matrix B from this matrix. This matrix remains unaltered [instance method]
|
---|
643 | public PhasorMatrix minus(PhasorMatrix bmat){
|
---|
644 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
645 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
646 | }
|
---|
647 | int nr=this.nrow;
|
---|
648 | int nc=this.ncol;
|
---|
649 | PhasorMatrix cmat = new PhasorMatrix(nr,nc);
|
---|
650 | Phasor[][] carray = cmat.getArrayReference();
|
---|
651 | for(int i=0; i<nr; i++){
|
---|
652 | for(int j=0; j<nc; j++){
|
---|
653 | carray[i][j]=this.matrix[i][j].minus(bmat.matrix[i][j]);
|
---|
654 | }
|
---|
655 | }
|
---|
656 | return cmat;
|
---|
657 | }
|
---|
658 |
|
---|
659 | // Subtract Phasor 2-D array from this matrix. [instance method]
|
---|
660 | public PhasorMatrix minus(Phasor[][] bmat){
|
---|
661 | int nr=bmat.length;
|
---|
662 | int nc=bmat[0].length;
|
---|
663 | if((this.nrow!=nr)||(this.ncol!=nc)){
|
---|
664 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
665 | }
|
---|
666 | PhasorMatrix cmat = new PhasorMatrix(nr,nc);
|
---|
667 | Phasor[][] carray = cmat.getArrayReference();
|
---|
668 | for(int i=0; i<nr; i++){
|
---|
669 | for(int j=0; j<nc; j++){
|
---|
670 | carray[i][j]=this.matrix[i][j].minus(bmat[i][j]);
|
---|
671 | }
|
---|
672 | }
|
---|
673 | return cmat;
|
---|
674 | }
|
---|
675 |
|
---|
676 | // Subtract a ComplexMatrix from this PhasorMatrix
|
---|
677 | public PhasorMatrix minus(ComplexMatrix bmat){
|
---|
678 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
679 | return this.minus(pmat);
|
---|
680 | }
|
---|
681 |
|
---|
682 | // Subtract a 2D array of Complex from this PhasorMatrix.
|
---|
683 | public PhasorMatrix minus(Complex[][] bmat){
|
---|
684 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
685 | return this.minus(pmat);
|
---|
686 | }
|
---|
687 |
|
---|
688 | // Subtract a Matrix from this PhasorMatrix.
|
---|
689 | public PhasorMatrix minus(Matrix bmat){
|
---|
690 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
691 | return this.minus(pmat);
|
---|
692 | }
|
---|
693 |
|
---|
694 | // Subtract a 2D array of doubles from this PhasorMatrix.
|
---|
695 | public PhasorMatrix minus(double[][] bmat){
|
---|
696 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
697 | return this.minus(pmat);
|
---|
698 | }
|
---|
699 |
|
---|
700 |
|
---|
701 | // Subtract a PhasorMatrix from this matrix [equivalence of -=]
|
---|
702 | public void minusEquals(PhasorMatrix bmat){
|
---|
703 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
704 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
705 | }
|
---|
706 | int nr=bmat.nrow;
|
---|
707 | int nc=bmat.ncol;
|
---|
708 |
|
---|
709 | for(int i=0; i<nr; i++){
|
---|
710 | for(int j=0; j<nc; j++){
|
---|
711 | this.matrix[i][j].minusEquals(bmat.matrix[i][j]);
|
---|
712 | }
|
---|
713 | }
|
---|
714 | }
|
---|
715 |
|
---|
716 | // Subtract a 2D array of Phasors from this matrix [equivalence of -=]
|
---|
717 | public void minusEquals(Phasor[][] bmat){
|
---|
718 | PhasorMatrix pmat = new PhasorMatrix(bmat);
|
---|
719 | this.minusEquals(pmat);
|
---|
720 | }
|
---|
721 |
|
---|
722 | // Subtract a ComplexMatrix from this matrix [equivalence of -=]
|
---|
723 | public void minusEquals(ComplexMatrix bmat){
|
---|
724 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
725 | this.minusEquals(pmat);
|
---|
726 | }
|
---|
727 |
|
---|
728 | // Subtract a 2D array of complex from this matrix [equivalence of -=]
|
---|
729 | public void minusEquals(Complex[][] bmat){
|
---|
730 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
731 | this.minusEquals(pmat);
|
---|
732 | }
|
---|
733 |
|
---|
734 | // Subtract a Matrix from this phasorMatrix [equivalence of -=]
|
---|
735 | public void minusEquals(Matrix bmat){
|
---|
736 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
737 | this.minusEquals(pmat);
|
---|
738 | }
|
---|
739 |
|
---|
740 | // Subtract a 2D array of doubles from this matrix [equivalence of -=]
|
---|
741 | public void minusEquals(double[][] bmat){
|
---|
742 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
743 | this.minusEquals(pmat);
|
---|
744 | }
|
---|
745 |
|
---|
746 | // MULTIPLICATION
|
---|
747 | // Multiply this Phasor matrix by a Phasor matrix.
