1 | /*
|
---|
2 | * Class Stat
|
---|
3 | *
|
---|
4 | * USAGE: Statistical functions
|
---|
5 | *
|
---|
6 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
7 | *
|
---|
8 | * DATE: June 2002 as part of Fmath
|
---|
9 | * AMENDED: 12 May 2003 Statistics separated out from Fmath as a new class
|
---|
10 | * DATE: 18 June 2005, 5 January 2006, 25 April 2006, 12, 21 November 2006
|
---|
11 | * 4 December 2006 (renaming of cfd and pdf methods - older version also retained)
|
---|
12 | * 31 December 2006, March 2007, 14 April 2007, 19 October 2007, 27 February 2008
|
---|
13 | * 29 March 2008, 7 April 2008, 29 April 2008 - 13 May 2008, 22-31 May 2008,
|
---|
14 | * 4-10 June 2008, 27 June 2008, 2-5 July 2008, 23 July 2008, 31 July 2008,
|
---|
15 | * 2-4 August 2008, 20 August 2008, 5-10 September 2008, 19 September 2008,
|
---|
16 | * 28-30 September 2008 (probability Plot moved to separate class, ProbabilityPlot)
|
---|
17 | * 4-5 October 2008, 8-13 December 2008, 14 June 2009, 13-23 October 2009,
|
---|
18 | * 8 February 2010, 18-25 May 2010, 2 November 2010, 4 December 2010, 19-25 January 2011
|
---|
19 | *
|
---|
20 | * DOCUMENTATION:
|
---|
21 | * See Michael Thomas Flanagan's Java library on-line web page:
|
---|
22 | * http://www.ee.ucl.ac.uk/~mflanaga/java/Stat.html
|
---|
23 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
24 | *
|
---|
25 | * Copyright (c) 2002 - 2011 Michael Thomas Flanagan
|
---|
26 | *
|
---|
27 | * PERMISSION TO COPY:
|
---|
28 | *
|
---|
29 | * Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
|
---|
30 | * provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
|
---|
31 | * and associated documentation or publications.
|
---|
32 | *
|
---|
33 | * Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice,
|
---|
34 | + this list of conditions and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
|
---|
35 | *
|
---|
36 | * Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
|
---|
37 | * the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission
|
---|
38 | * from the Michael Thomas Flanagan:
|
---|
39 | *
|
---|
40 | * Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
|
---|
41 | * Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
|
---|
42 | * or its derivatives.
|
---|
43 | *
|
---|
44 | ***************************************************************************************/
|
---|
45 |
|
---|
46 | package agents.anac.y2015.agentBuyogV2.flanagan.analysis;
|
---|
47 |
|
---|
48 | import java.util.*;
|
---|
49 |
|
---|
50 | import agents.anac.y2015.agentBuyogV2.flanagan.circuits.Phasor;
|
---|
51 | import agents.anac.y2015.agentBuyogV2.flanagan.complex.*;
|
---|
52 | import agents.anac.y2015.agentBuyogV2.flanagan.integration.IntegralFunction;
|
---|
53 | import agents.anac.y2015.agentBuyogV2.flanagan.integration.Integration;
|
---|
54 | import agents.anac.y2015.agentBuyogV2.flanagan.io.*;
|
---|
55 | import agents.anac.y2015.agentBuyogV2.flanagan.math.*;
|
---|
56 | import agents.anac.y2015.agentBuyogV2.flanagan.plot.PlotGraph;
|
---|
57 | import agents.anac.y2015.agentBuyogV2.flanagan.roots.*;
|
---|
58 |
|
---|
59 | import java.math.*;
|
---|
60 |
|
---|
61 |
|
---|
62 | public class Stat extends ArrayMaths{
|
---|
63 |
|
---|
64 | // INSTANCE VARIABLES
|
---|
65 | private boolean nFactorOptionI = false; // = true varaiance, covariance and standard deviation denominator = n
|
---|
66 | // = false varaiance, covariance and standard deviation denominator = n-1
|
---|
67 | private boolean nFactorReset = false; // = true when instance method resetting the denominator is called
|
---|
68 |
|
---|
69 | private boolean nEffOptionI = true; // = true n replaced by effective sample number
|
---|
70 | // = false n used as sample number
|
---|
71 | private boolean nEffReset = false; // = true when instance method resetting the nEff choice called
|
---|
72 |
|
---|
73 | private boolean weightingOptionI = true; // = true 'little w' weights (uncertainties) used
|
---|
74 | // = false 'big W' weights (multiplicative factors) used
|
---|
75 | private boolean weightingReset = false; // = true when instance method resetting the nEff choice called
|
---|
76 |
|
---|
77 | private ArrayMaths amWeights = null; // weights as ArrayMaths
|
---|
78 | private boolean weightsSupplied = false; // = true if weights entered
|
---|
79 |
|
---|
80 | private ArrayList<Object> upperOutlierDetails = new ArrayList<Object>(); // upper outlier search details
|
---|
81 | // element 0 - number of ouliers (Integer)
|
---|
82 | // element 1 - outliers (double[])
|
---|
83 | // element 2 - outlier indices (inmoved
|
---|
84 | private boolean upperDone = false; // = true when upper oulier search ct[])
|
---|
85 | // element 3 - array with ouliers reompleted even if no upper outliers found
|
---|
86 | private ArrayList<Object> lowerOutlierDetails = new ArrayList<Object>(); // lower outlier search details
|
---|
87 | // element 0 - number of ouliers (Integer)
|
---|
88 | // element 1 - outliers (double[])
|
---|
89 | // element 2 - outlier indices (int[])
|
---|
90 | // element 3 - array with ouliers removed
|
---|
91 | private boolean lowerDone = false; // = true when lower oulier search completed even if no upper outliers found
|
---|
92 |
|
---|
93 |
|
---|
94 | // STATIC VARIABLES
|
---|
95 | private static boolean nFactorOptionS = false; // = true varaiance, covariance and standard deviation denominator = n
|
---|
96 | // = false varaiance and standard deviation denominator = n-1
|
---|
97 | private static boolean nEffOptionS = true; // = true n replaced by effective sample number
|
---|
98 | // = false n used as sample number
|
---|
99 |
|
---|
100 | private static boolean weightingOptionS= true; // = true 'little w' weights (uncertainties) used
|
---|
101 | // = false 'big W' weights (multiplicative factors) used
|
---|
102 |
|
---|
103 | // maximum number of iterations allowed in the contFract method
|
---|
104 | private static int cfMaxIter = 500;
|
---|
105 |
|
---|
106 | // tolerance used in the contFract method
|
---|
107 | private static double cfTol = 1.0e-8;
|
---|
108 |
|
---|
109 | // A small number close to the smallest representable floating point number
|
---|
110 | public static final double FPMIN = 1e-300;
|
---|
111 |
|
---|
112 | private static boolean igSupress = false; // if true error messages in incompleteGammaSeries
|
---|
113 | // and incompleteGammaFract supressed
|
---|
114 |
|
---|
115 |
|
---|
116 | // PRIVATE MEMBERS FOR USE IN GAMMA FUNCTION METHODS AND HISTOGRAM CONSTRUCTION METHODS
|
---|
117 |
|
---|
118 | // GAMMA FUNCTIONS
|
---|
119 | // Lanczos Gamma Function approximation - N (number of coefficients -1)
|
---|
120 | private static int lgfN = 6;
|
---|
121 | // Lanczos Gamma Function approximation - Coefficients
|
---|
122 | private static double[] lgfCoeff = {1.000000000190015, 76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 0.1208650973866179E-2, -0.5395239384953E-5};
|
---|
123 | // Lanczos Gamma Function approximation - small gamma
|
---|
124 | private static double lgfGamma = 5.0;
|
---|
125 | // Maximum number of iterations allowed in Incomplete Gamma Function calculations
|
---|
126 | private static int igfiter = 1000;
|
---|
127 | // Tolerance used in terminating series in Incomplete Gamma Function calculations
|
---|
128 | private static double igfeps = 1e-8;
|
---|
129 |
|
---|
130 | // HISTOGRAM CONSTRUCTION
|
---|
131 | // Tolerance used in including an upper point in last histogram bin when it is outside due to rounding erors
|
---|
132 | private static double histTol = 1.0001D;
|
---|
133 |
|
---|
134 | // CONSTRUCTORS
|
---|
135 | public Stat(){
|
---|
136 | super();
|
---|
137 | }
|
---|
138 |
|
---|
139 | public Stat(double[] xx){
|
---|
140 | super(xx);
|
---|
141 | this.convertToHighest();
|
---|
142 | }
|
---|
143 |
|
---|
144 | public Stat(Double[] xx){
|
---|
145 | super(xx);
|
---|
146 | this.convertToHighest();
|
---|
147 | }
|
---|
148 |
|
---|
149 | public Stat(float[] xx){
|
---|
150 | super(xx);
|
---|
151 | this.convertToHighest();
|
---|
152 | }
|
---|
153 |
|
---|
154 | public Stat(Float[] xx){
|
---|
155 | super(xx);
|
---|
156 | this.convertToHighest();
|
---|
157 | }
|
---|
158 |
|
---|
159 | public Stat(long[] xx){
|
---|
160 | super(xx);
|
---|
161 | this.convertToHighest();
|
---|
162 | }
|
---|
163 |
|
---|
164 | public Stat(Long[] xx){
|
---|
165 | super(xx);
|
---|
166 | this.convertToHighest();
|
---|
167 | }
|
---|
168 |
|
---|
169 | public Stat(int[] xx){
|
---|
170 | super(xx);
|
---|
171 | this.convertToHighest();
|
---|
172 | }
|
---|
173 |
|
---|
174 | public Stat(Integer[] xx){
|
---|
175 | super(xx);
|
---|
176 | this.convertToHighest();
|
---|
177 | }
|
---|
178 |
|
---|
179 | public Stat(short[] xx){
|
---|
180 | super(xx);
|
---|
181 | this.convertToHighest();
|
---|
182 | }
|
---|
183 |
|
---|
184 | public Stat(Short[] xx){
|
---|
185 | super(xx);
|
---|
186 | this.convertToHighest();
|
---|
187 | }
|
---|
188 |
|
---|
189 | public Stat(byte[] xx){
|
---|
190 | super(xx);
|
---|
191 | this.convertToHighest();
|
---|
192 | }
|
---|
193 |
|
---|
194 | public Stat(Byte[] xx){
|
---|
195 | super(xx);
|
---|
196 | this.convertToHighest();
|
---|
197 | }
|
---|
198 |
|
---|
199 | public Stat(BigDecimal[] xx){
|
---|
200 | super(xx);
|
---|
201 | }
|
---|
202 |
|
---|
203 | public Stat(BigInteger[] xx){
|
---|
204 | super(xx);
|
---|
205 | this.convertToHighest();
|
---|
206 | }
|
---|
207 |
|
---|
208 | public Stat(Complex[] xx){
|
---|
209 | super(xx);
|
---|
210 | this.convertToHighest();
|
---|
211 | }
|
---|
212 |
|
---|
213 | public Stat(Phasor[] xx){
|
---|
214 | super(xx);
|
---|
215 | this.convertToHighest();
|
---|
216 | }
|
---|
217 |
|
---|
218 | public Stat(String[] xx){
|
---|
219 | super(xx);
|
---|
220 | this.convertToHighest();
|
---|
221 | }
|
---|
222 |
|
---|
223 | public Stat(Object[] xx){
|
---|
224 | super(xx);
|
---|
225 | this.convertToHighest();
|
---|
226 | }
|
---|
227 |
|
---|
228 | public Stat(Vector<Object> xx){
|
---|
229 | super(xx);
|
---|
230 | this.convertToHighest();
|
---|
231 | }
|
---|
232 |
|
---|
233 | public Stat(ArrayList<Object> xx){
|
---|
234 | super(xx);
|
---|
235 | this.convertToHighest();
|
---|
236 | }
|
---|
237 |
|
---|
238 | // Convert array to Double if not Complex, Phasor, BigDecimal or BigInteger
|
---|
239 | // Convert to BigDecimal if BigInteger
|
---|
240 | // Convert Phasor to Complex
|
---|
241 | public void convertToHighest(){
|
---|
242 |
|
---|
243 | switch(this.type){
|
---|
244 | case 0:
|
---|
245 | case 1:
|
---|
246 | case 2:
|
---|
247 | case 3:
|
---|
248 | case 4:
|
---|
249 | case 5:
|
---|
250 | case 6:
|
---|
251 | case 7:
|
---|
252 | case 8:
|
---|
253 | case 9:
|
---|
254 | case 10:
|
---|
255 | case 11:
|
---|
256 | case 16:
|
---|
257 | case 17:
|
---|
258 | case 18: Double[] dd = this.getArray_as_Double();
|
---|
259 | this.array.clear();
|
---|
260 | for(int i=0; i<this.length; i++)this.array.add(dd[i]);
|
---|
261 | double[] ww = new double[this.length];
|
---|
262 | for(int i=0; i<this.length; i++)ww[i]=1.0D;
|
---|
263 | amWeights = new ArrayMaths(ww);
|
---|
264 | this.type = 1;
|
---|
265 | break;
|
---|
266 | case 12:
|
---|
267 | case 13: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
268 | this.array.clear();
|
---|
269 | for(int i=0; i<this.length; i++)this.array.add(bd[i]);
|
---|
270 | BigDecimal[] wd = new BigDecimal[this.length];
|
---|
271 | for(int i=0; i<this.length; i++)wd[i]=BigDecimal.ONE;
|
---|
272 | amWeights = new ArrayMaths(wd);
|
---|
273 | this.type = 12;
|
---|
274 | bd = null;
|
---|
275 | break;
|
---|
276 | case 14:
|
---|
277 | case 15: Complex[] cc = this.getArray_as_Complex();
|
---|
278 | this.array.clear();
|
---|
279 | for(int i=0; i<this.length; i++)this.array.add(cc[i]);
|
---|
280 | Complex[] wc = new Complex[this.length];
|
---|
281 | for(int i=0; i<this.length; i++)wc[i]=Complex.plusOne();
|
---|
282 | amWeights = new ArrayMaths(wc);
|
---|
283 | this.type = 14;
|
---|
284 | break;
|
---|
285 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
286 | }
|
---|
287 | }
|
---|
288 |
|
---|
289 |
|
---|
290 | // INSTANCE METHODS
|
---|
291 | // Set weights to 'big W' - multiplicative factor
|
---|
292 | public void setWeightsToBigW(){
|
---|
293 | this.weightingOptionI = false;
|
---|
294 | this.weightingReset = true;
|
---|
295 | }
|
---|
296 |
|
---|
297 | // Set weights to 'little w' - uncertainties
|
---|
298 | public void setWeightsToLittleW(){
|
---|
299 | this.weightingOptionI = true;
|
---|
300 | this.weightingReset = true;
|
---|
301 | }
|
---|
302 |
|
---|
303 | // Set standard deviation, variance and covariance denominators to n
|
---|
304 | public void setDenominatorToN(){
|
---|
305 | this.nFactorOptionI = true;
|
---|
306 | this.nFactorReset = true;
|
---|
307 | }
|
---|
308 |
|
---|
309 | // Set standard deviation, variance and covariance denominators to n-1
|
---|
310 | public void setDenominatorToNminusOne(){
|
---|
311 | this.nFactorOptionI = false;
|
---|
312 | this.nFactorReset = true;
|
---|
313 | }
|
---|
314 |
|
---|
315 | // Repalce number of data points to the effective sample number in weighted calculations
|
---|
316 | public void useEffectiveN(){
|
---|
317 | this.nEffOptionI = true;
|
---|
318 | this.nEffReset = true;
|
---|
319 | }
|
---|
320 |
|
---|
321 | // Repalce the effective sample number in weighted calculations by the number of data points
|
---|
322 | public void useTrueN(){
|
---|
323 | this.nEffOptionI = false;
|
---|
324 | this.nEffReset = true;
|
---|
325 | }
|
---|
326 |
|
---|
327 | // Return the effective sample number
|
---|
328 | public double effectiveSampleNumber(){
|
---|
329 | return this.effectiveSampleNumber_as_double();
|
---|
330 |
|
---|
331 | }
|
---|
332 |
|
---|
333 | public double effectiveSampleNumber_as_double(){
|
---|
334 | boolean holdW = Stat.weightingOptionS;
|
---|
335 | if(this.weightingReset){
|
---|
336 | if(this.weightingOptionI){
|
---|
337 | Stat.weightingOptionS = true;
|
---|
338 | }
|
---|
339 | else{
|
---|
340 | Stat.weightingOptionS = false;
|
---|
341 | }
|
---|
342 | }
|
---|
343 | double nEff = 0.0D;
|
---|
344 | switch(this.type){
|
---|
345 | case 1: double[] dd = this.getArray_as_double();
|
---|
346 | nEff = Stat.effectiveSampleNumber(dd);
|
---|
347 | break;
|
---|
348 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
349 | nEff = Stat.effectiveSampleNumber(bd).doubleValue();
|
---|
350 | bd = null;
|
---|
351 | break;
|
---|
352 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
353 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
354 | }
|
---|
355 | Stat.weightingOptionS = holdW;
|
---|
356 | return nEff;
|
---|
357 | }
|
---|
358 |
|
---|
359 | public BigDecimal effectiveSampleNumber_as_BigDecimal(){
|
---|
360 | boolean holdW = Stat.weightingOptionS;
|
---|
361 | if(this.weightingReset){
|
---|
362 | if(this.weightingOptionI){
|
---|
363 | Stat.weightingOptionS = true;
|
---|
364 | }
|
---|
365 | else{
|
---|
366 | Stat.weightingOptionS = false;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | BigDecimal nEff = BigDecimal.ZERO;
|
---|
370 | switch(this.type){
|
---|
371 | case 1:
|
---|
372 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
373 | nEff = Stat.effectiveSampleNumber(bd);
|
---|
374 | bd = null;
|
---|
375 | break;
|
---|
376 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
377 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
378 | }
|
---|
379 | Stat.weightingOptionS = holdW;
|
---|
380 | return nEff;
|
---|
381 | }
|
---|
382 |
|
---|
383 | public Complex effectiveSampleNumber_as_Complex(){
|
---|
384 | boolean holdW = Stat.weightingOptionS;
|
---|
385 | if(this.weightingReset){
|
---|
386 | if(this.weightingOptionI){
|
---|
387 | Stat.weightingOptionS = true;
|
---|
388 | }
|
---|
389 | else{
|
---|
390 | Stat.weightingOptionS = false;
|
---|
391 | }
|
---|
392 | }
|
---|
393 | Complex nEff = Complex.zero();
|
---|
394 | switch(this.type){
|
---|
395 | case 1:
|
---|
396 | case 12:
|
---|
397 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
398 | nEff = Stat.effectiveSampleNumber(cc);
|
---|
399 | break;
|
---|
400 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
401 | }
|
---|
402 | Stat.weightingOptionS = holdW;
|
---|
403 | return nEff;
|
---|
404 | }
|
---|
405 |
|
---|
406 | // Return the true sample number
|
---|
407 | public int trueSampleNumber(){
|
---|
408 | return this.length;
|
---|
409 |
|
---|
410 | }
|
---|
411 |
|
---|
412 | public int trueSampleNumber_as_int(){
|
---|
413 | return this.length;
|
---|
414 | }
|
---|
415 |
|
---|
416 | public double trueSampleNumber_as_double(){
|
---|
417 | return (double)this.length;
|
---|
418 | }
|
---|
419 |
|
---|
420 | public BigDecimal trueSampleNumber_as_BigDecimal(){
|
---|
421 | return new BigDecimal(new Integer(this.length).toString());
|
---|
422 | }
|
---|
423 |
|
---|
424 | public Complex trueSampleNumber_as_Complex(){
|
---|
425 | return new Complex((double)this.length, 0.0);
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | // CONVERSION OF WEIGHTING FACTORS (INSTANCE)
|
---|
430 | // Converts weighting facors Wi to wi, i.e. to 1/sqrt(Wi)
|
---|
431 | // DEPRECATED !!!