|
---|
748 | // This matrix remains unaltered.
|
---|
749 | public PhasorMatrix times(PhasorMatrix bmat){
|
---|
750 | if(this.ncol!=bmat.nrow)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
751 |
|
---|
752 | PhasorMatrix cmat = new PhasorMatrix(this.nrow, bmat.ncol);
|
---|
753 | Phasor [][] carray = cmat.getArrayReference();
|
---|
754 | Phasor sum = new Phasor();
|
---|
755 |
|
---|
756 | for(int i=0; i<this.nrow; i++){
|
---|
757 | for(int j=0; j<bmat.ncol; j++){
|
---|
758 | sum=Phasor.zero();
|
---|
759 | for(int k=0; k<this.ncol; k++){
|
---|
760 | sum.plusEquals(this.matrix[i][k].times(bmat.matrix[k][j]));
|
---|
761 | }
|
---|
762 | carray[i][j]=Phasor.copy(sum);
|
---|
763 | }
|
---|
764 | }
|
---|
765 | return cmat;
|
---|
766 | }
|
---|
767 |
|
---|
768 | // Multiply this Phasor matrix by a Phasor 2-D array.
|
---|
769 | public PhasorMatrix times(Phasor[][] bmat){
|
---|
770 | int nr=bmat.length;
|
---|
771 | int nc=bmat[0].length;
|
---|
772 | if(this.ncol!=nr)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
773 |
|
---|
774 | PhasorMatrix cmat = new PhasorMatrix(this.nrow, nc);
|
---|
775 | Phasor [][] carray = cmat.getArrayReference();
|
---|
776 | Phasor sum = new Phasor();
|
---|
777 |
|
---|
778 | for(int i=0; i<this.nrow; i++){
|
---|
779 | for(int j=0; j<nc; j++){
|
---|
780 | sum=Phasor.zero();
|
---|
781 | for(int k=0; k<this.ncol; k++){
|
---|
782 | sum.plusEquals(this.matrix[i][k].times(bmat[k][j]));
|
---|
783 | }
|
---|
784 | carray[i][j]=Phasor.copy(sum);
|
---|
785 | }
|
---|
786 | }
|
---|
787 | return cmat;
|
---|
788 | }
|
---|
789 |
|
---|
790 | // Multiply a ComplexMatrix by this PhasorMatrix
|
---|
791 | public PhasorMatrix times(ComplexMatrix bmat){
|
---|
792 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
793 | return this.times(pmat);
|
---|
794 | }
|
---|
795 |
|
---|
796 | // Multiply a 2D array of Complex by this PhasorMatrix.
|
---|
797 | public PhasorMatrix times(Complex[][] bmat){
|
---|
798 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
799 | return this.times(pmat);
|
---|
800 | }
|
---|
801 |
|
---|
802 | // Multiply a Matrix by this PhasorMatrix.
|
---|
803 | public PhasorMatrix times(Matrix bmat){
|
---|
804 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
805 | return this.times(pmat);
|
---|
806 | }
|
---|
807 |
|
---|
808 | // Multiply a 2D array of doubles by this PhasorMatrix.
|
---|
809 | public PhasorMatrix times(double[][] bmat){
|
---|
810 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
811 | return this.times(pmat);
|
---|
812 | }
|
---|
813 |
|
---|
814 | // Multiply this Phasor matrix by a Phasor constant
|
---|
815 | // This matrix remains unaltered
|
---|
816 | public PhasorMatrix times(Phasor constant){
|
---|
817 | PhasorMatrix cmat = new PhasorMatrix(this.nrow, this.ncol);
|
---|
818 | Phasor [][] carray = cmat.getArrayReference();
|
---|
819 |
|
---|
820 | for(int i=0; i<this.nrow; i++){
|
---|
821 | for(int j=0; j<this.ncol; j++){
|
---|
822 | carray[i][j] = this.matrix[i][j].times(constant);
|
---|
823 | }
|
---|
824 | }
|
---|
825 | return cmat;
|
---|
826 | }
|
---|
827 |
|
---|
828 | // Multiply this Phasor matrix by a real (double) constant
|
---|
829 | // This matrix remains unaltered.
|
---|
830 | public PhasorMatrix times(double constant){
|
---|
831 | PhasorMatrix cmat = new PhasorMatrix(this.nrow, this.ncol);
|
---|
832 | Phasor [][] carray = cmat.getArrayReference();
|
---|
833 | Phasor cconstant = new Phasor(constant, 0.0);
|
---|
834 |
|
---|
835 | for(int i=0; i<this.nrow; i++){
|
---|
836 | for(int j=0; j<this.ncol; j++){
|
---|
837 | carray[i][j] = this.matrix[i][j].times(cconstant);
|
---|
838 | }
|
---|
839 | }
|
---|
840 | return cmat;
|
---|
841 | }
|
---|
842 |
|
---|
843 |
|
---|
844 | // Multiply this matrix by a Phasor matrix [equivalence of *=]
|
---|
845 | public void timesEquals(PhasorMatrix bmat){
|
---|
846 | if(this.ncol!=bmat.nrow)throw new IllegalArgumentException("Nonconformable matrices");
|
---|
847 |
|
---|
848 | Phasor sum = new Phasor();
|
---|
849 |
|
---|
850 | for(int i=0; i<this.nrow; i++){
|
---|
851 | for(int j=0; j<bmat.ncol; j++){
|
---|
852 | sum=Phasor.zero();
|
---|
853 | for(int k=0; k<this.ncol; k++){
|
---|
854 | sum.plusEquals(this.matrix[i][k].times(bmat.matrix[k][j]));
|
---|
855 | }
|
---|
856 | this.matrix[i][j] = Phasor.copy(sum);
|
---|
857 | }
|
---|
858 | }
|
---|
859 | }
|
---|
860 |
|
---|
861 | // Multiply a 2D array of Phasors by this matrix [equivalence of *=]
|
---|
862 | public void timesEquals(Phasor[][] bmat){
|
---|
863 | PhasorMatrix pmat = new PhasorMatrix(bmat);
|
---|
864 | this.timesEquals(pmat);
|
---|
865 | }
|
---|
866 |
|
---|
867 | // Multiply a ComplexMatrix of complex by this matrix [equivalence of *=]
|
---|
868 | public void timesEquals(ComplexMatrix bmat){
|
---|
869 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
870 | this.timesEquals(pmat);
|
---|
871 | }
|
---|
872 |
|
---|
873 | // Multiply a 2D array of complex by this matrix [equivalence of *=]
|
---|
874 | public void timesEquals(Complex[][] bmat){
|
---|
875 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
876 | this.timesEquals(pmat);
|
---|
877 | }
|
---|
878 |
|
---|
879 | // Multiply a Matrix by this PhasorMatrix [equivalence of *=]
|
---|
880 | public void timesEquals(Matrix bmat){
|
---|
881 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
882 | this.timesEquals(pmat);
|
---|
883 | }
|
---|
884 |
|
---|
885 | // Multiply a 2D array of doubles by this matrix [equivalence of *=]
|
---|
886 | public void timesEquals(double[][] bmat){
|
---|