|
---|
432 | public void convertBigWtoLittleW(){
|
---|
433 | if(!this.weightsSupplied){
|
---|
434 | System.out.println("convertBigWtoLittleW: no weights have been supplied - all weights set to unity");
|
---|
435 | }
|
---|
436 | else{
|
---|
437 | amWeights = amWeights.oneOverSqrt();
|
---|
438 | }
|
---|
439 | }
|
---|
440 |
|
---|
441 | // ENTER AN ARRAY OF WEIGHTS
|
---|
442 | public void setWeights(double[] xx){
|
---|
443 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
444 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
445 | this.convertWeights(wm);
|
---|
446 | this.weightsSupplied = true;
|
---|
447 | }
|
---|
448 |
|
---|
449 | public void setWeights(Double[] xx){
|
---|
450 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
451 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
452 | this.convertWeights(wm);
|
---|
453 | this.weightsSupplied = true;
|
---|
454 | }
|
---|
455 |
|
---|
456 | public void setWeights(float[] xx){
|
---|
457 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
458 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
459 | this.convertWeights(wm);
|
---|
460 | this.weightsSupplied = true;
|
---|
461 | }
|
---|
462 |
|
---|
463 | public void setWeights(Float[] xx){
|
---|
464 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
465 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
466 | this.convertWeights(wm);
|
---|
467 | this.weightsSupplied = true;
|
---|
468 | }
|
---|
469 |
|
---|
470 | public void setWeights(long[] xx){
|
---|
471 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
472 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
473 | this.convertWeights(wm);
|
---|
474 | this.weightsSupplied = true;
|
---|
475 | }
|
---|
476 |
|
---|
477 | public void setWeights(Long[] xx){
|
---|
478 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
479 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
480 | this.convertWeights(wm);
|
---|
481 | this.weightsSupplied = true;
|
---|
482 | }
|
---|
483 |
|
---|
484 | public void setWeights(int[] xx){
|
---|
485 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
486 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
487 | this.convertWeights(wm);
|
---|
488 | this.weightsSupplied = true;
|
---|
489 | }
|
---|
490 |
|
---|
491 | public void setWeights(Integer[] xx){
|
---|
492 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
493 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
494 | this.convertWeights(wm);
|
---|
495 | this.weightsSupplied = true;
|
---|
496 | }
|
---|
497 |
|
---|
498 | public void setWeights(short[] xx){
|
---|
499 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
500 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
501 | this.convertWeights(wm);
|
---|
502 | this.weightsSupplied = true;
|
---|
503 | }
|
---|
504 |
|
---|
505 | public void setWeights(Short[] xx){
|
---|
506 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
507 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
508 | this.convertWeights(wm);
|
---|
509 | this.weightsSupplied = true;
|
---|
510 | }
|
---|
511 |
|
---|
512 | public void setWeights(byte[] xx){
|
---|
513 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
514 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
515 | this.convertWeights(wm);
|
---|
516 | this.weightsSupplied = true;
|
---|
517 | }
|
---|
518 |
|
---|
519 | public void setWeights(Byte[] xx){
|
---|
520 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
521 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
522 | this.convertWeights(wm);
|
---|
523 | this.weightsSupplied = true;
|
---|
524 | }
|
---|
525 |
|
---|
526 | public void setWeights(BigDecimal[] xx){
|
---|
527 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
528 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
529 | this.convertWeights(wm);
|
---|
530 | this.weightsSupplied = true;
|
---|
531 | }
|
---|
532 |
|
---|
533 | public void setWeights(BigInteger[] xx){
|
---|
534 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
535 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
536 | this.convertWeights(wm);
|
---|
537 | this.weightsSupplied = true;
|
---|
538 | }
|
---|
539 |
|
---|
540 | public void setWeights(Complex[] xx){
|
---|
541 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
542 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
543 | this.convertWeights(wm);
|
---|
544 | this.weightsSupplied = true;
|
---|
545 | }
|
---|
546 |
|
---|
547 | public void setWeights(Phasor[] xx){
|
---|
548 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
549 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
550 | this.convertWeights(wm);
|
---|
551 | this.weightsSupplied = true;
|
---|
552 | }
|
---|
553 |
|
---|
554 | public void setWeights(Object[] xx){
|
---|
555 | if(this.length!=xx.length)throw new IllegalArgumentException("Length of weights array, " + xx.length + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
556 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
557 | this.convertWeights(wm);
|
---|
558 | this.weightsSupplied = true;
|
---|
559 | }
|
---|
560 |
|
---|
561 | public void setWeights(Vector<Object> xx){
|
---|
562 | if(this.length!=xx.size())throw new IllegalArgumentException("Length of weights array, " + xx.size() + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
563 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
564 | this.convertWeights(wm);
|
---|
565 | this.weightsSupplied = true;
|
---|
566 | }
|
---|
567 |
|
---|
568 | public void setWeights(ArrayList<Object> xx){
|
---|
569 | if(this.length!=xx.size())throw new IllegalArgumentException("Length of weights array, " + xx.size() + ", must be the same as the length of the instance internal array, " + this.length);
|
---|
570 | ArrayMaths wm = new ArrayMaths(xx);
|
---|
571 | this.convertWeights(wm);
|
---|
572 | this.weightsSupplied = true;
|
---|
573 | }
|
---|
574 |
|
---|
575 | private void convertWeights(ArrayMaths wm){
|
---|
576 | switch(this.type){
|
---|
577 | case 1: switch(wm.typeIndex()){
|
---|
578 | case 0:
|
---|
579 | case 1:
|
---|
580 | case 2:
|
---|
581 | case 3:
|
---|
582 | case 4:
|
---|
583 | case 5:
|
---|
584 | case 6:
|
---|
585 | case 7:
|
---|
586 | case 8:
|
---|
587 | case 9:
|
---|
588 | case 10:
|
---|
589 | case 11: Double[] w1 = wm.getArray_as_Double();
|
---|
590 | this.amWeights = new ArrayMaths(w1);
|
---|
591 | break;
|
---|
592 | case 12:
|
---|
593 | case 13: BigDecimal[] a2 = this.getArray_as_BigDecimal();
|
---|
594 | for(int i=0; i<this.length; i++)this.array.add(a2[i]);
|
---|
595 | BigDecimal[] w2 = wm.getArray_as_BigDecimal();
|
---|
596 | this.amWeights = new ArrayMaths(w2);
|
---|
597 | a2 = null;
|
---|
598 | w2 = null;
|
---|
599 | break;
|
---|
600 | case 14:
|
---|
601 | case 15: Complex[] a3 = this.getArray_as_Complex();
|
---|
602 | for(int i=0; i<this.length; i++)this.array.add(a3[i]);
|
---|
603 | Complex[] w3 = wm.getArray_as_Complex();
|
---|
604 | this.amWeights = new ArrayMaths(w3);
|
---|
605 | break;
|
---|
606 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
607 |
|
---|
608 | }
|
---|
609 | break;
|
---|
610 | case 12: switch(wm.typeIndex()){
|
---|
611 | case 0:
|
---|
612 | case 1:
|
---|
613 | case 2:
|
---|
614 | case 3:
|
---|
615 | case 4:
|
---|
616 | case 5:
|
---|
617 | case 6:
|
---|
618 | case 7:
|
---|
619 | case 8:
|
---|
620 | case 9:
|
---|
621 | case 10:
|
---|
622 | case 11: BigDecimal[] w4 = wm.getArray_as_BigDecimal();
|
---|
623 | this.amWeights = new ArrayMaths(w4);
|
---|
624 | w4 = null;
|
---|
625 | break;
|
---|
626 | case 12:
|
---|
627 | case 13: BigDecimal[] w5 = wm.getArray_as_BigDecimal();
|
---|
628 | this.amWeights = new ArrayMaths(w5);
|
---|
629 | w5 = null;
|
---|
630 | break;
|
---|
631 | case 14:
|
---|
632 | case 15: Complex[] a6 = this.getArray_as_Complex();
|
---|
633 | for(int i=0; i<this.length; i++)this.array.add(a6[i]);
|
---|
634 | Complex[] w6 = wm.getArray_as_Complex();
|
---|
635 | this.amWeights = new ArrayMaths(w6);
|
---|
636 | break;
|
---|
637 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
638 | }
|
---|
639 | break;
|
---|
640 | case 14: Complex[] a7 = this.getArray_as_Complex();
|
---|
641 | for(int i=0; i<this.length; i++)this.array.add(a7[i]);
|
---|
642 | Complex[] w7 = wm.getArray_as_Complex();
|
---|
643 | this.amWeights = new ArrayMaths(w7);
|
---|
644 | break;
|
---|
645 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
646 | }
|
---|
647 | }
|
---|
648 |
|
---|
649 | // ARITMETIC MEANS (INSTANCE)
|
---|
650 | public double mean(){
|
---|
651 | return this.mean_as_double();
|
---|
652 |
|
---|
653 | }
|
---|
654 |
|
---|
655 | public double mean_as_double(){
|
---|
656 | double mean = 0.0D;
|
---|
657 | switch(this.type){
|
---|
658 | case 1: double[] dd = this.getArray_as_double();
|
---|
659 | for(int i=0; i<this.length; i++){
|
---|
660 | mean += dd[i];
|
---|
661 | }
|
---|
662 | mean /= (double)this.length;
|
---|
663 | break;
|
---|
664 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
665 | BigDecimal meanbd = BigDecimal.ZERO;
|
---|
666 | for(int i=0; i<this.length; i++)meanbd = meanbd.add(bd[i]);
|
---|
667 | meanbd = meanbd.divide(new BigDecimal((double)this.length), BigDecimal.ROUND_HALF_UP);
|
---|
668 | mean = meanbd.doubleValue();
|
---|
669 | bd = null;
|
---|
670 | meanbd = null;
|
---|
671 | break;
|
---|
672 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
673 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
674 | }
|
---|
675 | return mean;
|
---|
676 | }
|
---|
677 |
|
---|
678 | public BigDecimal mean_as_BigDecimal(){
|
---|
679 | BigDecimal mean = BigDecimal.ZERO;
|
---|
680 | switch(this.type){
|
---|
681 | case 1: double[] dd = this.getArray_as_double();
|
---|
682 | double meand= 0.0D;
|
---|
683 | for(int i=0; i<this.length; i++)meand += dd[i];
|
---|
684 | meand /= (double)this.length;
|
---|
685 | mean = new BigDecimal(meand);
|
---|
686 | break;
|
---|
687 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
688 | for(int i=0; i<this.length; i++)mean = mean.add(bd[i]);
|
---|
689 | mean = mean.divide(new BigDecimal((double)this.length), BigDecimal.ROUND_HALF_UP);
|
---|
690 | bd = null;
|
---|
691 | break;
|
---|
692 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
693 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
694 | }
|
---|
695 | return mean;
|
---|
696 | }
|
---|
697 |
|
---|
698 | public Complex mean_as_Complex(){
|
---|
699 | Complex mean = Complex.zero();
|
---|
700 | switch(this.type){
|
---|
701 | case 1: double[] dd = this.getArray_as_double();
|
---|
702 | double meand= 0.0D;
|
---|
703 | for(int i=0; i<this.length; i++)meand += dd[i];
|
---|
704 | meand /= (double)this.length;
|
---|
705 | mean = new Complex(meand);
|
---|
706 | break;
|
---|
707 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
708 | BigDecimal meanbd = BigDecimal.ZERO;
|
---|
709 | for(int i=0; i<this.length; i++)meanbd = meanbd.add(bd[i]);
|
---|
710 | meanbd = meanbd.divide(new BigDecimal((double)this.length), BigDecimal.ROUND_HALF_UP);
|
---|
711 | mean = new Complex(meanbd.doubleValue());
|
---|
712 | bd = null;
|
---|
713 | meanbd = null;
|
---|
714 | break;
|
---|
715 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
716 | for(int i=0; i<this.length; i++)mean = mean.plus(cc[i]);
|
---|
717 | mean = mean.over(new Complex((double)this.length));
|
---|
718 | break;
|
---|
719 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
720 | }
|
---|
721 | return mean;
|
---|
722 | }
|
---|
723 |
|
---|
724 |
|
---|
725 | // WEIGHTED ARITMETIC MEANS (INSTANCE)
|
---|
726 | public double weightedMean(){
|
---|
727 | return this.weightedMean_as_double();
|
---|
728 | }
|
---|
729 |
|
---|
730 | public double weightedMean_as_double(){
|
---|
731 | if(!this.weightsSupplied){
|
---|
732 | System.out.println("weightedMean_as_double: no weights supplied - unweighted mean returned");
|
---|
733 | return this.mean_as_double();
|
---|
734 | }
|
---|
735 | else{
|
---|
736 | boolean holdW = Stat.weightingOptionS;
|
---|
737 | if(this.weightingReset){
|
---|
738 | if(this.weightingOptionI){
|
---|
739 | Stat.weightingOptionS = true;
|
---|
740 | }
|
---|
741 | else{
|
---|
742 | Stat.weightingOptionS = false;
|
---|
743 | }
|
---|
744 | }
|
---|
745 | double mean = 0.0D;
|
---|
746 | switch(this.type){
|
---|
747 | case 1: double[] dd = this.getArray_as_double();
|
---|
748 | double[] wwd = this.amWeights.getArray_as_double();
|
---|
749 | mean = Stat.mean(dd, wwd);
|
---|
750 | break;
|
---|
751 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
752 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
753 | mean = (Stat.mean(bd, wwb)).doubleValue();
|
---|
754 | bd = null;
|
---|
755 | wwb = null;
|
---|
756 | break;
|
---|
757 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
758 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
759 | }
|
---|
760 | Stat.weightingOptionS = holdW;
|
---|
761 | return mean;
|
---|
762 | }
|
---|
763 | }
|
---|
764 |
|
---|
765 | public BigDecimal weightedMean_as_BigDecimal(){
|
---|
766 | if(!this.weightsSupplied){
|
---|
767 | System.out.println("weightedMean_as_BigDecimal: no weights supplied - unweighted mean returned");
|
---|
768 | return this.mean_as_BigDecimal();
|
---|
769 | }
|
---|
770 | else{
|
---|
771 | boolean holdW = Stat.weightingOptionS;
|
---|
772 | if(this.weightingReset){
|
---|
773 | if(this.weightingOptionI){
|
---|
774 | Stat.weightingOptionS = true;
|
---|
775 | }
|
---|
776 | else{
|
---|
777 | Stat.weightingOptionS = false;
|
---|
778 | }
|
---|
779 | }
|
---|
780 | BigDecimal mean = BigDecimal.ZERO;
|
---|
781 | switch(this.type){
|
---|
782 | case 1:
|
---|
783 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
784 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
785 | mean = Stat.mean(bd, wwb);
|
---|
786 | bd = null;
|
---|
787 | wwb = null;
|
---|
788 | break;
|
---|
789 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
790 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
791 | }
|
---|
792 | Stat.weightingOptionS = holdW;
|
---|
793 | return mean;
|
---|
794 | }
|
---|
795 | }
|
---|
796 |
|
---|
797 | public Complex weightedMean_as_Complex(){
|
---|
798 | if(!this.weightsSupplied){
|
---|
799 | System.out.println("weightedMean_as_Complex: no weights supplied - unweighted mean returned");
|
---|
800 | return this.mean_as_Complex();
|
---|
801 | }
|
---|
802 | else{
|
---|
803 | boolean holdW = Stat.weightingOptionS;
|
---|
804 | if(this.weightingReset){
|
---|
805 | if(this.weightingOptionI){
|
---|
806 | Stat.weightingOptionS = true;
|
---|
807 | }
|
---|
808 | else{
|
---|
809 | Stat.weightingOptionS = false;
|
---|
810 | }
|
---|
811 | }
|
---|
812 | Complex mean = Complex.zero();
|
---|
813 | switch(this.type){
|
---|
814 | case 1: double[] dd = this.getArray_as_double();
|
---|
815 | double[] wwd = this.amWeights.getArray_as_double();
|
---|
816 | mean = new Complex(Stat.mean(dd, wwd));
|
---|
817 | break;
|
---|
818 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
819 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
820 | mean = new Complex((Stat.mean(bd, wwb)).doubleValue());
|
---|
821 | bd = null;
|
---|
822 | wwb = null;
|
---|
823 | break;
|
---|
824 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
825 | Complex[] wwc = this.amWeights.getArray_as_Complex();
|
---|
826 | mean = Stat.mean(cc, wwc);
|
---|
827 | break;
|
---|
828 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
829 | }
|
---|
830 | Stat.weightingOptionS = holdW;
|
---|
831 | return mean;
|
---|
832 | }
|
---|
833 | }
|
---|
834 |
|
---|
835 | // SUBTRACT AN ARITMETIC MEAN FROM AN ARRAY (INSTANCE)
|
---|
836 | public double[] subtractMean(){
|
---|
837 | return this.subtractMean_as_double();
|
---|
838 | }
|
---|
839 |
|
---|
840 | public double[] subtractMean_as_double(){
|
---|
841 | double[] arrayminus = new double[this.length];
|
---|
842 | switch(this.type){
|
---|
843 | case 1: double meand = this.mean_as_double();
|
---|
844 | ArrayMaths amd = this.minus(meand);
|
---|
845 | arrayminus = amd.getArray_as_double();
|
---|
846 | break;
|
---|
847 | case 12: BigDecimal meanb = this.mean_as_BigDecimal();
|
---|
848 | ArrayMaths amb = this.minus(meanb);
|
---|
849 | arrayminus = amb.getArray_as_double();
|
---|
850 | meanb = null;
|
---|
851 | break;
|
---|
852 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
853 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
854 | }
|
---|
855 | return arrayminus;
|
---|
856 | }
|
---|
857 |
|
---|
858 | public BigDecimal[] subtractMean_as_BigDecimal(){
|
---|
859 | BigDecimal[] arrayminus = new BigDecimal[this.length];
|
---|
860 | switch(this.type){
|
---|
861 | case 1:
|
---|
862 | case 12: BigDecimal meanb = this.mean_as_BigDecimal();
|
---|
863 | ArrayMaths amb = this.minus(meanb);
|
---|
864 | arrayminus = amb.getArray_as_BigDecimal();
|
---|
865 | meanb = null;
|
---|
866 | break;
|
---|
867 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
868 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
869 | }
|
---|
870 | return arrayminus;