887 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
888 | this.timesEquals(pmat);
|
---|
889 | }
|
---|
890 |
|
---|
891 | // Multiply this matrix by a Phasor constant [equivalence of *=]
|
---|
892 | public void timesEquals(Phasor constant){
|
---|
893 |
|
---|
894 | for(int i=0; i<this.nrow; i++){
|
---|
895 | for(int j=0; j<this.ncol; j++){
|
---|
896 | this.matrix[i][j].timesEquals(constant);
|
---|
897 | }
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | // Multiply this matrix by a Complex constant [equivalence of *=]
|
---|
902 | public void timesEquals(Complex constant){
|
---|
903 |
|
---|
904 | for(int i=0; i<this.nrow; i++){
|
---|
905 | for(int j=0; j<this.ncol; j++){
|
---|
906 | this.matrix[i][j].timesEquals(constant);
|
---|
907 | }
|
---|
908 | }
|
---|
909 | }
|
---|
910 |
|
---|
911 | // Multiply this matrix by a real (double) constant [equivalence of *=]
|
---|
912 | public void timesEquals(double constant){
|
---|
913 | Phasor cconstant = new Phasor(constant, 0.0);
|
---|
914 |
|
---|
915 | for(int i=0; i<this.nrow; i++){
|
---|
916 | for(int j=0; j<this.ncol; j++){
|
---|
917 | this.matrix[i][j].timesEquals(cconstant);
|
---|
918 | }
|
---|
919 | }
|
---|
920 | }
|
---|
921 |
|
---|
922 | // Multiply this matrix by a real integer(int) constant [equivalence of *=]
|
---|
923 | public void timesEquals(int constant){
|
---|
924 | Phasor cconstant = new Phasor((double)constant, 0.0);
|
---|
925 |
|
---|
926 | for(int i=0; i<this.nrow; i++){
|
---|
927 | for(int j=0; j<this.ncol; j++){
|
---|
928 | this.matrix[i][j].timesEquals(cconstant);
|
---|
929 | }
|
---|
930 | }
|
---|
931 | }
|
---|
932 |
|
---|
933 | // DIVISION
|
---|
934 | // Divide this PhasorMatrix by a PhasorMatrix.
|
---|
935 | public PhasorMatrix over(PhasorMatrix bmat){
|
---|
936 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
937 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
938 | }
|
---|
939 | return this.times(bmat.inverse());
|
---|
940 | }
|
---|
941 |
|
---|
942 | // Divide this matrix by a Phasor 2-D array.
|
---|
943 | public PhasorMatrix over(Phasor[][] bmat){
|
---|
944 | int nr=bmat.length;
|
---|
945 | int nc=bmat[0].length;
|
---|
946 | if((this.nrow!=nr)||(this.ncol!=nc)){
|
---|
947 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
948 | }
|
---|
949 |
|
---|
950 | PhasorMatrix cmat = new PhasorMatrix(bmat);
|
---|
951 | return this.times(cmat.inverse());
|
---|
952 | }
|
---|
953 |
|
---|
954 | // Divide this PhasorMatrix by a ComplexMatrix.
|
---|
955 | public PhasorMatrix over(ComplexMatrix bmat){
|
---|
956 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
957 | return this.over(pmat);
|
---|
958 | }
|
---|
959 |
|
---|
960 | // Divide this PhasorMatrix by a 2D array of Complex.
|
---|
961 | public PhasorMatrix over(Complex[][] bmat){
|
---|
962 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
963 | return this.over(pmat);
|
---|
964 | }
|
---|
965 |
|
---|
966 | // Divide this PhasorMatrix by a Matrix.
|
---|
967 | public PhasorMatrix over(Matrix bmat){
|
---|
968 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
969 | return this.over(pmat);
|
---|
970 | }
|
---|
971 |
|
---|
972 | // Divide this PhasorMatrix by a 2D array of double.