|
---|
871 | }
|
---|
872 |
|
---|
873 | public Complex[] subtractMean_as_Complex(){
|
---|
874 | Complex[] arrayminus = new Complex[this.length];
|
---|
875 | switch(this.type){
|
---|
876 | case 1: double meand = this.mean_as_double();
|
---|
877 | ArrayMaths amd = this.minus(meand);
|
---|
878 | arrayminus = amd.getArray_as_Complex();
|
---|
879 | break;
|
---|
880 | case 12: BigDecimal meanb = this.mean_as_BigDecimal();
|
---|
881 | ArrayMaths amb = this.minus(meanb);
|
---|
882 | arrayminus = amb.getArray_as_Complex();
|
---|
883 | meanb = null;
|
---|
884 | break;
|
---|
885 | case 14: Complex meanc = this.mean_as_Complex();
|
---|
886 | ArrayMaths amc = this.minus(meanc);
|
---|
887 | arrayminus = amc.getArray_as_Complex();
|
---|
888 | break;
|
---|
889 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
890 | }
|
---|
891 | return arrayminus;
|
---|
892 | }
|
---|
893 |
|
---|
894 | // SUBTRACT AN WEIGHTED ARITMETIC MEAN FROM AN ARRAY (INSTANCE)
|
---|
895 | public double[] subtractWeightedMean(){
|
---|
896 | return this.subtractWeightedMean_as_double();
|
---|
897 | }
|
---|
898 |
|
---|
899 | public double[] subtractWeightedMean_as_double(){
|
---|
900 | if(!this.weightsSupplied){
|
---|
901 | System.out.println("subtractWeightedMean_as_double: no weights supplied - unweighted values returned");
|
---|
902 | return this.subtractMean_as_double();
|
---|
903 | }
|
---|
904 | else{
|
---|
905 | boolean holdW = Stat.weightingOptionS;
|
---|
906 | if(this.weightingReset){
|
---|
907 | if(this.weightingOptionI){
|
---|
908 | Stat.weightingOptionS = true;
|
---|
909 | }
|
---|
910 | else{
|
---|
911 | Stat.weightingOptionS = false;
|
---|
912 | }
|
---|
913 | }
|
---|
914 | double[] arrayminus = new double[this.length];
|
---|
915 | switch(this.type){
|
---|
916 | case 1: double meand = this.weightedMean_as_double();
|
---|
917 | ArrayMaths amd = this.minus(meand);
|
---|
918 | arrayminus = amd.getArray_as_double();
|
---|
919 | break;
|
---|
920 | case 12: BigDecimal meanb = this.weightedMean_as_BigDecimal();
|
---|
921 | ArrayMaths amb = this.minus(meanb);
|
---|
922 | arrayminus = amb.getArray_as_double();
|
---|
923 | meanb = null;
|
---|
924 | break;
|
---|
925 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
926 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
927 | }
|
---|
928 | Stat.weightingOptionS = holdW;
|
---|
929 | return arrayminus;
|
---|
930 | }
|
---|
931 | }
|
---|
932 |
|
---|
933 | public BigDecimal[] subtractWeightedMean_as_BigDecimal(){
|
---|
934 | if(!this.weightsSupplied){
|
---|
935 | System.out.println("subtractWeightedMean_as_BigDecimal: no weights supplied - unweighted values returned");
|
---|
936 | return this.subtractMean_as_BigDecimal();
|
---|
937 | }
|
---|
938 | else{
|
---|
939 | boolean holdW = Stat.weightingOptionS;
|
---|
940 | if(this.weightingReset){
|
---|
941 | if(this.weightingOptionI){
|
---|
942 | Stat.weightingOptionS = true;
|
---|
943 | }
|
---|
944 | else{
|
---|
945 | Stat.weightingOptionS = false;
|
---|
946 | }
|
---|
947 | }
|
---|
948 | BigDecimal[] arrayminus = new BigDecimal[this.length];
|
---|
949 | switch(this.type){
|
---|
950 | case 1:
|
---|
951 | case 12: BigDecimal meanb = this.weightedMean_as_BigDecimal();
|
---|
952 | ArrayMaths amb = this.minus(meanb);
|
---|
953 | arrayminus = amb.getArray_as_BigDecimal();
|
---|
954 | meanb = null;
|
---|
955 | break;
|
---|
956 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
957 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
958 | }
|
---|
959 | Stat.weightingOptionS = holdW;
|
---|
960 | return arrayminus;
|
---|
961 | }
|
---|
962 | }
|
---|
963 |
|
---|
964 | public Complex[] subtractWeightedMean_as_Complex(){
|
---|
965 | if(!this.weightsSupplied){
|
---|
966 | System.out.println("subtractWeightedMean_as_Complex: no weights supplied - unweighted values returned");
|
---|
967 | return this.subtractMean_as_Complex();
|
---|
968 | }
|
---|
969 | else{
|
---|
970 | boolean holdW = Stat.weightingOptionS;
|
---|
971 | if(this.weightingReset){
|
---|
972 | if(this.weightingOptionI){
|
---|
973 | Stat.weightingOptionS = true;
|
---|
974 | }
|
---|
975 | else{
|
---|
976 | Stat.weightingOptionS = false;
|
---|
977 | }
|
---|
978 | }
|
---|
979 | Complex[] arrayminus = new Complex[this.length];
|
---|
980 | switch(this.type){
|
---|
981 | case 1: double meand = this.weightedMean_as_double();
|
---|
982 | ArrayMaths amd = this.minus(meand);
|
---|
983 | arrayminus = amd.getArray_as_Complex();
|
---|
984 | break;
|
---|
985 | case 12: BigDecimal meanb = this.weightedMean_as_BigDecimal();
|
---|
986 | ArrayMaths amb = this.minus(meanb);
|
---|
987 | arrayminus = amb.getArray_as_Complex();
|
---|
988 | meanb = null;
|
---|
989 | break;
|
---|
990 | case 14: Complex meanc = this.weightedMean_as_Complex();
|
---|
991 | ArrayMaths amc = this.minus(meanc);
|
---|
992 | arrayminus = amc.getArray_as_Complex();
|
---|
993 | break;
|
---|
994 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
995 | }
|
---|
996 | Stat.weightingOptionS = holdW;
|
---|
997 | return arrayminus;
|
---|
998 | }
|
---|
999 | }
|
---|
1000 |
|
---|
1001 |
|
---|
1002 | // GEOMETRIC MEAN(INSTANCE)
|
---|
1003 | public double geometricMean(){
|
---|
1004 | return this.geometricMean_as_double();
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | public double geometricMean_as_double(){
|
---|
1008 | double gmean = 0.0D;
|
---|
1009 | switch(this.type){
|
---|
1010 | case 1: double[] dd = this.getArray_as_double();
|
---|
1011 | gmean = Stat.geometricMean(dd);
|
---|
1012 | break;
|
---|
1013 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1014 | gmean = Stat.geometricMean(bd);
|
---|
1015 | bd = null;
|
---|
1016 | break;
|
---|
1017 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1018 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1019 |
|
---|
1020 | }
|
---|
1021 | return gmean;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | public Complex geometricMean_as_Complex(){
|
---|
1025 | Complex gmean = Complex.zero();
|
---|
1026 | switch(this.type){
|
---|
1027 | case 1:
|
---|
1028 | case 12:
|
---|
1029 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1030 | gmean = Stat.geometricMean(cc);
|
---|
1031 | break;
|
---|
1032 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1033 | }
|
---|
1034 | return gmean;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 |
|
---|
1038 | // WEIGHTED GEOMETRIC MEAN(INSTANCE)
|
---|
1039 | public double weightedGeometricMean(){
|
---|
1040 | return this.weightedGeometricMean_as_double();
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | public double weightedGeometricMean_as_double(){
|
---|
1044 | if(!this.weightsSupplied){
|
---|
1045 | System.out.println("weightedGeometricMean_as_double: no weights supplied - unweighted value returned");
|
---|
1046 | return this.geometricMean_as_double();
|
---|
1047 | }
|
---|
1048 | else{
|
---|
1049 | boolean holdW = Stat.weightingOptionS;
|
---|
1050 | if(this.weightingReset){
|
---|
1051 | if(this.weightingOptionI){
|
---|
1052 | Stat.weightingOptionS = true;
|
---|
1053 | }
|
---|
1054 | else{
|
---|
1055 | Stat.weightingOptionS = false;
|
---|
1056 | }
|
---|
1057 | }
|
---|
1058 | double gmean = 0.0D;
|
---|
1059 | switch(this.type){
|
---|
1060 | case 1: double[] dd = this.getArray_as_double();
|
---|
1061 | double[] ww = this.getArray_as_double();
|
---|
1062 | gmean = Stat.geometricMean(dd, ww);
|
---|
1063 | break;
|
---|
1064 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1065 | BigDecimal[] wd = this.getArray_as_BigDecimal();
|
---|
1066 | gmean = Stat.geometricMean(bd, wd);
|
---|
1067 | bd = null;
|
---|
1068 | wd = null;
|
---|
1069 | break;
|
---|
1070 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1071 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1072 |
|
---|
1073 | }
|
---|
1074 | Stat.weightingOptionS = holdW;
|
---|
1075 | return gmean;
|
---|
1076 | }
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | public Complex weightedGeometricMean_as_Complex(){
|
---|
1080 | if(!this.weightsSupplied){
|
---|
1081 | System.out.println("weightedGeometricMean_as_Complex: no weights supplied - unweighted value returned");
|
---|
1082 | return this.geometricMean_as_Complex();
|
---|
1083 | }
|
---|
1084 | else{
|
---|
1085 | boolean holdW = Stat.weightingOptionS;
|
---|
1086 | if(this.weightingReset){
|
---|
1087 | if(this.weightingOptionI){
|
---|
1088 | Stat.weightingOptionS = true;
|
---|
1089 | }
|
---|
1090 | else{
|
---|
1091 | Stat.weightingOptionS = false;
|
---|
1092 | }
|
---|
1093 | }
|
---|
1094 | Complex gmean = Complex.zero();
|
---|
1095 | switch(this.type){
|
---|
1096 | case 1:
|
---|
1097 | case 12:
|
---|
1098 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1099 | Complex[] ww = this.getArray_as_Complex();
|
---|
1100 | gmean = Stat.geometricMean(cc, ww);
|
---|
1101 | break;
|
---|
1102 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1103 | }
|
---|
1104 | Stat.weightingOptionS = holdW;
|
---|
1105 | return gmean;
|
---|
1106 | }
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | // HARMONIC MEANS (INSTANCE)
|
---|
1110 | public double harmonicMean(){
|
---|
1111 | return this.harmonicMean_as_double();
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | public double harmonicMean_as_double(){
|
---|
1115 |
|
---|
1116 | double mean = 0.0D;
|
---|
1117 | switch(this.type){
|
---|
1118 | case 1: double[] dd = this.getArray_as_double();
|
---|
1119 | mean = Stat.harmonicMean(dd);
|
---|
1120 | break;
|
---|
1121 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1122 | mean = (Stat.harmonicMean(bd)).doubleValue();
|
---|
1123 | bd = null;
|
---|
1124 | break;
|
---|
1125 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1126 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1127 | }
|
---|
1128 | return mean;
|
---|
1129 |
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | public BigDecimal harmonicMean_as_BigDecimal(){
|
---|
1133 |
|
---|
1134 | BigDecimal mean = BigDecimal.ZERO;
|
---|
1135 | switch(this.type){
|
---|
1136 | case 1:
|
---|
1137 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1138 | mean = Stat.harmonicMean(bd);
|
---|
1139 | bd = null;
|
---|
1140 | break;
|
---|
1141 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
1142 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1143 | }
|
---|
1144 | return mean;
|
---|
1145 |
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | public Complex harmonicMean_as_Complex(){
|
---|
1149 |
|
---|
1150 | Complex mean = Complex.zero();
|
---|
1151 | switch(this.type){
|
---|
1152 | case 1: double[] dd = this.getArray_as_double();
|
---|
1153 | mean = new Complex(Stat.harmonicMean(dd));
|
---|
1154 | break;
|
---|
1155 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1156 | mean = new Complex((Stat.harmonicMean(bd)).doubleValue());
|
---|
1157 | bd = null;
|
---|
1158 | break;
|
---|
1159 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1160 | mean = Stat.harmonicMean(cc);
|
---|
1161 | break;
|
---|
1162 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1163 | }
|
---|
1164 | return mean;
|
---|
1165 |
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 | // WEIGHTED HARMONIC MEANS (INSTANCE)
|
---|
1169 | public double weightedHarmonicMean(){
|
---|
1170 | return this.weightedHarmonicMean_as_double();
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | public double weightedHarmonicMean_as_double(){
|
---|
1174 | if(!this.weightsSupplied){
|
---|
1175 | System.out.println("weightedHarmonicMean_as_double: no weights supplied - unweighted mean returned");
|
---|
1176 | return this.harmonicMean_as_double();
|
---|
1177 | }
|
---|
1178 | else{
|
---|
1179 | boolean holdW = Stat.weightingOptionS;
|
---|
1180 | if(this.weightingReset){
|
---|
1181 | if(this.weightingOptionI){
|
---|
1182 | Stat.weightingOptionS = true;
|
---|
1183 | }
|
---|
1184 | else{
|
---|
1185 | Stat.weightingOptionS = false;
|
---|
1186 | }
|
---|
1187 | }
|
---|
1188 | double mean = 0.0D;
|
---|
1189 | switch(this.type){
|
---|
1190 | case 1: double[] dd = this.getArray_as_double();
|
---|
1191 | double[] wwd = this.amWeights.getArray_as_double();
|
---|
1192 | mean = Stat.harmonicMean(dd, wwd);
|
---|
1193 | break;
|
---|
1194 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1195 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
1196 | mean = (Stat.harmonicMean(bd, wwb)).doubleValue();
|
---|
1197 | bd = null;
|
---|
1198 | wwb = null;
|
---|
1199 | break;
|
---|
1200 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1201 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1202 | }
|
---|
1203 | Stat.weightingOptionS = holdW;
|
---|
1204 | return mean;
|
---|
1205 | }
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | public BigDecimal weightedHarmonicMean_as_BigDecimal(){
|
---|
1209 | if(!this.weightsSupplied){
|
---|
1210 | System.out.println("weightedHarmonicMean_as_BigDecimal: no weights supplied - unweighted mean returned");
|
---|
1211 | return this.harmonicMean_as_BigDecimal();
|
---|
1212 | }
|
---|
1213 | else{
|
---|
1214 | boolean holdW = Stat.weightingOptionS;
|
---|
1215 | if(this.weightingReset){
|
---|
1216 | if(this.weightingOptionI){
|
---|
1217 | Stat.weightingOptionS = true;
|
---|
1218 | }
|
---|
1219 | else{
|
---|
1220 | Stat.weightingOptionS = false;
|
---|
1221 | }
|
---|
1222 | }
|
---|
1223 | BigDecimal mean = BigDecimal.ZERO;
|
---|
1224 | switch(this.type){
|
---|
1225 | case 1:
|
---|
1226 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1227 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
1228 | mean = Stat.harmonicMean(bd, wwb);
|
---|
1229 | bd = null;
|
---|
1230 | wwb = null;
|
---|
1231 | break;
|
---|
1232 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
1233 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1234 | }
|
---|
1235 | Stat.weightingOptionS = holdW;
|
---|
1236 | return mean;
|
---|
1237 | }
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | public Complex weightedHarmonicMean_as_Complex(){
|
---|
1241 | if(!this.weightsSupplied){
|
---|
1242 | System.out.println("weightedHarmonicMean_as_Complex: no weights supplied - unweighted mean returned");
|
---|
1243 | return this.harmonicMean_as_Complex();
|
---|
1244 | }
|
---|
1245 | else{
|
---|
1246 | boolean holdW = Stat.weightingOptionS;
|
---|
1247 | if(this.weightingReset){
|
---|
1248 | if(this.weightingOptionI){
|
---|
1249 | Stat.weightingOptionS = true;
|
---|
1250 | }
|
---|
1251 | else{
|
---|
1252 | Stat.weightingOptionS = false;
|
---|
1253 | }
|
---|
1254 | }
|
---|
1255 | Complex mean = Complex.zero();
|
---|
1256 | switch(this.type){
|
---|
1257 | case 1: double[] dd = this.getArray_as_double();
|
---|
1258 | double[] wwd = this.amWeights.getArray_as_double();
|
---|
1259 | mean = new Complex(Stat.harmonicMean(dd, wwd));
|
---|
1260 | break;
|
---|
1261 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1262 | BigDecimal[] wwb = this.amWeights.getArray_as_BigDecimal();
|
---|
1263 | mean = new Complex((Stat.harmonicMean(bd, wwb)).doubleValue());
|
---|
1264 | bd = null;
|
---|
1265 | wwb = null;
|
---|
1266 | break;
|
---|
1267 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1268 | Complex[] wwc = this.amWeights.getArray_as_Complex();
|
---|
1269 | mean = Stat.harmonicMean(cc, wwc);
|
---|
1270 | break;
|
---|
1271 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1272 | }
|
---|
1273 | Stat.weightingOptionS = holdW;
|
---|
1274 | return mean;
|
---|
1275 | }
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | // GENERALIZED MEANS [POWER MEANS](INSTANCE)
|
---|
1279 | public double generalizedMean(double m){
|
---|
1280 | return this.generalizedMean_as_double(m);
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | public double generalizedMean_as_double(double m){
|
---|
1284 | double mean = 0.0D;
|
---|
1285 | switch(this.type){
|
---|
1286 | case 1: double[] dd = this.getArray_as_double();
|
---|
1287 | mean = Stat.generalizedMean(dd, m);
|
---|
1288 | break;
|
---|
1289 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1290 | mean = Stat.generalizedMean(bd, m);
|
---|
1291 | bd = null;
|
---|
1292 | break;
|
---|
1293 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1294 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1295 | }
|
---|
1296 | return mean;
|
---|
1297 |
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | public double generalizedMean(BigDecimal m){
|
---|
1301 | return this.generalizedMean_as_double(m);
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | public double generalizedMean_as_double(BigDecimal m){
|
---|
1305 | double mean = 0.0D;
|
---|
1306 | switch(this.type){
|
---|
1307 | case 1:
|
---|
1308 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1309 | mean = Stat.generalizedMean(bd, m);
|
---|
1310 | bd = null;
|
---|
1311 | break;
|
---|
1312 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
1313 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1314 | }
|
---|
1315 | return mean;
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 | public Complex generalizedMean_as_Complex(double m){
|
---|
1319 | Complex mean = Complex.zero();
|
---|
1320 | switch(this.type){
|
---|
1321 | case 1: double[] dd = this.getArray_as_double();
|
---|
1322 | mean = new Complex(Stat.generalizedMean(dd, m));
|
---|
1323 | break;
|
---|
1324 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1325 | mean = new Complex(Stat.generalizedMean(bd, m));
|
---|
1326 | bd = null;
|
---|
1327 | break;
|
---|
1328 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1329 | mean = Stat.generalizedMean(cc, m);
|
---|
1330 | break;
|
---|
1331 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1332 | }
|
---|
1333 | return mean;
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | public Complex generalizedMean_as_Complex(Complex m){
|
---|
1337 | Complex mean = Complex.zero();
|
---|
1338 | switch(this.type){
|
---|
1339 | case 1:
|
---|
1340 | case 12:
|
---|
1341 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1342 | mean = Stat.generalizedMean(cc, m);
|
---|
1343 | break;
|
---|
1344 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1345 | }
|
---|
1346 | return mean;
|
---|
1347 | }
|
---|
1348 |
|
---|
1349 | public double generalisedMean(double m){
|
---|
1350 | return this.generalisedMean_as_double(m);
|
---|
1351 | }
|
---|
1352 |
|
---|
1353 | public double generalisedMean_as_double(double m){
|
---|
1354 | double mean = 0.0D;
|
---|
1355 | switch(this.type){
|
---|
1356 | case 1: double[] dd = this.getArray_as_double();
|
---|
1357 | mean = Stat.generalisedMean(dd, m);
|
---|
1358 | break;
|
---|
1359 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1360 | mean = Stat.generalisedMean(bd, m);
|
---|
1361 | bd = null;
|
---|
1362 | break;
|
---|
1363 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1364 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1365 | }
|
---|
1366 | return mean;
|
---|
1367 | }
|
---|
1368 |
|
---|
1369 | public double generalisedMean(BigDecimal m){
|
---|
1370 | return this.generalisedMean_as_double(m);
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | public double generalisedMean_as_double(BigDecimal m){
|
---|
1374 | double mean = 0.0D;
|
---|
1375 | switch(this.type){
|
---|
1376 | case 1:
|
---|
1377 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1378 | mean = Stat.generalisedMean(bd, m);
|
---|
1379 | bd = null;
|
---|
1380 | break;
|
---|
1381 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
1382 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1383 | }
|
---|
1384 | return mean;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | public Complex generalisedMean_as_Complex(double m){
|
---|
1388 | Complex mean = Complex.zero();
|
---|
1389 | switch(this.type){
|
---|
1390 | case 1: double[] dd = this.getArray_as_double();
|
---|
1391 | mean = new Complex(Stat.generalisedMean(dd, m));
|
---|
1392 | break;
|
---|
1393 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1394 | mean = new Complex(Stat.generalisedMean(bd, m));
|
---|
1395 | bd = null;
|
---|
1396 | break;
|
---|
1397 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1398 | mean = Stat.generalisedMean(cc, m);
|
---|
1399 | break;
|
---|
1400 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1401 | }
|
---|
1402 | return mean;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 | public Complex generalisedMean_as_Complex(Complex m){
|
---|
1406 | Complex mean = Complex.zero();
|
---|
1407 | switch(this.type){
|
---|
1408 | case 1:
|
---|
1409 | case 12:
|
---|
1410 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1411 | mean = Stat.generalisedMean(cc, m);
|
---|
1412 | break;
|
---|
1413 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1414 | }
|
---|
1415 | return mean;
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 |
|
---|
1419 | // WEIGHTED GENERALIZED MEANS [WEIGHTED POWER MEANS](INSTANCE)
|
---|
1420 | public double weightedGeneralizedMean(double m){
|
---|
1421 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1422 | }
|
---|
1423 |
|
---|
1424 | public double weightedGeneralizedMean_as_double(double m){
|
---|
1425 | if(!this.weightsSupplied){
|
---|
1426 | System.out.println("weightedGeneralizedMean_as_double: no weights supplied - unweighted mean returned");
|
---|
1427 | return this.generalizedMean_as_double(m);
|
---|
1428 | }
|
---|
1429 | else{
|
---|
1430 | boolean holdW = Stat.weightingOptionS;
|
---|
1431 | if(this.weightingReset){
|
---|
1432 | if(this.weightingOptionI){
|
---|
1433 | Stat.weightingOptionS = true;
|
---|
1434 | }
|
---|
1435 | else{
|
---|
1436 | Stat.weightingOptionS = false;
|
---|
1437 | }
|
---|
1438 | }
|
---|
1439 | double mean = 0.0D;
|
---|
1440 | switch(this.type){
|
---|
1441 | case 1: double[] dd = this.getArray_as_double();
|
---|
1442 | double[] ww = this.amWeights.getArray_as_double();
|
---|
1443 | mean = Stat.generalisedMean(dd, ww, m);
|
---|
1444 | break;
|
---|
1445 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1446 | BigDecimal[] wd = this.amWeights.getArray_as_BigDecimal();
|
---|
1447 | mean = Stat.generalisedMean(bd, wd, m);
|
---|
1448 | bd = null;
|
---|
1449 | wd = null;
|
---|
1450 | break;
|
---|
1451 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
1452 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1453 | }
|
---|
1454 | Stat.weightingOptionS = holdW;
|
---|
1455 | return mean;
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | public double weightedGeneralizedMean(BigDecimal m){
|
---|
1460 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | public double weightedGeneralizedMean_as_double(BigDecimal m){
|
---|
1464 | if(!this.weightsSupplied){
|
---|
1465 | System.out.println("weightedGeneralizedMean_as_double: no weights supplied - unweighted mean returned");
|
---|
1466 | return this.generalizedMean_as_double(m);
|
---|
1467 | }
|
---|
1468 | else{
|
---|
1469 | boolean holdW = Stat.weightingOptionS;
|
---|
1470 | if(this.weightingReset){
|
---|
1471 | if(this.weightingOptionI){
|
---|
1472 | Stat.weightingOptionS = true;
|
---|
1473 | }
|
---|
1474 | else{
|
---|
1475 | Stat.weightingOptionS = false;
|
---|
1476 | }
|
---|
1477 | }
|
---|
1478 | double mean = 0.0D;
|
---|
1479 | switch(this.type){
|
---|
1480 | case 1:
|
---|
1481 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1482 | BigDecimal[] wd = this.amWeights.getArray_as_BigDecimal();
|
---|
1483 | mean = Stat.generalisedMean(bd, wd, m);
|
---|
1484 | bd = null;
|
---|
1485 | break;
|
---|
1486 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
1487 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1488 | }
|
---|
1489 | Stat.weightingOptionS = holdW;
|
---|
1490 | return mean;
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | public Complex weightedGeneralizedMean_as_Complex(double m){
|
---|
1495 | if(!this.weightsSupplied){
|
---|
1496 | System.out.println("weightedGeneralizedMean_as_Complex: no weights supplied - unweighted mean returned");
|
---|
1497 | return this.generalizedMean_as_Complex(m);
|
---|
1498 | }
|
---|
1499 | else{
|
---|
1500 | boolean holdW = Stat.weightingOptionS;
|
---|
1501 | if(this.weightingReset){
|
---|
1502 | if(this.weightingOptionI){
|
---|
1503 | Stat.weightingOptionS = true;
|
---|
1504 | }
|
---|
1505 | else{
|
---|
1506 | Stat.weightingOptionS = false;
|
---|
1507 | }
|
---|
1508 | }
|
---|
1509 | Complex mean = Complex.zero();
|
---|
1510 | switch(this.type){
|
---|
1511 | case 1: double[] dd = this.getArray_as_double();
|
---|
1512 | double[] ww = this.amWeights.getArray_as_double();
|
---|
1513 | mean = new Complex(Stat.generalisedMean(dd, ww, m));
|
---|
1514 | break;
|
---|
1515 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1516 | BigDecimal[] wd = this.amWeights.getArray_as_BigDecimal();
|
---|
1517 | mean = new Complex(Stat.generalisedMean(bd, wd, m));
|
---|
1518 | bd = null;
|
---|
1519 | break;
|
---|
1520 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1521 | Complex[] cw = this.amWeights.getArray_as_Complex();
|
---|
1522 | mean = Stat.generalisedMean(cc, cw, m);
|
---|
1523 | break;
|
---|
1524 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1525 | }
|
---|
1526 | Stat.weightingOptionS = holdW;
|
---|
1527 | return mean;
|
---|
1528 | }
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 | public Complex weightedGeneralizedMean_as_Complex(Complex m){
|
---|
1532 | Complex mean = Complex.zero();
|
---|
1533 | if(!this.weightsSupplied){
|
---|
1534 | System.out.println("weightedGeneralizedMean_as_dComplex: no weights supplied - unweighted mean returned");
|
---|
1535 | return this.generalizedMean_as_Complex(m);
|
---|
1536 | }
|
---|
1537 | else{
|
---|
1538 | boolean holdW = Stat.weightingOptionS;
|
---|
1539 | if(this.weightingReset){
|
---|
1540 | if(this.weightingOptionI){
|
---|
1541 | Stat.weightingOptionS = true;
|
---|
1542 | }
|
---|
1543 | else{
|
---|
1544 | Stat.weightingOptionS = false;
|
---|
1545 | }
|
---|
1546 | }
|
---|
1547 | switch(this.type){
|
---|
1548 | case 1:
|
---|
1549 | case 12:
|
---|
1550 | case 14: Complex[] cc = this.getArray_as_Complex();
|
---|
1551 | Complex[] cw = this.amWeights.getArray_as_Complex();
|
---|
1552 | mean = Stat.generalisedMean(cc, cw, m);
|
---|
1553 | break;
|
---|
1554 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1555 | }
|
---|
1556 | Stat.weightingOptionS = holdW;
|
---|
1557 | return mean;
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | public double weightedGeneralisedMean(double m){
|
---|
1562 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1563 | }
|
---|
1564 |
|
---|
1565 | public double weightedGeneralisedMean_as_double(double m){
|
---|
1566 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1567 | }
|
---|
1568 |
|
---|
1569 | public double weightedGeneralisedMean(BigDecimal m){
|
---|
1570 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | public double weightedGeneralisedMean_as_double(BigDecimal m){
|
---|
1574 | return this.weightedGeneralizedMean_as_double(m);
|
---|
1575 | }
|
---|
1576 |
|
---|
1577 | public Complex weightedGeneralisedMean_as_Complex(double m){
|
---|
1578 | return this.weightedGeneralizedMean_as_Complex(m);
|
---|
1579 | }
|
---|
1580 |
|
---|
1581 | public Complex weightedGeneralisedMean_as_Complex(Complex m){
|
---|
1582 | return this.weightedGeneralizedMean_as_Complex(m);
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 | // INTERQUARTILE MEANS (INSTANCE)
|
---|
1586 | public double interQuartileMean(){
|
---|
1587 | return this.interQuartileMean_as_double();
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | public double interQuartileMean_as_double(){
|
---|
1591 | double mean = 0.0D;
|
---|
1592 | switch(this.type){
|
---|
1593 | case 1: double[] dd = this.getArray_as_double();
|
---|
1594 | mean = Stat.interQuartileMean(dd);
|
---|
1595 | break;
|
---|
1596 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1597 | mean = (Stat.interQuartileMean(bd)).doubleValue();
|
---|
1598 | bd = null;
|
---|
1599 | break;
|
---|
1600 | case 14: throw new IllegalArgumentException("Complex interquartile mean is not supported");
|
---|
1601 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1602 | }
|
---|
1603 | return mean;
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | public BigDecimal interQuartileMean_as_BigDecimal(){
|
---|
1607 | BigDecimal mean = BigDecimal.ZERO;
|
---|
1608 | switch(this.type){
|
---|
1609 | case 1:
|
---|
1610 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1611 | mean = Stat.interQuartileMean(bd);
|
---|
1612 | bd = null;
|
---|
1613 | break;
|
---|
1614 | case 14: throw new IllegalArgumentException("Complex interquartile mean is not supported");
|
---|
1615 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1616 | }
|
---|
1617 | return mean;
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | // MEDIAN VALUE(INSTANCE)
|
---|
1621 | public double median(){
|
---|
1622 | return this.median_as_double();
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 | public double median_as_double(){
|
---|
1626 | double median = 0.0D;
|
---|
1627 | switch(this.type){
|
---|
1628 | case 1: double[] dd = this.getArray_as_double();
|
---|
1629 | median = Stat.median(dd);
|
---|
1630 | break;
|
---|
1631 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1632 | median = Stat.median(bd).doubleValue();
|
---|
1633 | bd = null;
|
---|
1634 | break;
|
---|
1635 | case 14: throw new IllegalArgumentException("Complex median value not supported");
|
---|
1636 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1637 | }
|
---|
1638 | return median;
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | public BigDecimal median_as_BigDecimal(){
|
---|
1642 | BigDecimal median = BigDecimal.ZERO;
|
---|
1643 | switch(this.type){
|
---|
1644 | case 1:
|
---|
1645 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1646 | median = Stat.median(bd);
|
---|
1647 | bd = null;
|
---|
1648 | break;
|
---|
1649 | case 14: throw new IllegalArgumentException("Complex median value not supported");
|
---|
1650 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1651 | }
|
---|
1652 | return median;
|
---|
1653 | }
|
---|
1654 |
|
---|
1655 | // ROOT MEAN SQUARE (INSTANCE METHODS)
|
---|
1656 | public double rms(){
|
---|
1657 | double rms = 0.0D;
|
---|
1658 | switch(this.type){
|
---|
1659 | case 1: double[] dd = this.getArray_as_double();
|
---|
1660 | rms = Stat.rms(dd);
|
---|
1661 | break;
|
---|
1662 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1663 | rms = Stat.rms(bd);
|
---|
1664 | bd = null;
|
---|
1665 | break;
|
---|
1666 | case 14: throw new IllegalArgumentException("Complex root mean square is not supported");
|
---|
1667 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1668 | }
|
---|
1669 | return rms;
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 | // WEIGHTED ROOT MEAN SQUARE (INSTANCE METHODS)
|
---|
1673 | public double weightedRms(){
|
---|
1674 | if(!this.weightsSupplied){
|
---|
1675 | System.out.println("weightedRms: no weights supplied - unweighted rms returned");
|
---|
1676 | return this.rms();
|
---|
1677 | }
|
---|
1678 | else{
|
---|
1679 | boolean holdW = Stat.weightingOptionS;
|
---|
1680 | if(this.weightingReset){
|
---|
1681 | if(this.weightingOptionI){
|
---|
1682 | Stat.weightingOptionS = true;
|
---|
1683 | }
|
---|
1684 | else{
|
---|
1685 | Stat.weightingOptionS = false;
|
---|
1686 | }
|
---|
1687 | }
|
---|
1688 | double rms = 0.0D;
|
---|
1689 | switch(this.type){
|
---|
1690 | case 1: double[] dd = this.getArray_as_double();
|
---|
1691 | double[] ww = this.amWeights.getArray_as_double();
|
---|
1692 | rms = Stat.rms(dd, ww);
|
---|
1693 | break;
|
---|
1694 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1695 | BigDecimal[] wd = this.amWeights.getArray_as_BigDecimal();
|
---|
1696 | rms = Stat.rms(bd, wd);
|
---|
1697 | bd = null;
|
---|
1698 | wd = null;
|
---|
1699 | break;
|
---|
1700 | case 14: throw new IllegalArgumentException("Complex root mean square is not supported");
|
---|
1701 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1702 | }
|
---|
1703 | Stat.weightingOptionS = holdW;
|
---|
1704 | return rms;
|
---|
1705 | }
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 |
|
---|
1709 |
|
---|
1710 | // SKEWNESS (INSTANCE METHODS)
|
---|
1711 | // Moment skewness
|
---|
1712 | public double momentSkewness(){
|
---|
1713 | boolean hold = Stat.nFactorOptionS;
|
---|
1714 | if(this.nFactorReset){
|
---|
1715 | if(this.nFactorOptionI){
|
---|
1716 | Stat.nFactorOptionS = true;
|
---|
1717 | }
|
---|
1718 | else{
|
---|
1719 | Stat.nFactorOptionS = false;
|
---|
1720 | }
|
---|
1721 | }
|
---|
1722 | double skewness = 0.0D;
|
---|
1723 | switch(this.type){
|
---|
1724 | case 1: double[] dd = this.getArray_as_double();
|
---|
1725 | skewness = Stat.momentSkewness(dd);
|
---|
1726 | break;
|
---|
1727 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1728 | skewness = Stat.momentSkewness(bd);
|
---|
1729 | bd = null;
|
---|
1730 | break;
|
---|
1731 | case 14: throw new IllegalArgumentException("Complex skewness is not supported");
|
---|
1732 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1733 | }
|
---|
1734 | Stat.nFactorOptionS = hold;
|
---|
1735 | return skewness;
|
---|
1736 | }
|
---|
1737 |
|
---|
1738 | public double momentSkewness_as_double(){
|
---|
1739 | return this.momentSkewness();
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | // Median skewness
|
---|
1743 | public double medianSkewness(){
|
---|
1744 | boolean hold = Stat.nFactorOptionS;
|
---|
1745 | if(this.nFactorReset){
|
---|
1746 | if(this.nFactorOptionI){
|
---|
1747 | Stat.nFactorOptionS = true;
|
---|
1748 | }
|
---|
1749 | else{
|
---|
1750 | Stat.nFactorOptionS = false;
|
---|
1751 | }
|
---|
1752 | }
|
---|
1753 | double skewness = 0.0D;
|
---|
1754 | switch(this.type){
|
---|
1755 | case 1: double[] dd = this.getArray_as_double();
|
---|
1756 | skewness = Stat.medianSkewness(dd);
|
---|
1757 | break;
|
---|
1758 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1759 | skewness = Stat.medianSkewness(bd);
|
---|
1760 | bd = null;
|
---|
1761 | break;