|
---|
973 | public PhasorMatrix over(double[][] bmat){
|
---|
974 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
975 | return this.over(pmat);
|
---|
976 | }
|
---|
977 |
|
---|
978 | // Divide this matrix by a PhasorMatrix [equivalence of /=]
|
---|
979 | public void overEquals(PhasorMatrix bmat){
|
---|
980 | if((this.nrow!=bmat.nrow)||(this.ncol!=bmat.ncol)){
|
---|
981 | throw new IllegalArgumentException("Array dimensions do not agree");
|
---|
982 | }
|
---|
983 | PhasorMatrix cmat = new PhasorMatrix(bmat);
|
---|
984 | this.timesEquals(cmat.inverse());
|
---|
985 | }
|
---|
986 |
|
---|
987 | // Divide this matrix by a 2D array of Phasors [equivalence of /=]
|
---|
988 | public void overEquals(Phasor[][] bmat){
|
---|
989 | PhasorMatrix pmat = new PhasorMatrix(bmat);
|
---|
990 | this.overEquals(pmat);
|
---|
991 | }
|
---|
992 |
|
---|
993 | // Divide this matrix by a ComplexMatrix [equivalence of /=]
|
---|
994 | public void overEquals(ComplexMatrix bmat){
|
---|
995 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
996 | this.overEquals(pmat);
|
---|
997 | }
|
---|
998 |
|
---|
999 | // Divide this matrix by a 2D array of complex [equivalence of /=]
|
---|
1000 | public void overEquals(Complex[][] bmat){
|
---|
1001 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
1002 | this.overEquals(pmat);
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | // Divide this PhasorMatrix a Matrix [equivalence of /=]
|
---|
1006 | public void overEquals(Matrix bmat){
|
---|
1007 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
1008 | this.overEquals(pmat);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | // Divide this matrix by a 2D array of doubles [equivalence of /=]
|
---|
1012 | public void overEquals(double[][] bmat){
|
---|
1013 | PhasorMatrix pmat = PhasorMatrix.toPhasorMatrix(bmat);
|
---|
1014 | this.overEquals(pmat);
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 | // INVERSE
|
---|
1018 | // Inverse of a square Phasor matrix
|
---|
1019 | public PhasorMatrix inverse(){
|
---|
1020 | int n = this.nrow;
|
---|
1021 | if(n!=this.ncol)throw new IllegalArgumentException("Matrix is not square");
|
---|
1022 | Phasor[] col = new Phasor[n];
|
---|
1023 | Phasor[] xvec = new Phasor[n];
|
---|
1024 | PhasorMatrix invmat = new PhasorMatrix(n, n);
|
---|
1025 | Phasor[][] invarray = invmat.getArrayReference();
|
---|
1026 | PhasorMatrix ludmat;
|
---|
1027 |
|
---|
1028 | ludmat = this.luDecomp();
|
---|
1029 | for(int j=0; j<n; j++){
|
---|
1030 | for(int i=0; i<n; i++)col[i]=Phasor.zero();
|
---|
1031 | col[j]=Phasor.plusOne();
|
---|
1032 | xvec=ludmat.luBackSub(col);
|
---|
1033 | for(int i=0; i<n; i++)invarray[i][j]=Phasor.copy(xvec[i]);
|
---|
1034 | }
|
---|
1035 | return invmat;
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 |
|
---|
1039 |
|
---|
1040 | // TRANSPOSE
|
---|
1041 | // Transpose of a Phasor matrix
|
---|
1042 | public PhasorMatrix transpose(){
|
---|
1043 | PhasorMatrix tmat = new PhasorMatrix(this.ncol, this.nrow);
|
---|
1044 | Phasor[][] tarray = tmat.getArrayReference();
|
---|
1045 | for(int i=0; i<this.ncol; i++){