|
---|
1762 | case 14: throw new IllegalArgumentException("Complex skewness is not supported");
|
---|
1763 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1764 | }
|
---|
1765 | Stat.nFactorOptionS = hold;
|
---|
1766 | return skewness;
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | public double medianSkewness_as_double(){
|
---|
1770 | return this.medianSkewness();
|
---|
1771 | }
|
---|
1772 |
|
---|
1773 | // quartile skewness as double
|
---|
1774 | public double quartileSkewness(){
|
---|
1775 | boolean hold = Stat.nFactorOptionS;
|
---|
1776 | if(this.nFactorReset){
|
---|
1777 | if(this.nFactorOptionI){
|
---|
1778 | Stat.nFactorOptionS = true;
|
---|
1779 | }
|
---|
1780 | else{
|
---|
1781 | Stat.nFactorOptionS = false;
|
---|
1782 | }
|
---|
1783 | }
|
---|
1784 | double skewness = 0.0D;
|
---|
1785 | switch(this.type){
|
---|
1786 | case 1: double[] dd = this.getArray_as_double();
|
---|
1787 | skewness = Stat.quartileSkewness(dd);
|
---|
1788 | break;
|
---|
1789 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1790 | skewness = Stat.quartileSkewness(bd).doubleValue();
|
---|
1791 | bd = null;
|
---|
1792 | break;
|
---|
1793 | case 14: throw new IllegalArgumentException("Complex skewness is not supported");
|
---|
1794 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1795 | }
|
---|
1796 | Stat.nFactorOptionS = hold;
|
---|
1797 | return skewness;
|
---|
1798 | }
|
---|
1799 |
|
---|
1800 | public double quartileSkewness_as_double(){
|
---|
1801 | return this.quartileSkewness();
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | // quartile skewness as BigDecimal
|
---|
1805 | public BigDecimal quartileSkewness_as_BigDecimal(){
|
---|
1806 | boolean hold = Stat.nFactorOptionS;
|
---|
1807 | if(this.nFactorReset){
|
---|
1808 | if(this.nFactorOptionI){
|
---|
1809 | Stat.nFactorOptionS = true;
|
---|
1810 | }
|
---|
1811 | else{
|
---|
1812 | Stat.nFactorOptionS = false;
|
---|
1813 | }
|
---|
1814 | }
|
---|
1815 | BigDecimal skewness = BigDecimal.ZERO;
|
---|
1816 | switch(this.type){
|
---|
1817 | case 1:
|
---|
1818 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1819 | skewness = Stat.quartileSkewness(bd);
|
---|
1820 | bd = null;
|
---|
1821 | break;
|
---|
1822 | case 14: throw new IllegalArgumentException("Complex skewness is not supported");
|
---|
1823 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1824 | }
|
---|
1825 | Stat.nFactorOptionS = hold;
|
---|
1826 | return skewness;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | // KURTOSIS (INSTANCE METHODS)
|
---|
1832 | public double kurtosis(){
|
---|
1833 | return this.kurtosis_as_double();
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 | public double kurtosis_as_double(){
|
---|
1837 | boolean hold = Stat.nFactorOptionS;
|
---|
1838 | if(this.nFactorReset){
|
---|
1839 | if(this.nFactorOptionI){
|
---|
1840 | Stat.nFactorOptionS = true;
|
---|
1841 | }
|
---|
1842 | else{
|
---|
1843 | Stat.nFactorOptionS = false;
|
---|
1844 | }
|
---|
1845 | }
|
---|
1846 | double kurtosis = 0.0D;
|
---|
1847 | switch(this.type){
|
---|
1848 | case 1: double[] dd = this.getArray_as_double();
|
---|
1849 | kurtosis = Stat.kurtosis(dd);
|
---|
1850 | break;
|
---|
1851 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1852 | kurtosis = (Stat.kurtosis(bd)).doubleValue();
|
---|
1853 | bd = null;
|
---|
1854 | break;
|
---|
1855 | case 14: throw new IllegalArgumentException("Complex kurtosis is not supported");
|
---|
1856 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1857 | }
|
---|
1858 | Stat.nFactorOptionS = hold;
|
---|
1859 | return kurtosis;
|
---|
1860 | }
|
---|
1861 |
|
---|
1862 | public double curtosis(){
|
---|
1863 | return this.kurtosis_as_double();
|
---|
1864 | }
|
---|
1865 |
|
---|
1866 | public double curtosis_as_double(){
|
---|
1867 | return this.kurtosis_as_double();
|
---|
1868 | }
|
---|
1869 |
|
---|
1870 | public double kurtosisExcess(){
|
---|
1871 | return this.kurtosisExcess_as_double();
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | public double excessKurtosis(){
|
---|
1875 | return this.kurtosisExcess_as_double();
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | public double excessCurtosis(){
|
---|
1879 | return this.kurtosisExcess_as_double();
|
---|
1880 | }
|
---|
1881 |
|
---|
1882 | public double kurtosisExcess_as_double(){
|
---|
1883 | boolean hold = Stat.nFactorOptionS;
|
---|
1884 | if(this.nFactorReset){
|
---|
1885 | if(this.nFactorOptionI){
|
---|
1886 | Stat.nFactorOptionS = true;
|
---|
1887 | }
|
---|
1888 | else{
|
---|
1889 | Stat.nFactorOptionS = false;
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 | double kurtosis = 0.0D;
|
---|
1893 | switch(this.type){
|
---|
1894 | case 1: double[] dd = this.getArray_as_double();
|
---|
1895 | kurtosis = Stat.kurtosisExcess(dd);
|
---|
1896 | break;
|
---|
1897 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1898 | kurtosis = (Stat.kurtosisExcess(bd)).doubleValue();
|
---|
1899 | bd = null;
|
---|
1900 | break;
|
---|
1901 | case 14: throw new IllegalArgumentException("Complex kurtosis is not supported");
|
---|
1902 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1903 | }
|
---|
1904 | Stat.nFactorOptionS = hold;
|
---|
1905 | return kurtosis;
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | public double excessKurtosis_as_double(){
|
---|
1909 | return kurtosisExcess_as_double();
|
---|
1910 | }
|
---|
1911 |
|
---|
1912 |
|
---|
1913 | public double curtosisExcess(){
|
---|
1914 | return this.kurtosisExcess_as_double();
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | public double curtosisExcess_as_double(){
|
---|
1918 | return this.kurtosisExcess_as_double();
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | public double excessCurtosis_as_double(){
|
---|
1922 | return this.kurtosisExcess_as_double();
|
---|
1923 | }
|
---|
1924 |
|
---|
1925 | public BigDecimal kurtosis_as_BigDecimal(){
|
---|
1926 | boolean hold = Stat.nFactorOptionS;
|
---|
1927 | if(this.nFactorReset){
|
---|
1928 | if(this.nFactorOptionI){
|
---|
1929 | Stat.nFactorOptionS = true;
|
---|
1930 | }
|
---|
1931 | else{
|
---|
1932 | Stat.nFactorOptionS = false;
|
---|
1933 | }
|
---|
1934 | }
|
---|
1935 | BigDecimal kurtosis = BigDecimal.ZERO;
|
---|
1936 | switch(this.type){
|
---|
1937 | case 1:
|
---|
1938 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1939 | kurtosis = Stat.kurtosis(bd);
|
---|
1940 | bd = null;
|
---|
1941 | break;
|
---|
1942 | case 14: throw new IllegalArgumentException("Complex kurtosis is not supported");
|
---|
1943 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1944 | }
|
---|
1945 | Stat.nFactorOptionS = hold;
|
---|
1946 | return kurtosis;
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | public BigDecimal curtosis_as_BigDecimal(){
|
---|
1950 | return this.kurtosis_as_BigDecimal();
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 |
|
---|
1954 | public BigDecimal kurtosisExcess_as_BigDecimal(){
|
---|
1955 | boolean hold = Stat.nFactorOptionS;
|
---|
1956 | if(this.nFactorReset){
|
---|
1957 | if(this.nFactorOptionI){
|
---|
1958 | Stat.nFactorOptionS = true;
|
---|
1959 | }
|
---|
1960 | else{
|
---|
1961 | Stat.nFactorOptionS = false;
|
---|
1962 | }
|
---|
1963 | }
|
---|
1964 | BigDecimal kurtosis = BigDecimal.ZERO;
|
---|
1965 | switch(this.type){
|
---|
1966 | case 1:
|
---|
1967 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
1968 | kurtosis = Stat.kurtosisExcess(bd);
|
---|
1969 | bd = null;
|
---|
1970 | break;
|
---|
1971 | case 14: throw new IllegalArgumentException("Complex kurtosis is not supported");
|
---|
1972 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
1973 | }
|
---|
1974 | Stat.nFactorOptionS = hold;
|
---|
1975 | return kurtosis;
|
---|
1976 | }
|
---|
1977 |
|
---|
1978 | public BigDecimal excessKurtosis_as_BigDecimal(){
|
---|
1979 | return this.kurtosisExcess_as_BigDecimal();
|
---|
1980 | }
|
---|
1981 |
|
---|
1982 | public BigDecimal curtosisExcess_as_BigDecimal(){
|
---|
1983 | return this.kurtosisExcess_as_BigDecimal();
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 | public BigDecimal excessCurtosis_as_BigDecimal(){
|
---|
1987 | return this.kurtosisExcess_as_BigDecimal();
|
---|
1988 | }
|
---|
1989 |
|
---|
1990 |
|
---|
1991 |
|
---|
1992 | // VARIANCES (INSTANCE METHODS)
|
---|
1993 | public double variance(){
|
---|
1994 | return this.variance_as_double();
|
---|
1995 | }
|
---|
1996 |
|
---|
1997 | public double variance_as_double(){
|
---|
1998 | boolean hold = Stat.nFactorOptionS;
|
---|
1999 | if(this.nFactorReset){
|
---|
2000 | if(this.nFactorOptionI){
|
---|
2001 | Stat.nFactorOptionS = true;
|
---|
2002 | }
|
---|
2003 | else{
|
---|
2004 | Stat.nFactorOptionS = false;
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 | double variance = 0.0D;
|
---|
2008 | switch(this.type){
|
---|
2009 | case 1: double[] dd = this.getArray_as_double();
|
---|
2010 | variance = Stat.variance(dd);
|
---|
2011 | break;
|
---|
2012 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2013 | variance = (Stat.variance(bd)).doubleValue();
|
---|
2014 | bd = null;
|
---|
2015 | break;
|
---|
2016 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
2017 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2018 | }
|
---|
2019 | Stat.nFactorOptionS = hold;
|
---|
2020 | return variance;
|
---|
2021 | }
|
---|
2022 |
|
---|
2023 | public BigDecimal variance_as_BigDecimal(){
|
---|
2024 | boolean hold = Stat.nFactorOptionS;
|
---|
2025 | if(this.nFactorReset){
|
---|
2026 | if(this.nFactorOptionI){
|
---|
2027 | Stat.nFactorOptionS = true;
|
---|
2028 | }
|
---|
2029 | else{
|
---|
2030 | Stat.nFactorOptionS = false;
|
---|
2031 | }
|
---|
2032 | }
|
---|
2033 | BigDecimal variance = BigDecimal.ZERO;
|
---|
2034 | switch(this.type){
|
---|
2035 | case 1:
|
---|
2036 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2037 | variance = Stat.variance(bd);
|
---|
2038 | bd = null;
|
---|
2039 | break;
|
---|
2040 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
2041 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2042 | }
|
---|
2043 | Stat.nFactorOptionS = hold;
|
---|
2044 | return variance;
|
---|
2045 | }
|
---|
2046 |
|
---|
2047 | public Complex variance_as_Complex(){
|
---|
2048 | boolean hold = Stat.nFactorOptionS;
|
---|
2049 | if(this.nFactorReset){
|
---|
2050 | if(this.nFactorOptionI){
|
---|
2051 | Stat.nFactorOptionS = true;
|
---|
2052 | }
|
---|
2053 | else{
|
---|
2054 | Stat.nFactorOptionS = false;
|
---|
2055 | }
|
---|
2056 | }
|
---|
2057 | Complex variance = Complex.zero();
|
---|
2058 | Complex[] cc = this.getArray_as_Complex();
|
---|
2059 | variance = Stat.variance(cc);
|
---|
2060 | Stat.nFactorOptionS = hold;
|
---|
2061 | return variance;
|
---|
2062 | }
|
---|
2063 |
|
---|
2064 | public double variance_as_Complex_ConjugateCalcn(){
|
---|
2065 | boolean hold = Stat.nFactorOptionS;
|
---|
2066 | if(this.nFactorReset){
|
---|
2067 | if(this.nFactorOptionI){
|
---|
2068 | Stat.nFactorOptionS = true;
|
---|
2069 | }
|
---|
2070 | else{
|
---|
2071 | Stat.nFactorOptionS = false;
|
---|
2072 | }
|
---|
2073 | }
|
---|
2074 | Complex[] cc = this.getArray_as_Complex();
|
---|
2075 | double variance = Stat.varianceConjugateCalcn(cc);
|
---|
2076 | Stat.nFactorOptionS = hold;
|
---|
2077 | return variance;
|
---|
2078 | }
|
---|
2079 |
|
---|
2080 | public double variance_of_ComplexModuli(){
|
---|
2081 | boolean hold = Stat.nFactorOptionS;
|
---|
2082 | if(this.nFactorReset){
|
---|
2083 | if(this.nFactorOptionI){
|
---|
2084 | Stat.nFactorOptionS = true;
|
---|
2085 | }
|
---|
2086 | else{
|
---|
2087 | Stat.nFactorOptionS = false;
|
---|
2088 | }
|
---|
2089 | }
|
---|
2090 | double[] re = this.array_as_modulus_of_Complex();
|
---|
2091 | double variance = Stat.variance(re);
|
---|
2092 | Stat.nFactorOptionS = hold;
|
---|
2093 | return variance;
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 | public double variance_of_ComplexRealParts(){
|
---|
2097 | boolean hold = Stat.nFactorOptionS;
|
---|
2098 | if(this.nFactorReset){
|
---|
2099 | if(this.nFactorOptionI){
|
---|
2100 | Stat.nFactorOptionS = true;
|
---|
2101 | }
|
---|
2102 | else{
|
---|
2103 | Stat.nFactorOptionS = false;
|
---|
2104 | }
|
---|
2105 | }
|
---|
2106 | double[] re = this.array_as_real_part_of_Complex();
|
---|
2107 | double variance = Stat.variance(re);
|
---|
2108 | Stat.nFactorOptionS = hold;
|
---|
2109 | return variance;
|
---|
2110 | }
|
---|
2111 |
|
---|
2112 | public double variance_of_ComplexImaginaryParts(){
|
---|
2113 | boolean hold = Stat.nFactorOptionS;
|
---|
2114 | if(this.nFactorReset){
|
---|
2115 | if(this.nFactorOptionI){
|
---|
2116 | Stat.nFactorOptionS = true;
|
---|
2117 | }
|
---|
2118 | else{
|
---|
2119 | Stat.nFactorOptionS = false;
|
---|
2120 | }
|
---|
2121 | }
|
---|
2122 | double[] im = this.array_as_imaginary_part_of_Complex();
|
---|
2123 | double variance = Stat.variance(im);
|
---|
2124 | Stat.nFactorOptionS = hold;
|
---|
2125 | return variance;
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | // WEIGHTED VARIANCES (INSTANCE METHODS)
|
---|
2129 | public double weightedVariance(){
|
---|
2130 | return this.weightedVariance_as_double();
|
---|
2131 | }
|
---|
2132 |
|
---|
2133 | public double weightedVariance_as_double(){
|
---|
2134 | boolean hold = Stat.nFactorOptionS;
|
---|
2135 | if(this.nFactorReset){
|
---|
2136 | if(this.nFactorOptionI){
|
---|
2137 | Stat.nFactorOptionS = true;
|
---|
2138 | }
|
---|
2139 | else{
|
---|
2140 | Stat.nFactorOptionS = false;
|
---|
2141 | }
|
---|
2142 | }
|
---|
2143 | boolean hold2 = Stat.nEffOptionS;
|
---|
2144 | if(this.nEffReset){
|
---|
2145 | if(this.nEffOptionI){
|
---|
2146 | Stat.nEffOptionS = true;
|
---|
2147 | }
|
---|
2148 | else{
|
---|
2149 | Stat.nEffOptionS = false;
|
---|
2150 | }
|
---|
2151 | }
|
---|
2152 | boolean holdW = Stat.weightingOptionS;
|
---|
2153 | if(this.weightingReset){
|
---|
2154 | if(this.weightingOptionI){
|
---|
2155 | Stat.weightingOptionS = true;
|
---|
2156 | }
|
---|
2157 | else{
|
---|
2158 | Stat.weightingOptionS = false;
|
---|
2159 | }
|
---|
2160 | }
|
---|
2161 |
|
---|
2162 | double varr = Double.NaN;
|
---|
2163 | if(!this.weightsSupplied){
|
---|
2164 | System.out.println("weightedVariance_as_double: no weights supplied - unweighted value returned");
|
---|
2165 | varr = this.variance_as_double();
|
---|
2166 | }
|
---|
2167 | else{
|
---|
2168 | double weightedVariance = 0.0D;
|
---|
2169 | switch(this.type){
|
---|
2170 | case 1: double[] dd = this.getArray_as_double();
|
---|
2171 | double[] ww = amWeights.getArray_as_double();
|
---|
2172 | weightedVariance = Stat.variance(dd, ww);
|
---|
2173 | break;
|
---|
2174 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2175 | BigDecimal[] wd = amWeights.getArray_as_BigDecimal();
|
---|
2176 | weightedVariance = (Stat.variance(bd, wd)).doubleValue();
|
---|
2177 | bd = null;
|
---|
2178 | wd = null;
|
---|
2179 | break;
|
---|
2180 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
2181 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2182 | }
|
---|
2183 | varr = weightedVariance;
|
---|
2184 | }
|
---|
2185 | Stat.nFactorOptionS = hold;
|
---|
2186 | Stat.nEffOptionS = hold2;
|
---|
2187 | Stat.weightingOptionS = holdW;
|
---|
2188 | return varr;
|
---|
2189 |
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 | public BigDecimal weightedVariance_as_BigDecimal(){
|
---|
2193 | boolean hold = Stat.nFactorOptionS;
|
---|
2194 | if(this.nFactorReset){
|
---|
2195 | if(this.nFactorOptionI){
|
---|
2196 | Stat.nFactorOptionS = true;
|
---|
2197 | }
|
---|
2198 | else{
|
---|
2199 | Stat.nFactorOptionS = false;
|
---|
2200 | }
|
---|
2201 | }
|
---|
2202 | boolean hold2 = Stat.nEffOptionS;
|
---|
2203 | if(this.nEffReset){
|
---|
2204 | if(this.nEffOptionI){
|
---|
2205 | Stat.nEffOptionS = true;
|
---|
2206 | }
|
---|
2207 | else{
|
---|
2208 | Stat.nEffOptionS = false;
|
---|
2209 | }
|
---|
2210 | }
|
---|
2211 | boolean holdW = Stat.weightingOptionS;
|
---|
2212 | if(this.weightingReset){
|
---|
2213 | if(this.weightingOptionI){
|
---|
2214 | Stat.weightingOptionS = true;
|
---|
2215 | }
|
---|
2216 | else{
|
---|
2217 | Stat.weightingOptionS = false;
|
---|
2218 | }
|
---|
2219 | }
|
---|
2220 | BigDecimal varr = BigDecimal.ZERO;
|
---|
2221 | if(!this.weightsSupplied){
|
---|
2222 | System.out.println("weightedVariance_as_BigDecimal: no weights supplied - unweighted value returned");
|
---|
2223 | varr = this.variance_as_BigDecimal();
|
---|
2224 | }
|
---|
2225 | else{
|
---|
2226 | BigDecimal weightedVariance = BigDecimal.ZERO;
|
---|
2227 | switch(this.type){
|
---|
2228 | case 1:
|
---|
2229 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2230 | BigDecimal[] wd = amWeights.getArray_as_BigDecimal();
|
---|
2231 | weightedVariance = Stat.variance(bd, wd);
|
---|
2232 | bd = null;
|
---|
2233 | wd = null;
|
---|
2234 | break;
|
---|
2235 | case 14: throw new IllegalArgumentException("Complex cannot be converted to BigDecimal");
|
---|
2236 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2237 | }
|
---|
2238 | varr = weightedVariance;
|
---|
2239 | }
|
---|
2240 | Stat.nFactorOptionS = hold;
|
---|
2241 | Stat.nEffOptionS = hold2;
|
---|
2242 | Stat.weightingOptionS = holdW;
|
---|
2243 | return varr;
|
---|
2244 | }
|
---|
2245 |
|
---|
2246 |
|
---|
2247 | public Complex weightedVariance_as_Complex(){
|
---|
2248 | boolean hold = Stat.nFactorOptionS;
|
---|
2249 | if(this.nFactorReset){
|
---|
2250 | if(this.nFactorOptionI){
|
---|
2251 | Stat.nFactorOptionS = true;
|
---|
2252 | }
|
---|
2253 | else{
|
---|
2254 | Stat.nFactorOptionS = false;
|
---|
2255 | }
|
---|
2256 | }
|
---|
2257 | boolean hold2 = Stat.nEffOptionS;
|
---|
2258 | if(this.nEffReset){
|
---|
2259 | if(this.nEffOptionI){
|
---|
2260 | Stat.nEffOptionS = true;
|
---|
2261 | }
|
---|
2262 | else{
|
---|
2263 | Stat.nEffOptionS = false;
|
---|
2264 | }
|
---|
2265 | }
|
---|
2266 | boolean holdW = Stat.weightingOptionS;
|
---|
2267 | if(this.weightingReset){
|
---|
2268 | if(this.weightingOptionI){
|
---|
2269 | Stat.weightingOptionS = true;
|
---|
2270 | }
|
---|
2271 | else{
|
---|
2272 | Stat.weightingOptionS = false;
|
---|
2273 | }
|
---|
2274 | }
|
---|
2275 | Complex varr = Complex.zero();
|
---|
2276 | if(!this.weightsSupplied){
|
---|
2277 | System.out.println("weightedVariance_as_Complex: no weights supplied - unweighted value returned");
|
---|
2278 | varr = this.variance_as_Complex();
|
---|
2279 | }
|
---|
2280 | else{
|
---|
2281 | Complex weightedVariance = Complex.zero();
|
---|
2282 | Complex[] cc = this.getArray_as_Complex();
|
---|
2283 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
2284 | weightedVariance = Stat.variance(cc, wc);
|
---|
2285 | varr = weightedVariance;
|
---|
2286 | }
|
---|
2287 | Stat.nFactorOptionS = hold;
|
---|
2288 | Stat.nEffOptionS = hold2;
|
---|
2289 | Stat.weightingOptionS = holdW;
|
---|
2290 | return varr;
|
---|
2291 | }
|
---|
2292 |
|
---|
2293 | public double weightedVariance_as_Complex_ConjugateCalcn(){
|
---|
2294 | boolean hold = Stat.nFactorOptionS;
|
---|
2295 | if(this.nFactorReset){
|
---|
2296 | if(this.nFactorOptionI){
|
---|
2297 | Stat.nFactorOptionS = true;
|
---|
2298 | }
|
---|
2299 | else{
|
---|
2300 | Stat.nFactorOptionS = false;
|
---|
2301 | }
|
---|
2302 | }
|
---|
2303 | boolean hold2 = Stat.nEffOptionS;
|
---|
2304 | if(this.nEffReset){
|
---|
2305 | if(this.nEffOptionI){
|
---|
2306 | Stat.nEffOptionS = true;
|
---|
2307 | }
|
---|
2308 | else{
|
---|
2309 | Stat.nEffOptionS = false;
|
---|
2310 | }
|
---|
2311 | }
|
---|
2312 | boolean holdW = Stat.weightingOptionS;
|
---|
2313 | if(this.weightingReset){
|
---|
2314 | if(this.weightingOptionI){
|
---|
2315 | Stat.weightingOptionS = true;
|
---|
2316 | }
|
---|
2317 | else{
|
---|
2318 | Stat.weightingOptionS = false;
|
---|
2319 | }
|
---|
2320 | }
|
---|
2321 | double varr = Double.NaN;
|
---|
2322 | if(!this.weightsSupplied){
|
---|
2323 | System.out.println("weightedVariance_as_Complex: no weights supplied - unweighted value returned");
|
---|
2324 | varr = this.variance_as_Complex_ConjugateCalcn();
|
---|
2325 | }
|
---|
2326 | else{
|
---|
2327 | Complex[] cc = this.getArray_as_Complex();
|
---|
2328 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
2329 | varr = Stat.varianceConjugateCalcn(cc, wc);
|
---|
2330 | }
|
---|
2331 | Stat.nFactorOptionS = hold;
|
---|
2332 | Stat.nEffOptionS = hold2;
|
---|
2333 | Stat.weightingOptionS = holdW;
|
---|
2334 | return varr;
|
---|
2335 | }
|
---|
2336 |
|
---|
2337 | public double weightedVariance_of_ComplexModuli(){
|
---|
2338 | boolean hold = Stat.nFactorOptionS;
|
---|
2339 | if(this.nFactorReset){
|
---|
2340 | if(this.nFactorOptionI){
|
---|
2341 | Stat.nFactorOptionS = true;
|
---|
2342 | }
|
---|
2343 | else{
|
---|
2344 | Stat.nFactorOptionS = false;
|
---|
2345 | }
|
---|
2346 | }
|
---|
2347 | boolean hold2 = Stat.nEffOptionS;
|
---|
2348 | if(this.nEffReset){
|
---|
2349 | if(this.nEffOptionI){
|
---|
2350 | Stat.nEffOptionS = true;
|
---|
2351 | }
|
---|
2352 | else{
|
---|
2353 | Stat.nEffOptionS = false;
|
---|
2354 | }
|
---|
2355 | }
|
---|
2356 | boolean holdW = Stat.weightingOptionS;
|
---|
2357 | if(this.weightingReset){
|
---|
2358 | if(this.weightingOptionI){
|
---|
2359 | Stat.weightingOptionS = true;
|
---|
2360 | }
|
---|
2361 | else{
|
---|
2362 | Stat.weightingOptionS = false;
|
---|
2363 | }
|
---|
2364 | }
|
---|
2365 | double varr = Double.NaN;
|
---|
2366 | if(!this.weightsSupplied){
|
---|
2367 | System.out.println("weightedVariance_as_Complex: no weights supplied - unweighted value returned");
|
---|
2368 | varr = this.variance_of_ComplexModuli();
|
---|
2369 | }
|
---|
2370 | else{
|
---|
2371 | double[] cc = this.array_as_modulus_of_Complex();
|
---|
2372 | double[] wc = amWeights.array_as_modulus_of_Complex();
|
---|
2373 | varr = Stat.variance(cc, wc);
|
---|
2374 | }
|
---|
2375 | Stat.nFactorOptionS = hold;
|
---|
2376 | Stat.nEffOptionS = hold2;
|
---|
2377 | Stat.weightingOptionS = holdW;
|
---|
2378 | return varr;
|
---|
2379 | }
|
---|
2380 |
|
---|
2381 | public double weightedVariance_of_ComplexRealParts(){
|
---|
2382 | boolean hold = Stat.nFactorOptionS;
|
---|
2383 | if(this.nFactorReset){
|
---|
2384 | if(this.nFactorOptionI){
|
---|
2385 | Stat.nFactorOptionS = true;
|
---|
2386 | }
|
---|
2387 | else{
|
---|
2388 | Stat.nFactorOptionS = false;
|
---|
2389 | }
|
---|
2390 | }
|
---|
2391 | boolean hold2 = Stat.nEffOptionS;
|
---|
2392 | if(this.nEffReset){
|
---|
2393 | if(this.nEffOptionI){
|
---|
2394 | Stat.nEffOptionS = true;
|
---|
2395 | }
|
---|
2396 | else{
|
---|
2397 | Stat.nEffOptionS = false;
|
---|
2398 | }
|
---|
2399 | }
|
---|
2400 | boolean holdW = Stat.weightingOptionS;
|
---|
2401 | if(this.weightingReset){
|
---|
2402 | if(this.weightingOptionI){
|
---|
2403 | Stat.weightingOptionS = true;
|
---|
2404 | }
|
---|
2405 | else{
|
---|
2406 | Stat.weightingOptionS = false;
|
---|
2407 | }
|
---|
2408 | }
|
---|
2409 | double varr = Double.NaN;
|
---|
2410 | if(!this.weightsSupplied){
|
---|
2411 | System.out.println("weightedVariance_as_Complex: no weights supplied - unweighted value returned");
|
---|
2412 | varr = this.variance_of_ComplexRealParts();
|
---|
2413 | }
|
---|
2414 | else{
|
---|
2415 | double[] cc = this.array_as_real_part_of_Complex();
|
---|
2416 | double[] wc = amWeights.array_as_real_part_of_Complex();
|
---|
2417 | varr = Stat.variance(cc, wc);
|
---|
2418 | }
|
---|
2419 | Stat.nFactorOptionS = hold;
|
---|
2420 | Stat.nEffOptionS = hold2;
|
---|
2421 | Stat.weightingOptionS = holdW;
|
---|
2422 | return varr;
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 | public double weightedVariance_of_ComplexImaginaryParts(){
|
---|
2426 | boolean hold = Stat.nFactorOptionS;
|
---|
2427 | if(this.nFactorReset){
|
---|
2428 | if(this.nFactorOptionI){
|
---|
2429 | Stat.nFactorOptionS = true;
|
---|
2430 | }
|
---|
2431 | else{
|
---|
2432 | Stat.nFactorOptionS = false;
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 | boolean hold2 = Stat.nEffOptionS;
|
---|
2436 | if(this.nEffReset){
|
---|
2437 | if(this.nEffOptionI){
|
---|
2438 | Stat.nEffOptionS = true;
|
---|
2439 | }
|
---|
2440 | else{
|
---|
2441 | Stat.nEffOptionS = false;
|
---|
2442 | }
|
---|
2443 | }
|
---|
2444 | boolean holdW = Stat.weightingOptionS;
|
---|
2445 | if(this.weightingReset){
|
---|
2446 | if(this.weightingOptionI){
|
---|
2447 | Stat.weightingOptionS = true;
|
---|
2448 | }
|
---|
2449 | else{
|
---|
2450 | Stat.weightingOptionS = false;
|
---|
2451 | }
|
---|
2452 | }
|
---|
2453 | double varr = Double.NaN;
|
---|
2454 | if(!this.weightsSupplied){
|
---|
2455 | System.out.println("weightedVariance_as_Complex: no weights supplied - unweighted value returned");
|
---|
2456 | varr = this.variance_of_ComplexImaginaryParts();
|
---|
2457 | }
|
---|
2458 | else{
|
---|
2459 | double[] cc = this.array_as_imaginary_part_of_Complex();
|
---|
2460 | double[] wc = amWeights.array_as_imaginary_part_of_Complex();
|
---|
2461 | varr = Stat.variance(cc, wc);
|
---|
2462 | }
|
---|
2463 | Stat.nFactorOptionS = hold;
|
---|
2464 | Stat.nEffOptionS = hold2;
|
---|
2465 | Stat.weightingOptionS = holdW;
|
---|
2466 | return varr;
|
---|
2467 | }
|
---|
2468 |
|
---|
2469 |
|
---|
2470 |
|
---|
2471 | // STANDARD DEVIATIONS (INSTANCE METHODS)
|
---|
2472 | public double standardDeviation(){
|
---|
2473 | return this.standardDeviation_as_double();
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | public double standardDeviation_as_double(){
|
---|
2477 | boolean hold = Stat.nFactorOptionS;
|
---|
2478 | if(this.nFactorReset){
|
---|
2479 | if(this.nFactorOptionI){
|
---|
2480 | Stat.nFactorOptionS = true;
|
---|
2481 | }
|
---|
2482 | else{
|
---|
2483 | Stat.nFactorOptionS = false;
|
---|
2484 | }
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | double variance = 0.0D;
|
---|
2488 | switch(this.type){
|
---|
2489 | case 1: double[] dd = this.getArray_as_double();
|
---|
2490 | variance = Stat.variance(dd);
|
---|
2491 | break;
|
---|
2492 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2493 | variance = (Stat.variance(bd)).doubleValue();
|
---|
2494 | bd = null;
|
---|
2495 | break;
|
---|
2496 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
2497 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2498 | }
|
---|
2499 | Stat.nFactorOptionS = hold;
|
---|
2500 | return Math.sqrt(variance);
|
---|
2501 | }
|
---|
2502 |
|
---|
2503 | public Complex standardDeviation_as_Complex(){
|
---|
2504 | boolean hold = Stat.nFactorOptionS;
|
---|
2505 | if(this.nFactorReset){
|
---|
2506 | if(this.nFactorOptionI){
|
---|
2507 | Stat.nFactorOptionS = true;
|
---|
2508 | }
|
---|
2509 | else{
|
---|
2510 | Stat.nFactorOptionS = false;
|
---|
2511 | }
|
---|
2512 | }
|
---|
2513 |
|
---|
2514 | Complex variance = Complex.zero();
|
---|
2515 | Complex[] cc = this.getArray_as_Complex();
|
---|
2516 | variance = Stat.variance(cc);
|
---|
2517 | Stat.nFactorOptionS = hold;
|
---|
2518 | return Complex.sqrt(variance);
|
---|
2519 | }
|
---|
2520 |
|
---|
2521 | public double standardDeviation_as_Complex_ConjugateCalcn(){
|
---|
2522 | boolean hold = Stat.nFactorOptionS;
|
---|
2523 | if(this.nFactorReset){
|
---|
2524 | if(this.nFactorOptionI){
|
---|
2525 | Stat.nFactorOptionS = true;
|
---|
2526 | }
|
---|
2527 | else{
|
---|
2528 | Stat.nFactorOptionS = false;
|
---|
2529 | }
|
---|
2530 | }
|
---|
2531 |
|
---|
2532 | Complex[] cc = this.getArray_as_Complex();
|
---|
2533 | double variance = Stat.varianceConjugateCalcn(cc);
|
---|
2534 | Stat.nFactorOptionS = hold;
|
---|
2535 | return Math.sqrt(variance);
|
---|
2536 | }
|
---|
2537 |
|
---|
2538 | public double standardDeviation_of_ComplexModuli(){
|
---|
2539 | boolean hold = Stat.nFactorOptionS;
|
---|
2540 | if(this.nFactorReset){
|
---|
2541 | if(this.nFactorOptionI){
|
---|
2542 | Stat.nFactorOptionS = true;
|
---|
2543 | }
|
---|
2544 | else{
|
---|
2545 | Stat.nFactorOptionS = false;
|
---|
2546 | }
|
---|
2547 | }
|
---|
2548 | double[] re = this.array_as_modulus_of_Complex();
|
---|
2549 | double standardDeviation = Stat.standardDeviation(re);
|
---|
2550 | Stat.nFactorOptionS = hold;
|
---|
2551 | return standardDeviation;
|
---|
2552 | }
|
---|
2553 |
|
---|
2554 | public double standardDeviation_of_ComplexRealParts(){
|
---|
2555 | boolean hold = Stat.nFactorOptionS;
|
---|
2556 | if(this.nFactorReset){
|
---|
2557 | if(this.nFactorOptionI){
|
---|
2558 | Stat.nFactorOptionS = true;
|
---|
2559 | }
|
---|
2560 | else{
|
---|
2561 | Stat.nFactorOptionS = false;
|
---|
2562 | }
|
---|
2563 | }
|
---|
2564 | double[] re = this.array_as_real_part_of_Complex();
|
---|
2565 | double standardDeviation = Stat.standardDeviation(re);
|
---|
2566 | Stat.nFactorOptionS = hold;
|
---|
2567 | return standardDeviation;
|
---|
2568 | }
|
---|
2569 |
|
---|
2570 | public double standardDeviation_of_ComplexImaginaryParts(){
|
---|
2571 | boolean hold = Stat.nFactorOptionS;
|
---|
2572 | if(this.nFactorReset){
|
---|
2573 | if(this.nFactorOptionI){
|
---|
2574 | Stat.nFactorOptionS = true;
|
---|
2575 | }
|
---|
2576 | else{
|
---|
2577 | Stat.nFactorOptionS = false;
|
---|
2578 | }
|
---|
2579 | }
|
---|
2580 | double[] im = this.array_as_imaginary_part_of_Complex();
|
---|
2581 | double standardDeviation = Stat.standardDeviation(im);
|
---|
2582 | Stat.nFactorOptionS = hold;
|
---|
2583 | return standardDeviation;
|
---|
2584 | }
|
---|
2585 |
|
---|
2586 | // WEIGHTED STANDARD DEVIATION (INSTANCE METHODS)
|
---|
2587 | public double weightedStandardDeviation(){
|
---|
2588 | return this.weightedStandardDeviation_as_double();
|
---|
2589 | }
|
---|
2590 |
|
---|
2591 | public double weightedStandardDeviation_as_double(){
|
---|
2592 | boolean hold = Stat.nFactorOptionS;
|
---|
2593 | if(this.nFactorReset){
|
---|
2594 | if(this.nFactorOptionI){
|
---|
2595 | Stat.nFactorOptionS = true;
|
---|
2596 | }
|
---|
2597 | else{
|
---|
2598 | Stat.nFactorOptionS = false;
|
---|
2599 | }
|
---|
2600 | }
|
---|
2601 | boolean holdW = Stat.weightingOptionS;
|
---|
2602 | if(this.weightingReset){
|
---|
2603 | if(this.weightingOptionI){
|
---|
2604 | Stat.weightingOptionS = true;
|
---|
2605 | }
|
---|
2606 | else{
|
---|
2607 | Stat.weightingOptionS = false;
|
---|
2608 | }
|
---|
2609 | }
|
---|
2610 |
|
---|
2611 | double varr = 0.0;
|
---|
2612 | if(!this.weightsSupplied){
|
---|
2613 | System.out.println("weightedStandardDeviation_as_double: no weights supplied - unweighted value returned");
|
---|
2614 | varr = this.standardDeviation_as_double();
|
---|
2615 | }
|
---|
2616 | else{
|
---|
2617 | double variance = 0.0D;
|
---|
2618 | switch(this.type){
|
---|
2619 | case 1: double[] dd = this.getArray_as_double();
|
---|
2620 | double[] ww = amWeights.getArray_as_double();
|
---|
2621 | variance = Stat.variance(dd, ww);
|
---|
2622 | break;
|
---|
2623 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2624 | BigDecimal[] wd = amWeights.getArray_as_BigDecimal();
|
---|
2625 | variance = (Stat.variance(bd, wd)).doubleValue();
|
---|
2626 | bd = null;
|
---|
2627 | wd = null;
|
---|
2628 | break;
|
---|
2629 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
2630 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2631 | }
|
---|
2632 | varr = Math.sqrt(variance);
|
---|
2633 |
|
---|
2634 | }
|
---|
2635 | Stat.nFactorOptionS = hold;
|
---|
2636 | Stat.weightingOptionS = holdW;
|
---|
2637 | return varr;
|
---|
2638 | }
|
---|
2639 |
|
---|
2640 |
|
---|
2641 | public Complex weightedStandardDeviation_as_Complex(){
|
---|
2642 | boolean hold = Stat.nFactorOptionS;
|
---|
2643 | if(this.nFactorReset){
|
---|
2644 | if(this.nFactorOptionI){
|
---|
2645 | Stat.nFactorOptionS = true;
|
---|
2646 | }
|
---|
2647 | else{
|
---|
2648 | Stat.nFactorOptionS = false;
|
---|
2649 | }
|
---|
2650 | }
|
---|
2651 | boolean holdW = Stat.weightingOptionS;
|
---|
2652 | if(this.weightingReset){
|
---|
2653 | if(this.weightingOptionI){
|
---|
2654 | Stat.weightingOptionS = true;
|
---|
2655 | }
|
---|
2656 | else{
|
---|
2657 | Stat.weightingOptionS = false;
|
---|
2658 | }
|
---|
2659 | }
|
---|
2660 |
|
---|
2661 | Complex varr = Complex.zero();
|
---|
2662 | if(!this.weightsSupplied){
|
---|
2663 | System.out.println("weightedtandardDeviationS_as_Complex: no weights supplied - unweighted value returned");
|
---|
2664 | varr = this.standardDeviation_as_Complex();
|
---|
2665 | }
|
---|
2666 | else{
|
---|
2667 | Complex variance = Complex.zero();
|
---|
2668 | Complex[] cc = this.getArray_as_Complex();
|
---|
2669 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
2670 | variance = Stat.variance(cc, wc);
|
---|
2671 | varr = Complex.sqrt(variance);
|
---|
2672 | }
|
---|
2673 | Stat.nFactorOptionS = hold;
|
---|
2674 | Stat.weightingOptionS = holdW;
|
---|
2675 | return varr;
|
---|
2676 |
|
---|
2677 | }
|
---|
2678 |
|
---|
2679 | public double weightedStandardDeviation_as_Complex_ConjugateCalcn(){
|
---|
2680 | boolean hold = Stat.nFactorOptionS;
|
---|
2681 | if(this.nFactorReset){
|
---|
2682 | if(this.nFactorOptionI){
|
---|
2683 | Stat.nFactorOptionS = true;
|
---|
2684 | }
|
---|
2685 | else{
|
---|
2686 | Stat.nFactorOptionS = false;
|
---|
2687 | }
|
---|
2688 | }
|
---|
2689 | boolean holdW = Stat.weightingOptionS;
|
---|
2690 | if(this.weightingReset){
|
---|
2691 | if(this.weightingOptionI){
|
---|
2692 | Stat.weightingOptionS = true;
|
---|
2693 | }
|
---|
2694 | else{
|
---|
2695 | Stat.weightingOptionS = false;
|
---|
2696 | }
|
---|
2697 | }
|
---|
2698 | double varr = Double.NaN;
|
---|
2699 | if(!this.weightsSupplied){
|
---|
2700 | System.out.println("weightedtandardDeviationS_as_Complex: no weights supplied - unweighted value returned");
|
---|
2701 | varr = this.standardDeviation_as_Complex_ConjugateCalcn();
|
---|
2702 | }
|
---|
2703 | else{
|
---|
2704 | double variance = Double.NaN;
|
---|
2705 | Complex[] cc = this.getArray_as_Complex();
|
---|
2706 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
2707 | variance = Stat.varianceConjugateCalcn(cc, wc);
|
---|