|
---|
1046 | for(int j=0; j<this.nrow; j++){
|
---|
1047 | tarray[i][j]=Phasor.copy(this.matrix[j][i]);
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | return tmat;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 |
|
---|
1054 | // COMPLEX CONJUGATE
|
---|
1055 | // Complex Conjugate of a Phasor matrix
|
---|
1056 | public PhasorMatrix conjugate(){
|
---|
1057 | PhasorMatrix conj = PhasorMatrix.copy(this);
|
---|
1058 | for(int i=0; i<this.nrow; i++){
|
---|
1059 | for(int j=0; j<this.ncol; j++){
|
---|
1060 | conj.matrix[i][j]=this.matrix[i][j].conjugate();
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 | return conj;
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 |
|
---|
1067 | // ADJOIN
|
---|
1068 | // Adjoin of a Phasor matrix
|
---|
1069 | public PhasorMatrix adjoin(){
|
---|
1070 | PhasorMatrix adj = PhasorMatrix.copy(this);
|
---|
1071 | adj=adj.transpose();
|
---|
1072 | adj=adj.conjugate();
|
---|
1073 | return adj;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | // OPPOSITE
|
---|
1078 | // Opposite of a Phasor matrix
|
---|
1079 | public PhasorMatrix opposite(){
|
---|
1080 | PhasorMatrix opp = PhasorMatrix.copy(this);
|
---|
1081 | for(int i=0; i<this.nrow; i++){
|
---|
1082 | for(int j=0; j<this.ncol; j++){
|
---|
1083 | opp.matrix[i][j]=this.matrix[i][j].times(Phasor.minusOne());
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 | return opp;
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 |
|
---|
1090 | // TRACE
|
---|
1091 | // Trace of a Phasor matrix
|
---|
1092 | public Phasor trace(){
|
---|
1093 | Phasor trac = new Phasor(0.0, 0.0);
|
---|
1094 | for(int i=0; i<Math.min(this.ncol,this.ncol); i++){
|
---|
1095 | trac.plusEquals(this.matrix[i][i]);
|
---|
1096 | }
|
---|
1097 | return trac;
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | // DETERMINANT
|
---|
1101 | // Returns the determinant of a Phasor square matrix
|
---|
1102 | public Phasor determinant(){
|
---|
1103 | int n = this.nrow;
|
---|
1104 | if(n!=this.ncol)throw new IllegalArgumentException("Matrix is not square");
|
---|
1105 | Phasor det = new Phasor();
|
---|
1106 | PhasorMatrix ludmat;
|
---|
1107 |
|
---|
1108 | ludmat = this.luDecomp();
|
---|
1109 | det.reset(ludmat.dswap,0.0);
|
---|
1110 | for(int j=0; j<n; j++){
|
---|
1111 | det.timesEquals(ludmat.matrix[j][j]);
|
---|
1112 | }
|
---|
1113 | return det;
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | // Returns the log(determinant) of a Phasor square matrix
|
---|
1117 | // Useful if determinant() underflows or overflows.
|
---|
1118 | public Phasor logDeterminant(){
|
---|
1119 | int n = this.nrow;
|
---|
1120 | if(n!=this.ncol)throw new IllegalArgumentException("Matrix is not square");
|
---|
1121 | Phasor det = new Phasor();
|
---|
1122 | PhasorMatrix ludmat;
|
---|
1123 |
|
---|
1124 | ludmat = this.luDecomp();
|
---|
1125 | det.reset(ludmat.dswap,0.0);
|
---|
1126 | det=Phasor.log(det);
|
---|
1127 | for(int j=0; j<n; j++){
|
---|
1128 | det.plusEquals(Phasor.log(ludmat.matrix[j][j]));
|
---|
1129 | }
|
---|
1130 | return det;