2708 | varr = Math.sqrt(variance);
|
---|
2709 | }
|
---|
2710 | Stat.nFactorOptionS = hold;
|
---|
2711 | Stat.weightingOptionS = holdW;
|
---|
2712 | return varr;
|
---|
2713 |
|
---|
2714 | }
|
---|
2715 |
|
---|
2716 | public double weightedStandardDeviation_of_ComplexModuli(){
|
---|
2717 | boolean hold = Stat.nFactorOptionS;
|
---|
2718 | if(this.nFactorReset){
|
---|
2719 | if(this.nFactorOptionI){
|
---|
2720 | Stat.nFactorOptionS = true;
|
---|
2721 | }
|
---|
2722 | else{
|
---|
2723 | Stat.nFactorOptionS = false;
|
---|
2724 | }
|
---|
2725 | }
|
---|
2726 | boolean hold2 = Stat.nEffOptionS;
|
---|
2727 | if(this.nEffReset){
|
---|
2728 | if(this.nEffOptionI){
|
---|
2729 | Stat.nEffOptionS = true;
|
---|
2730 | }
|
---|
2731 | else{
|
---|
2732 | Stat.nEffOptionS = false;
|
---|
2733 | }
|
---|
2734 | }
|
---|
2735 | boolean holdW = Stat.weightingOptionS;
|
---|
2736 | if(this.weightingReset){
|
---|
2737 | if(this.weightingOptionI){
|
---|
2738 | Stat.weightingOptionS = true;
|
---|
2739 | }
|
---|
2740 | else{
|
---|
2741 | Stat.weightingOptionS = false;
|
---|
2742 | }
|
---|
2743 | }
|
---|
2744 | double varr = Double.NaN;
|
---|
2745 | if(!this.weightsSupplied){
|
---|
2746 | System.out.println("weightedStandardDeviation_as_Complex: no weights supplied - unweighted value returned");
|
---|
2747 | varr = this.standardDeviation_of_ComplexModuli();
|
---|
2748 | }
|
---|
2749 | else{
|
---|
2750 | double[] cc = this.array_as_modulus_of_Complex();
|
---|
2751 | double[] wc = amWeights.array_as_modulus_of_Complex();
|
---|
2752 | varr = Stat.standardDeviation(cc, wc);
|
---|
2753 | }
|
---|
2754 | Stat.nFactorOptionS = hold;
|
---|
2755 | Stat.nEffOptionS = hold2;
|
---|
2756 | Stat.weightingOptionS = holdW;
|
---|
2757 | return varr;
|
---|
2758 | }
|
---|
2759 |
|
---|
2760 | public double weightedStandardDeviation_of_ComplexRealParts(){
|
---|
2761 | boolean hold = Stat.nFactorOptionS;
|
---|
2762 | if(this.nFactorReset){
|
---|
2763 | if(this.nFactorOptionI){
|
---|
2764 | Stat.nFactorOptionS = true;
|
---|
2765 | }
|
---|
2766 | else{
|
---|
2767 | Stat.nFactorOptionS = false;
|
---|
2768 | }
|
---|
2769 | }
|
---|
2770 | boolean hold2 = Stat.nEffOptionS;
|
---|
2771 | if(this.nEffReset){
|
---|
2772 | if(this.nEffOptionI){
|
---|
2773 | Stat.nEffOptionS = true;
|
---|
2774 | }
|
---|
2775 | else{
|
---|
2776 | Stat.nEffOptionS = false;
|
---|
2777 | }
|
---|
2778 | }
|
---|
2779 | boolean holdW = Stat.weightingOptionS;
|
---|
2780 | if(this.weightingReset){
|
---|
2781 | if(this.weightingOptionI){
|
---|
2782 | Stat.weightingOptionS = true;
|
---|
2783 | }
|
---|
2784 | else{
|
---|
2785 | Stat.weightingOptionS = false;
|
---|
2786 | }
|
---|
2787 | }
|
---|
2788 | double varr = Double.NaN;
|
---|
2789 | if(!this.weightsSupplied){
|
---|
2790 | System.out.println("weightedStandardDeviation_as_Complex: no weights supplied - unweighted value returned");
|
---|
2791 | varr = this.standardDeviation_of_ComplexRealParts();
|
---|
2792 | }
|
---|
2793 | else{
|
---|
2794 | double[] cc = this.array_as_real_part_of_Complex();
|
---|
2795 | double[] wc = amWeights.array_as_real_part_of_Complex();
|
---|
2796 | varr = Stat.standardDeviation(cc, wc);
|
---|
2797 | }
|
---|
2798 | Stat.nFactorOptionS = hold;
|
---|
2799 | Stat.nEffOptionS = hold2;
|
---|
2800 | Stat.weightingOptionS = holdW;
|
---|
2801 | return varr;
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 |
|
---|
2805 | public double weightedStandardDeviation_of_ComplexImaginaryParts(){
|
---|
2806 | boolean hold = Stat.nFactorOptionS;
|
---|
2807 | if(this.nFactorReset){
|
---|
2808 | if(this.nFactorOptionI){
|
---|
2809 | Stat.nFactorOptionS = true;
|
---|
2810 | }
|
---|
2811 | else{
|
---|
2812 | Stat.nFactorOptionS = false;
|
---|
2813 | }
|
---|
2814 | }
|
---|
2815 | boolean hold2 = Stat.nEffOptionS;
|
---|
2816 | if(this.nEffReset){
|
---|
2817 | if(this.nEffOptionI){
|
---|
2818 | Stat.nEffOptionS = true;
|
---|
2819 | }
|
---|
2820 | else{
|
---|
2821 | Stat.nEffOptionS = false;
|
---|
2822 | }
|
---|
2823 | }
|
---|
2824 | boolean holdW = Stat.weightingOptionS;
|
---|
2825 | if(this.weightingReset){
|
---|
2826 | if(this.weightingOptionI){
|
---|
2827 | Stat.weightingOptionS = true;
|
---|
2828 | }
|
---|
2829 | else{
|
---|
2830 | Stat.weightingOptionS = false;
|
---|
2831 | }
|
---|
2832 | }
|
---|
2833 | double varr = Double.NaN;
|
---|
2834 | if(!this.weightsSupplied){
|
---|
2835 | System.out.println("weightedStandardDeviation_as_Complex: no weights supplied - unweighted value returned");
|
---|
2836 | varr = this.standardDeviation_of_ComplexImaginaryParts();
|
---|
2837 | }
|
---|
2838 | else{
|
---|
2839 | double[] cc = this.array_as_imaginary_part_of_Complex();
|
---|
2840 | double[] wc = amWeights.array_as_imaginary_part_of_Complex();
|
---|
2841 | varr = Stat.standardDeviation(cc, wc);
|
---|
2842 | }
|
---|
2843 | Stat.nFactorOptionS = hold;
|
---|
2844 | Stat.nEffOptionS = hold2;
|
---|
2845 | Stat.weightingOptionS = holdW;
|
---|
2846 | return varr;
|
---|
2847 | }
|
---|
2848 |
|
---|
2849 |
|
---|
2850 |
|
---|
2851 |
|
---|
2852 |
|
---|
2853 | // STANDARD ERROR OF THE MEAN (INSTANCE METHODS)
|
---|
2854 | public double standardError(){
|
---|
2855 | return this.standardError_as_double();
|
---|
2856 | }
|
---|
2857 |
|
---|
2858 | public double standardError_as_double(){
|
---|
2859 | boolean hold = Stat.nFactorOptionS;
|
---|
2860 | if(this.nFactorReset){
|
---|
2861 | if(this.nFactorOptionI){
|
---|
2862 | Stat.nFactorOptionS = true;
|
---|
2863 | }
|
---|
2864 | else{
|
---|
2865 | Stat.nFactorOptionS = false;
|
---|
2866 | }
|
---|
2867 | }
|
---|
2868 |
|
---|
2869 | double standardError = 0.0D;
|
---|
2870 | switch(this.type){
|
---|
2871 | case 1: double[] dd = this.getArray_as_double();
|
---|
2872 | standardError = Stat.standardError(dd);
|
---|
2873 | break;
|
---|
2874 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
2875 | standardError = Stat.standardError(bd);
|
---|
2876 | bd = null;
|
---|
2877 | break;
|
---|
2878 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
2879 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
2880 | }
|
---|
2881 | Stat.nFactorOptionS = hold;
|
---|
2882 | return standardError;
|
---|
2883 | }
|
---|
2884 |
|
---|
2885 | public Complex standardError_as_Complex(){
|
---|
2886 | boolean hold = Stat.nFactorOptionS;
|
---|
2887 | if(this.nFactorReset){
|
---|
2888 | if(this.nFactorOptionI){
|
---|
2889 | Stat.nFactorOptionS = true;
|
---|
2890 | }
|
---|
2891 | else{
|
---|
2892 | Stat.nFactorOptionS = false;
|
---|
2893 | }
|
---|
2894 | }
|
---|
2895 |
|
---|
2896 | Complex standardError = Complex.zero();
|
---|
2897 | Complex[] cc = this.getArray_as_Complex();
|
---|
2898 | standardError = Stat.standardError(cc);
|
---|
2899 | Stat.nFactorOptionS = hold;
|
---|
2900 | return standardError;
|
---|
2901 | }
|
---|
2902 |
|
---|
2903 | public double standardError_as_Complex_ConjugateCalcn(){
|
---|
2904 | boolean hold = Stat.nFactorOptionS;
|
---|
2905 | if(this.nFactorReset){
|
---|
2906 | if(this.nFactorOptionI){
|
---|
2907 | Stat.nFactorOptionS = true;
|
---|
2908 | }
|
---|
2909 | else{
|
---|
2910 | Stat.nFactorOptionS = false;
|
---|
2911 | }
|
---|
2912 | }
|
---|
2913 | Complex[] cc = this.getArray_as_Complex();
|
---|
2914 | double standardError = Stat.standardErrorConjugateCalcn(cc);
|
---|
2915 | Stat.nFactorOptionS = hold;
|
---|
2916 | return standardError;
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 | public double standardError_of_ComplexModuli(){
|
---|
2920 | boolean hold = Stat.nFactorOptionS;
|
---|
2921 | if(this.nFactorReset){
|
---|
2922 | if(this.nFactorOptionI){
|
---|
2923 | Stat.nFactorOptionS = true;
|
---|
2924 | }
|
---|
2925 | else{
|
---|
2926 | Stat.nFactorOptionS = false;
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 | double[] re = this.array_as_modulus_of_Complex();
|
---|
2930 | double standardError = Stat.standardError(re);
|
---|
2931 | Stat.nFactorOptionS = hold;
|
---|
2932 | return standardError;
|
---|
2933 | }
|
---|
2934 |
|
---|
2935 | public double standardError_of_ComplexRealParts(){
|
---|
2936 | boolean hold = Stat.nFactorOptionS;
|
---|
2937 | if(this.nFactorReset){
|
---|
2938 | if(this.nFactorOptionI){
|
---|
2939 | Stat.nFactorOptionS = true;
|
---|
2940 | }
|
---|
2941 | else{
|
---|
2942 | Stat.nFactorOptionS = false;
|
---|
2943 | }
|
---|
2944 | }
|
---|
2945 | double[] re = this.array_as_real_part_of_Complex();
|
---|
2946 | double standardError = Stat.standardError(re);
|
---|
2947 | Stat.nFactorOptionS = hold;
|
---|
2948 | return standardError;
|
---|
2949 | }
|
---|
2950 |
|
---|
2951 | public double standardError_of_ComplexImaginaryParts(){
|
---|
2952 | boolean hold = Stat.nFactorOptionS;
|
---|
2953 | if(this.nFactorReset){
|
---|
2954 | if(this.nFactorOptionI){
|
---|
2955 | Stat.nFactorOptionS = true;
|
---|
2956 | }
|
---|
2957 | else{
|
---|
2958 | Stat.nFactorOptionS = false;
|
---|
2959 | }
|
---|
2960 | }
|
---|
2961 | double[] re = this.array_as_imaginary_part_of_Complex();
|
---|
2962 | double standardError = Stat.standardError(re);
|
---|
2963 | Stat.nFactorOptionS = hold;
|
---|
2964 | return standardError;
|
---|
2965 | }
|
---|
2966 |
|
---|
2967 | // WEIGHTED STANDARD ERROR OF THE MEAN (INSTANCE METHODS)
|
---|
2968 | public double weightedStandardError(){
|
---|
2969 | return this.weightedStandardError_as_double();
|
---|
2970 | }
|
---|
2971 |
|
---|
2972 | public double weightedStandardError_as_double(){
|
---|
2973 | boolean hold = Stat.nFactorOptionS;
|
---|
2974 | if(this.nFactorReset){
|
---|
2975 | if(this.nFactorOptionI){
|
---|
2976 | Stat.nFactorOptionS = true;
|
---|
2977 | }
|
---|
2978 | else{
|
---|
2979 | Stat.nFactorOptionS = false;
|
---|
2980 | }
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 | boolean hold2 = Stat.nEffOptionS;
|
---|
2984 | if(this.nEffReset){
|
---|
2985 | if(this.nEffOptionI){
|
---|
2986 | Stat.nEffOptionS = true;
|
---|
2987 | }
|
---|
2988 | else{
|
---|
2989 | Stat.nEffOptionS = false;
|
---|
2990 | }
|
---|
2991 | }
|
---|
2992 |
|
---|
2993 | boolean holdW = Stat.weightingOptionS;
|
---|
2994 | if(this.weightingReset){
|
---|
2995 | if(this.weightingOptionI){
|
---|
2996 | Stat.weightingOptionS = true;
|
---|
2997 | }
|
---|
2998 | else{
|
---|
2999 | Stat.weightingOptionS = false;
|
---|
3000 | }
|
---|
3001 | }
|
---|
3002 |
|
---|
3003 | double standardError = 0.0;
|
---|
3004 | if(!this.weightsSupplied){
|
---|
3005 | System.out.println("weightedStandardError_as_double: no weights supplied - unweighted value returned");
|
---|
3006 | standardError = this.standardError_as_double();
|
---|
3007 | }
|
---|
3008 | else{
|
---|
3009 | switch(this.type){
|
---|
3010 | case 1: double[] dd = this.getArray_as_double();
|
---|
3011 | double[] ww = amWeights.getArray_as_double();
|
---|
3012 | standardError = Stat.standardError(dd, ww);
|
---|
3013 | break;
|
---|
3014 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3015 | BigDecimal[] wd = amWeights.getArray_as_BigDecimal();
|
---|
3016 | standardError = Stat.standardError(bd, wd);
|
---|
3017 | bd = null;
|
---|
3018 | wd = null;
|
---|
3019 | break;
|
---|
3020 | case 14: throw new IllegalArgumentException("Complex cannot be converted to double");
|
---|
3021 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3022 | }
|
---|
3023 | standardError = Math.sqrt(standardError);
|
---|
3024 | }
|
---|
3025 | Stat.nFactorOptionS = hold;
|
---|
3026 | Stat.nEffOptionS = hold2;
|
---|
3027 | Stat.weightingOptionS = holdW;
|
---|
3028 | return standardError;
|
---|
3029 | }
|
---|
3030 |
|
---|
3031 |
|
---|
3032 | public Complex weightedStandarError_as_Complex(){
|
---|
3033 | boolean hold = Stat.nFactorOptionS;
|
---|
3034 | if(this.nFactorReset){
|
---|
3035 | if(this.nFactorOptionI){
|
---|
3036 | Stat.nFactorOptionS = true;
|
---|
3037 | }
|
---|
3038 | else{
|
---|
3039 | Stat.nFactorOptionS = false;
|
---|
3040 | }
|
---|
3041 | }
|
---|
3042 |
|
---|
3043 | boolean hold2 = Stat.nEffOptionS;
|
---|
3044 | if(this.nEffReset){
|
---|
3045 | if(this.nEffOptionI){
|
---|
3046 | Stat.nEffOptionS = true;
|
---|
3047 | }
|
---|
3048 | else{
|
---|
3049 | Stat.nEffOptionS = false;
|
---|
3050 | }
|
---|
3051 | }
|
---|
3052 |
|
---|
3053 | boolean holdW = Stat.weightingOptionS;
|
---|
3054 | if(this.weightingReset){
|
---|
3055 | if(this.weightingOptionI){
|
---|
3056 | Stat.weightingOptionS = true;
|
---|
3057 | }
|
---|
3058 | else{
|
---|
3059 | Stat.weightingOptionS = false;
|
---|
3060 | }
|
---|
3061 | }
|
---|
3062 |
|
---|
3063 | Complex standardError = Complex.zero();
|
---|
3064 | if(!this.weightsSupplied){
|
---|
3065 | System.out.println("weightedStandardError_as_Complex: no weights supplied - unweighted value returned");
|
---|
3066 | standardError = this.standardError_as_Complex();
|
---|
3067 | }
|
---|
3068 | else{
|
---|
3069 | Complex[] cc = this.getArray_as_Complex();
|
---|
3070 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
3071 | standardError = Stat.standardError(cc, wc);
|
---|
3072 | }
|
---|
3073 | Stat.nFactorOptionS = hold;
|
---|
3074 | Stat.nEffOptionS = hold2;
|
---|
3075 | Stat.weightingOptionS = holdW;
|
---|
3076 |
|
---|
3077 | return standardError;
|
---|
3078 |
|
---|
3079 | }
|
---|
3080 |
|
---|
3081 |
|
---|
3082 | public double weightedStandarError_as_Complex_ConjugateCalcn(){
|
---|
3083 | boolean hold = Stat.nFactorOptionS;
|
---|
3084 | if(this.nFactorReset){
|
---|
3085 | if(this.nFactorOptionI){
|
---|
3086 | Stat.nFactorOptionS = true;
|
---|
3087 | }
|
---|
3088 | else{
|
---|
3089 | Stat.nFactorOptionS = false;
|
---|
3090 | }
|
---|
3091 | }
|
---|
3092 |
|
---|
3093 | boolean hold2 = Stat.nEffOptionS;
|
---|
3094 | if(this.nEffReset){
|
---|
3095 | if(this.nEffOptionI){
|
---|
3096 | Stat.nEffOptionS = true;
|
---|
3097 | }
|
---|
3098 | else{
|
---|
3099 | Stat.nEffOptionS = false;
|
---|
3100 | }
|
---|
3101 | }
|
---|
3102 |
|
---|
3103 | boolean holdW = Stat.weightingOptionS;
|
---|
3104 | if(this.weightingReset){
|
---|
3105 | if(this.weightingOptionI){
|
---|
3106 | Stat.weightingOptionS = true;
|
---|
3107 | }
|
---|
3108 | else{
|
---|
3109 | Stat.weightingOptionS = false;
|
---|
3110 | }
|
---|
3111 | }
|
---|
3112 | double standardError = Double.NaN;
|
---|
3113 | if(!this.weightsSupplied){
|
---|
3114 | System.out.println("weightedStandardError_as_Complex: no weights supplied - unweighted value returned");
|
---|
3115 | standardError = this.standardError_as_Complex_ConjugateCalcn();
|
---|
3116 | }
|
---|
3117 | else{
|
---|
3118 | Complex[] cc = this.getArray_as_Complex();
|
---|
3119 | Complex[] wc = amWeights.getArray_as_Complex();
|
---|
3120 | standardError = Stat.standardErrorConjugateCalcn(cc, wc);
|
---|
3121 | }
|
---|
3122 | Stat.nFactorOptionS = hold;
|
---|
3123 | Stat.nEffOptionS = hold2;
|
---|
3124 | Stat.weightingOptionS = holdW;
|
---|
3125 |
|
---|
3126 | return standardError;
|
---|
3127 |
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 | public double weightedStandardError_of_ComplexModuli(){
|
---|
3131 | boolean hold = Stat.nFactorOptionS;
|
---|
3132 | if(this.nFactorReset){
|
---|
3133 | if(this.nFactorOptionI){
|
---|
3134 | Stat.nFactorOptionS = true;
|
---|
3135 | }
|
---|
3136 | else{
|
---|
3137 | Stat.nFactorOptionS = false;
|
---|
3138 | }
|
---|
3139 | }
|
---|
3140 | boolean hold2 = Stat.nEffOptionS;
|
---|
3141 | if(this.nEffReset){
|
---|
3142 | if(this.nEffOptionI){
|
---|
3143 | Stat.nEffOptionS = true;
|
---|
3144 | }
|
---|
3145 | else{
|
---|
3146 | Stat.nEffOptionS = false;
|
---|
3147 | }
|
---|
3148 | }
|
---|
3149 | boolean holdW = Stat.weightingOptionS;
|
---|
3150 | if(this.weightingReset){
|
---|
3151 | if(this.weightingOptionI){
|
---|
3152 | Stat.weightingOptionS = true;
|
---|
3153 | }
|
---|
3154 | else{
|
---|
3155 | Stat.weightingOptionS = false;
|
---|
3156 | }
|
---|
3157 | }
|
---|
3158 | double varr = Double.NaN;
|
---|
3159 | if(!this.weightsSupplied){
|
---|
3160 | System.out.println("weightedStandardError_as_Complex: no weights supplied - unweighted value returned");
|
---|
3161 | varr = this.standardError_of_ComplexModuli();
|
---|
3162 | }
|
---|
3163 | else{
|
---|
3164 | double[] cc = this.array_as_modulus_of_Complex();
|
---|
3165 | double[] wc = amWeights.array_as_modulus_of_Complex();
|
---|
3166 | varr = Stat.standardError(cc, wc);
|
---|
3167 | }
|
---|
3168 | Stat.nFactorOptionS = hold;
|
---|
3169 | Stat.nEffOptionS = hold2;
|
---|
3170 | Stat.weightingOptionS = holdW;
|
---|
3171 | return varr;
|
---|
3172 | }
|
---|
3173 |
|
---|
3174 | public double weightedStandardError_of_ComplexRealParts(){
|
---|
3175 | boolean hold = Stat.nFactorOptionS;
|
---|
3176 | if(this.nFactorReset){
|
---|
3177 | if(this.nFactorOptionI){
|
---|
3178 | Stat.nFactorOptionS = true;
|
---|
3179 | }
|
---|
3180 | else{
|
---|
3181 | Stat.nFactorOptionS = false;
|
---|
3182 | }
|
---|
3183 | }
|
---|
3184 | boolean hold2 = Stat.nEffOptionS;
|
---|
3185 | if(this.nEffReset){
|
---|
3186 | if(this.nEffOptionI){
|
---|
3187 | Stat.nEffOptionS = true;