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 |
|
---|
1134 | // FROBENIUS (EUCLIDEAN) NORM of a Phasor matrix
|
---|
1135 | public double frobeniusNorm(){
|
---|
1136 | double norm=0.0D;
|
---|
1137 | for(int i=0; i<this.nrow; i++){
|
---|
1138 | for(int j=0; j<this.ncol; j++){
|
---|
1139 | norm=Fmath.hypot(norm, matrix[i][j].abs());
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 | return norm;
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 | // ONE NORM of a Phasor matrix
|
---|
1146 | public double oneNorm(){
|
---|
1147 | double norm=0.0D;
|
---|
1148 | double sum = 0.0D;
|
---|
1149 | for(int i=0; i<this.nrow; i++){
|
---|
1150 | sum=0.0D;
|
---|
1151 | for(int j=0; j<this.ncol; j++){
|
---|
1152 | sum+=this.matrix[i][j].abs();
|
---|
1153 | }
|
---|
1154 | norm=Math.max(norm,sum);
|
---|
1155 | }
|
---|
1156 | return norm;
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | // INFINITY NORM of a Phasor matrix
|
---|
1160 | public double infinityNorm(){
|
---|
1161 | double norm=0.0D;
|
---|
1162 | double sum=0.0D;
|
---|
1163 | for(int i=0; i<this.nrow; i++){
|
---|
1164 | sum=0.0D;
|
---|
1165 | for(int j=0; j<this.ncol; j++){
|
---|
1166 | sum+=this.matrix[i][j].abs();
|
---|
1167 | }
|
---|
1168 | norm=Math.max(norm,sum);
|
---|
1169 | }
|
---|
1170 | return norm;
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 |
|
---|
1174 | // LU DECOMPOSITION OF COMPLEX MATRIX A
|
---|
1175 | // For details of LU decomposition
|
---|
1176 | // See Numerical Recipes, The Art of Scientific Computing
|
---|
1177 | // by W H Press, S A Teukolsky, W T Vetterling & B P Flannery
|
---|
1178 | // Cambridge University Press, http://www.nr.com/
|
---|
1179 | // PhasorMatrix ludmat is the returned LU decompostion
|
---|
1180 | // int[] index is the vector of row permutations
|
---|
1181 | // dswap returns +1.0 for even number of row interchanges
|
---|
1182 | // returns -1.0 for odd number of row interchanges
|
---|
1183 | public PhasorMatrix luDecomp(){
|
---|
1184 | if(this.nrow!=this.ncol)throw new IllegalArgumentException("A matrix is not square");
|
---|
1185 | int n=this.nrow;
|
---|
1186 | int imax=0;
|
---|
1187 | double dum=0.0D, temp=0.0D, big=0.0D;
|
---|
1188 | double[] vv = new double[n];
|
---|
1189 | Phasor sum = new Phasor();
|
---|
1190 | Phasor dumm = new Phasor();
|
---|
1191 |
|
---|
1192 | PhasorMatrix ludmat=PhasorMatrix.copy(this);
|
---|
1193 | Phasor[][] ludarray = ludmat.getArrayReference();
|
---|
1194 |
|
---|
1195 | ludmat.dswap=1.0;
|
---|
1196 | for (int i=0;i<n;i++) {
|
---|
1197 | big=0.0;
|
---|
1198 | for (int j=0;j<n;j++){
|
---|
1199 | if ((temp=ludarray[i][j].abs()) > big) big=temp;
|
---|
1200 | }
|
---|
1201 | if (big == 0.0) throw new ArithmeticException("Singular matrix");
|
---|
1202 | vv[i]=1.0/big;
|
---|
1203 | }
|
---|
1204 | for (int j=0;j<n;j++) {
|
---|
1205 | for (int i=0;i<j;i++) {
|
---|
1206 | sum=Phasor.copy(ludarray[i][j]);
|
---|
1207 | for (int k=0;k<i;k++) sum.minusEquals(ludarray[i][k].times(ludarray[k][j]));
|
---|
1208 | ludarray[i][j]=Phasor.copy(sum);
|
---|
1209 | }
|
---|
1210 | big=0.0;
|
---|
1211 | for (int i=j;i<n;i++) {
|
---|
1212 | sum=Phasor.copy(ludarray[i][j]);
|
---|
1213 | for (int k=0;k<j;k++){
|
---|
1214 | sum.minusEquals(ludarray[i][k].times(ludarray[k][j]));
|
---|
1215 | }
|
---|
1216 | ludarray[i][j]=Phasor.copy(sum);
|
---|
1217 | if ((dum=vv[i]*sum.abs()) >= big) {
|
---|
1218 | big=dum;
|
---|
1219 | imax=i;
|
---|
1220 | }
|
---|
1221 | }
|
---|
1222 | if (j != imax) {
|
---|
1223 | for (int k=0;k<n;k++) {
|
---|
1224 | dumm=Phasor.copy(ludarray[imax][k]);
|
---|
1225 | ludarray[imax][k]=Phasor.copy(ludarray[j][k]);
|
---|
1226 | ludarray[j][k]=Phasor.copy(dumm);
|
---|
1227 | }
|
---|
1228 | ludmat.dswap = -ludmat.dswap;
|
---|
1229 | vv[imax]=vv[j];
|
---|
1230 | }
|
---|
1231 | ludmat.index[j]=imax;
|
---|
1232 |
|
---|
1233 | if(ludarray[j][j].isZero()){
|
---|
1234 | ludarray[j][j].reset(TINY, 0.0D);
|
---|
1235 | }
|
---|
1236 | if(j != n-1) {
|
---|
1237 | dumm=ludarray[j][j].inverse();
|
---|
1238 | for (int i=j+1;i<n;i++){
|
---|
1239 | ludarray[i][j].timesEquals(dumm);
|
---|
1240 | }
|
---|
1241 | }
|
---|
1242 | }
|
---|
1243 | return ludmat;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | // Solves the set of n linear Phasor equations A.X=B using not A but its LU decomposition
|
---|
1247 | // Phasor bvec is the vector B (input)
|
---|
1248 | // Phasor xvec is the vector X (output)
|
---|
1249 | // index is the permutation vector produced by luDecomp()
|
---|
1250 | public Phasor[] luBackSub(Phasor[] bvec){
|
---|
1251 | int ii=0,ip=0;
|
---|
1252 | int n=bvec.length;
|
---|
1253 | if(n!=this.ncol)throw new IllegalArgumentException("vector length is not equal to matrix dimension");
|
---|
1254 | if(this.ncol!=this.nrow)throw new IllegalArgumentException("matrix is not square");
|
---|
1255 | Phasor sum=new Phasor();
|
---|
1256 | Phasor[] xvec=new Phasor[n];
|
---|
1257 | for(int i=0; i<n; i++){
|
---|
1258 | xvec[i]=Phasor.copy(bvec[i]);
|
---|
1259 | }
|
---|
1260 | for (int i=0;i<n;i++) {
|
---|
1261 | ip=this.index[i];
|
---|
1262 | sum=Phasor.copy(xvec[ip]);
|
---|
1263 | xvec[ip]=Phasor.copy(xvec[i]);
|
---|
1264 | if (ii==0){
|
---|
1265 | for (int j=ii;j<=i-1;j++){
|
---|
1266 | sum.minusEquals(this.matrix[i][j].times(xvec[j]));
|
---|
1267 | }
|
---|
1268 | }
|
---|
1269 | else{
|
---|
1270 | if(sum.isZero()) ii=i;
|
---|
1271 | }
|
---|
1272 | xvec[i]=Phasor.copy(sum);
|
---|
1273 | }
|
---|
1274 | for(int i=n-1;i>=0;i--) {
|
---|
1275 | sum=Phasor.copy(xvec[i]);
|
---|
1276 | for (int j=i+1;j<n;j++){
|
---|
1277 | sum.minusEquals(this.matrix[i][j].times(xvec[j]));
|
---|
1278 | }
|
---|
1279 | xvec[i]= sum.over(this.matrix[i][i]);
|
---|
1280 | }
|
---|
1281 | return xvec;
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | // Solves the set of n linear Phasor equations A.X=B
|
---|
1285 | // Phasor bvec is the vector B (input)
|
---|
1286 | // Phasor xvec is the vector X (output)
|
---|
1287 | public Phasor[] solveLinearSet(Phasor[] bvec){
|
---|
1288 | PhasorMatrix ludmat;
|
---|
1289 |
|
---|
1290 | ludmat=this.luDecomp();
|
---|
1291 | return ludmat.luBackSub(bvec);
|
---|
1292 | }
|
---|
1293 | }
|
---|
1294 |
|
---|