|
---|
3188 | }
|
---|
3189 | else{
|
---|
3190 | Stat.nEffOptionS = false;
|
---|
3191 | }
|
---|
3192 | }
|
---|
3193 | boolean holdW = Stat.weightingOptionS;
|
---|
3194 | if(this.weightingReset){
|
---|
3195 | if(this.weightingOptionI){
|
---|
3196 | Stat.weightingOptionS = true;
|
---|
3197 | }
|
---|
3198 | else{
|
---|
3199 | Stat.weightingOptionS = false;
|
---|
3200 | }
|
---|
3201 | }
|
---|
3202 | double varr = Double.NaN;
|
---|
3203 | if(!this.weightsSupplied){
|
---|
3204 | System.out.println("weightedStandardError_as_Complex: no weights supplied - unweighted value returned");
|
---|
3205 | varr = this.standardError_of_ComplexRealParts();
|
---|
3206 | }
|
---|
3207 | else{
|
---|
3208 | double[] cc = this.array_as_real_part_of_Complex();
|
---|
3209 | double[] wc = amWeights.array_as_real_part_of_Complex();
|
---|
3210 | varr = Stat.standardError(cc, wc);
|
---|
3211 | }
|
---|
3212 | Stat.nFactorOptionS = hold;
|
---|
3213 | Stat.nEffOptionS = hold2;
|
---|
3214 | Stat.weightingOptionS = holdW;
|
---|
3215 | return varr;
|
---|
3216 | }
|
---|
3217 |
|
---|
3218 |
|
---|
3219 | public double weightedStandardError_of_ComplexImaginaryParts(){
|
---|
3220 | boolean hold = Stat.nFactorOptionS;
|
---|
3221 | if(this.nFactorReset){
|
---|
3222 | if(this.nFactorOptionI){
|
---|
3223 | Stat.nFactorOptionS = true;
|
---|
3224 | }
|
---|
3225 | else{
|
---|
3226 | Stat.nFactorOptionS = false;
|
---|
3227 | }
|
---|
3228 | }
|
---|
3229 | boolean hold2 = Stat.nEffOptionS;
|
---|
3230 | if(this.nEffReset){
|
---|
3231 | if(this.nEffOptionI){
|
---|
3232 | Stat.nEffOptionS = true;
|
---|
3233 | }
|
---|
3234 | else{
|
---|
3235 | Stat.nEffOptionS = false;
|
---|
3236 | }
|
---|
3237 | }
|
---|
3238 | boolean holdW = Stat.weightingOptionS;
|
---|
3239 | if(this.weightingReset){
|
---|
3240 | if(this.weightingOptionI){
|
---|
3241 | Stat.weightingOptionS = true;
|
---|
3242 | }
|
---|
3243 | else{
|
---|
3244 | Stat.weightingOptionS = false;
|
---|
3245 | }
|
---|
3246 | }
|
---|
3247 | double varr = Double.NaN;
|
---|
3248 | if(!this.weightsSupplied){
|
---|
3249 | System.out.println("weightedStandardError_as_Complex: no weights supplied - unweighted value returned");
|
---|
3250 | varr = this.standardError_of_ComplexImaginaryParts();
|
---|
3251 | }
|
---|
3252 | else{
|
---|
3253 | double[] cc = this.array_as_imaginary_part_of_Complex();
|
---|
3254 | double[] wc = amWeights.array_as_imaginary_part_of_Complex();
|
---|
3255 | varr = Stat.standardError(cc, wc);
|
---|
3256 | }
|
---|
3257 | Stat.nFactorOptionS = hold;
|
---|
3258 | Stat.nEffOptionS = hold2;
|
---|
3259 | Stat.weightingOptionS = holdW;
|
---|
3260 | return varr;
|
---|
3261 | }
|
---|
3262 |
|
---|
3263 |
|
---|
3264 |
|
---|
3265 |
|
---|
3266 | // STANDARDIZE (INSTANCE METHODS)
|
---|
3267 | // Standardization of the internal array to a mean of 0 and a standard deviation of 1
|
---|
3268 | public double[] standardize(){
|
---|
3269 | double[] bb = null;
|
---|
3270 | switch(this.type){
|
---|
3271 | case 1:
|
---|
3272 | case 12: double[] dd = this.getArray_as_double();
|
---|
3273 | bb = Stat.standardize(dd);
|
---|
3274 | break;
|
---|
3275 | case 14: throw new IllegalArgumentException("Standardization of Complex is not supported");
|
---|
3276 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3277 | }
|
---|
3278 | return bb;
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | public double[] standardise(){
|
---|
3282 | return standardize();
|
---|
3283 | }
|
---|
3284 |
|
---|
3285 |
|
---|
3286 | // SCALE (INSTANCE METHODS)
|
---|
3287 | // Scale the internal array to a new mean and a new standard deviation
|
---|
3288 | public double[] scale(double mean, double sd){
|
---|
3289 | double[] bb = null;
|
---|
3290 | switch(this.type){
|
---|
3291 | case 1:
|
---|
3292 | case 12: double[] dd = this.getArray_as_double();
|
---|
3293 | bb = Stat.scale(dd, mean, sd);
|
---|
3294 | break;
|
---|
3295 | case 14: throw new IllegalArgumentException("Scaling of Complex is not supported");
|
---|
3296 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3297 | }
|
---|
3298 | return bb;
|
---|
3299 | }
|
---|
3300 |
|
---|
3301 |
|
---|
3302 |
|
---|
3303 | // VOLATILITY (INSTANCE METHODS)
|
---|
3304 | public double volatilityLogChange(){
|
---|
3305 | double volatilityLogChange = 0.0D;
|
---|
3306 | switch(this.type){
|
---|
3307 | case 1: double[] dd = this.getArray_as_double();
|
---|
3308 | volatilityLogChange = Stat.volatilityLogChange(dd);
|
---|
3309 | break;
|
---|
3310 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3311 | volatilityLogChange = Stat.volatilityLogChange(bd);
|
---|
3312 | bd = null;
|
---|
3313 | break;
|
---|
3314 | case 14: throw new IllegalArgumentException("Complex volatilty is not supported");
|
---|
3315 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3316 | }
|
---|
3317 | return volatilityLogChange;
|
---|
3318 | }
|
---|
3319 |
|
---|
3320 | public double volatilityPerCentChange(){
|
---|
3321 | double volatilityPerCentChange = 0.0D;
|
---|
3322 | switch(this.type){
|
---|
3323 | case 1: double[] dd = this.getArray_as_double();
|
---|
3324 | volatilityPerCentChange = Stat.volatilityPerCentChange(dd);
|
---|
3325 | break;
|
---|
3326 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3327 | volatilityPerCentChange = Stat.volatilityPerCentChange(bd);
|
---|
3328 | bd = null;
|
---|
3329 | break;
|
---|
3330 | case 14: throw new IllegalArgumentException("Complex volatilty is not supported");
|
---|
3331 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3332 | }
|
---|
3333 | return volatilityPerCentChange;
|
---|
3334 | }
|
---|
3335 |
|
---|
3336 | //COEFFICIENT OF VARIATION
|
---|
3337 | public double coefficientOfVariation(){
|
---|
3338 | boolean hold = Stat.nFactorOptionS;
|
---|
3339 | if(this.nFactorReset){
|
---|
3340 | if(this.nFactorOptionI){
|
---|
3341 | Stat.nFactorOptionS = true;
|
---|
3342 | }
|
---|
3343 | else{
|
---|
3344 | Stat.nFactorOptionS = false;
|
---|
3345 | }
|
---|
3346 | }
|
---|
3347 | double coefficientOfVariation = 0.0D;
|
---|
3348 | switch(this.type){
|
---|
3349 | case 1: double[] dd = this.getArray_as_double();
|
---|
3350 | coefficientOfVariation = Stat.coefficientOfVariation(dd);
|
---|
3351 | break;
|
---|
3352 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3353 | coefficientOfVariation = Stat.coefficientOfVariation(bd);
|
---|
3354 | bd = null;
|
---|
3355 | break;
|
---|
3356 | case 14: throw new IllegalArgumentException("Complex coefficient of variation is not supported");
|
---|
3357 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3358 | }
|
---|
3359 | Stat.nFactorOptionS = hold;
|
---|
3360 | return coefficientOfVariation;
|
---|
3361 | }
|
---|
3362 |
|
---|
3363 | public double weightedCoefficientOfVariation(){
|
---|
3364 | boolean hold = Stat.nFactorOptionS;
|
---|
3365 | if(this.nFactorReset){
|
---|
3366 | if(this.nFactorOptionI){
|
---|
3367 | Stat.nFactorOptionS = true;
|
---|
3368 | }
|
---|
3369 | else{
|
---|
3370 | Stat.nFactorOptionS = false;
|
---|
3371 | }
|
---|
3372 | }
|
---|
3373 | boolean holdW = Stat.weightingOptionS;
|
---|
3374 | if(this.weightingReset){
|
---|
3375 | if(this.weightingOptionI){
|
---|
3376 | Stat.weightingOptionS = true;
|
---|
3377 | }
|
---|
3378 | else{
|
---|
3379 | Stat.weightingOptionS = false;
|
---|
3380 | }
|
---|
3381 | }
|
---|
3382 | double coefficientOfVariation = 0.0D;
|
---|
3383 | switch(this.type){
|
---|
3384 | case 1: double[] dd = this.getArray_as_double();
|
---|
3385 | double[] wd = amWeights.getArray_as_double();
|
---|
3386 | coefficientOfVariation = Stat.coefficientOfVariation(dd, wd);
|
---|
3387 | break;
|
---|
3388 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3389 | BigDecimal[] bw = amWeights.getArray_as_BigDecimal();
|
---|
3390 | coefficientOfVariation = Stat.coefficientOfVariation(bd, bw);
|
---|
3391 | bd = null;
|
---|
3392 | bw = null;
|
---|
3393 | break;
|
---|
3394 | case 14: throw new IllegalArgumentException("Complex coefficient of variation is not supported");
|
---|
3395 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3396 | }
|
---|
3397 | Stat.nFactorOptionS = hold;
|
---|
3398 | Stat.weightingOptionS = holdW;
|
---|
3399 | return coefficientOfVariation;
|
---|
3400 | }
|
---|
3401 |
|
---|
3402 | // SHANNON ENTROPY (INSTANCE METHODS)
|
---|
3403 | // return Shannon entropy as bits
|
---|
3404 | public double shannonEntropy(){
|
---|
3405 | double entropy = 0.0D;
|
---|
3406 | switch(this.type){
|
---|
3407 | case 1:
|
---|
3408 | case 12: double[] dd = this.getArray_as_double();
|
---|
3409 | entropy = Stat.shannonEntropy(dd);
|
---|
3410 | break;
|
---|
3411 | case 14: throw new IllegalArgumentException("Complex Shannon Entropy is not meaningful");
|
---|
3412 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3413 | }
|
---|
3414 | return entropy;
|
---|
3415 | }
|
---|
3416 |
|
---|
3417 | // return Shannon entropy as bits
|
---|
3418 | public double shannonEntropyBit(){
|
---|
3419 | double entropy = 0.0D;
|
---|
3420 | switch(this.type){
|
---|
3421 | case 1:
|
---|
3422 | case 12: double[] dd = this.getArray_as_double();
|
---|
3423 | entropy = Stat.shannonEntropy(dd);
|
---|
3424 | break;
|
---|
3425 | case 14: throw new IllegalArgumentException("Complex Shannon Entropy is not meaningful");
|
---|
3426 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3427 | }
|
---|
3428 | return entropy;
|
---|
3429 | }
|
---|
3430 |
|
---|
3431 | // return Shannon entropy as nats
|
---|
3432 | public double shannonEntropyNat(){
|
---|
3433 | double entropy = 0.0D;
|
---|
3434 | switch(this.type){
|
---|
3435 | case 1:
|
---|
3436 | case 12: double[] dd = this.getArray_as_double();
|
---|
3437 | entropy = Stat.shannonEntropyNat(dd);
|
---|
3438 | break;
|
---|
3439 | case 14: throw new IllegalArgumentException("Complex Shannon Entropy is not meaningful");
|
---|
3440 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3441 | }
|
---|
3442 | return entropy;
|
---|
3443 | }
|
---|
3444 |
|
---|
3445 | // return Shannon entropy as dits
|
---|
3446 | public double shannonEntropyDit(){
|
---|
3447 | double entropy = 0.0D;
|
---|
3448 | switch(this.type){
|
---|
3449 | case 1:
|
---|
3450 | case 12: double[] dd = this.getArray_as_double();
|
---|
3451 | entropy = Stat.shannonEntropyDit(dd);
|
---|
3452 | break;
|
---|
3453 | case 14: throw new IllegalArgumentException("Complex Shannon Entropy is not meaningful");
|
---|
3454 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3455 | }
|
---|
3456 | return entropy;
|
---|
3457 | }
|
---|
3458 |
|
---|
3459 | // RENYI ENTROPY (INSTANCE METHODS)
|
---|
3460 | // return Renyi entropy as bits
|
---|
3461 | public double renyiEntropy(double alpha){
|
---|
3462 | double entropy = 0.0D;
|
---|
3463 | switch(this.type){
|
---|
3464 | case 1:
|
---|
3465 | case 12: double[] dd = this.getArray_as_double();
|
---|
3466 | entropy = Stat.renyiEntropy(dd, alpha);
|
---|
3467 | break;
|
---|
3468 | case 14: throw new IllegalArgumentException("Complex Renyi Entropy is not meaningful");
|
---|
3469 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3470 | }
|
---|
3471 | return entropy;
|
---|
3472 | }
|
---|
3473 |
|
---|
3474 | // return Renyi entropy as bits
|
---|
3475 | public double renyiEntropyBit(double alpha){
|
---|
3476 | double entropy = 0.0D;
|
---|
3477 | switch(this.type){
|
---|
3478 | case 1:
|
---|
3479 | case 12: double[] dd = this.getArray_as_double();
|
---|
3480 | entropy = Stat.renyiEntropy(dd, alpha);
|
---|
3481 | break;
|
---|
3482 | case 14: throw new IllegalArgumentException("Complex Renyi Entropy is not meaningful");
|
---|
3483 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3484 | }
|
---|
3485 | return entropy;
|
---|
3486 | }
|
---|
3487 |
|
---|
3488 | // return Renyi entropy as nats
|
---|
3489 | public double renyiEntropyNat(double alpha){
|
---|
3490 | double entropy = 0.0D;
|
---|
3491 | switch(this.type){
|
---|
3492 | case 1:
|
---|
3493 | case 12: double[] dd = this.getArray_as_double();
|
---|
3494 | entropy = Stat.renyiEntropyNat(dd, alpha);
|
---|
3495 | break;
|
---|
3496 | case 14: throw new IllegalArgumentException("Complex Renyi Entropy is not meaningful");
|
---|
3497 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3498 | }
|
---|
3499 | return entropy;
|
---|
3500 | }
|
---|
3501 |
|
---|
3502 | // return Renyi entropy as dits
|
---|
3503 | public double renyiEntropyDit(double alpha){
|
---|
3504 | double entropy = 0.0D;
|
---|
3505 | switch(this.type){
|
---|
3506 | case 1:
|
---|
3507 | case 12: double[] dd = this.getArray_as_double();
|
---|
3508 | entropy = Stat.renyiEntropyDit(dd, alpha);
|
---|
3509 | break;
|
---|
3510 | case 14: throw new IllegalArgumentException("Complex Renyi Entropy is not meaningful");
|
---|
3511 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3512 | }
|
---|
3513 | return entropy;
|
---|
3514 | }
|
---|
3515 |
|
---|
3516 | // TSALLIS ENTROPY (INSTANCE METHODS)
|
---|
3517 | // return Tsallis entropy
|
---|
3518 | public double tsallisEntropyNat(double q){
|
---|
3519 | double entropy = 0.0D;
|
---|
3520 | switch(this.type){
|
---|
3521 | case 1:
|
---|
3522 | case 12: double[] dd = this.getArray_as_double();
|
---|
3523 | entropy = Stat.tsallisEntropyNat(dd, q);
|
---|
3524 | break;
|
---|
3525 | case 14: throw new IllegalArgumentException("Complex Tsallis Entropy is not meaningful");
|
---|
3526 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3527 | }
|
---|
3528 | return entropy;
|
---|
3529 | }
|
---|
3530 |
|
---|
3531 |
|
---|
3532 | // GENERALIZED ENTROPY (INSTANCE METHODS)
|
---|
3533 | // return generalised entropy
|
---|
3534 | public double generalizedEntropyOneNat(double q, double r){
|
---|
3535 | double entropy = 0.0D;
|
---|
3536 | switch(this.type){
|
---|
3537 | case 1:
|
---|
3538 | case 12: double[] dd = this.getArray_as_double();
|
---|
3539 | entropy = Stat.generalizedEntropyOneNat(dd, q, r);
|
---|
3540 | break;
|
---|
3541 | case 14: throw new IllegalArgumentException("Complex Generalized Entropy is not meaningful");
|
---|
3542 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3543 | }
|
---|
3544 | return entropy;
|
---|
3545 | }
|
---|
3546 |
|
---|
3547 | public double generalisedEntropyOneNat(double q, double r){
|
---|
3548 | return generalizedEntropyOneNat(q, r);
|
---|
3549 | }
|
---|
3550 |
|
---|
3551 | // OUTLIER DETECTION (INSTANCE)
|
---|
3552 | // Anscombe test for a upper outlier
|
---|
3553 | public ArrayList<Object> upperOutliersAnscombe(double constant){
|
---|
3554 | return this.upperOutliersAnscombe_as_double(constant);
|
---|
3555 | }
|
---|
3556 |
|
---|
3557 | // Anscombe test for a upper outlier
|
---|
3558 | public ArrayList<Object> upperOutliersAnscombe_as_double(double constant){
|
---|
3559 |
|
---|
3560 | switch(this.type){
|
---|
3561 | case 1: double[] dd = this.getArray_as_double();
|
---|
3562 | this.upperOutlierDetails = upperOutliersAnscombeAsArrayList(dd, constant);
|
---|
3563 | break;
|
---|
3564 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3565 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
3566 | ret = upperOutliersAnscombeAsArrayList(bd, new BigDecimal(constant));
|
---|
3567 | this.upperOutlierDetails.add((Integer)ret.get(0));
|
---|
3568 | BigDecimal[] bd1 = (BigDecimal[])ret.get(1);
|
---|
3569 | ArrayMaths am1 = new ArrayMaths(bd1);
|
---|
3570 | this.upperOutlierDetails.add(am1.getArray_as_Double());
|
---|
3571 | this.upperOutlierDetails.add((int[])ret.get(2));
|
---|
3572 | BigDecimal[] bd2 = (BigDecimal[])ret.get(3);
|
---|
3573 | ArrayMaths am2 = new ArrayMaths(bd2);
|
---|
3574 | this.upperOutlierDetails.add(am2.getArray_as_Double());
|
---|
3575 | break;
|
---|
3576 | case 14: throw new IllegalArgumentException("Outlier detection of Complex is not supported");
|
---|
3577 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3578 | }
|
---|
3579 | this.upperDone = true;
|
---|
3580 | return this.upperOutlierDetails;
|
---|
3581 | }
|
---|
3582 |
|
---|
3583 | // Anscombe test for a upper outlier
|
---|
3584 | public ArrayList<Object> upperOutliersAnscombe(BigDecimal constant){
|
---|
3585 | return this.upperOutliersAnscombe_as_BigDecimal(constant);
|
---|
3586 | }
|
---|
3587 |
|
---|
3588 | // Anscombe test for a upper outlier
|
---|
3589 | public ArrayList<Object> upperOutliersAnscombe_as_BigDecimal(BigDecimal constant){
|
---|
3590 |
|
---|
3591 | switch(this.type){
|
---|
3592 | case 1: double[] dd = this.getArray_as_double();
|
---|
3593 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
3594 | ret = upperOutliersAnscombeAsArrayList(dd, constant.doubleValue());
|
---|
3595 | this.upperOutlierDetails.add((Integer)ret.get(0));
|
---|
3596 | Double[] dd1 = (Double[])ret.get(1);
|
---|
3597 | ArrayMaths am1 = new ArrayMaths(dd1);
|
---|
3598 | this.upperOutlierDetails.add(am1.getArray_as_BigDecimal());
|
---|
3599 | this.upperOutlierDetails.add((int[])ret.get(2));
|
---|
3600 | Double[] dd2 = (Double[])ret.get(3);
|
---|
3601 | ArrayMaths am2 = new ArrayMaths(dd2);
|
---|
3602 | this.upperOutlierDetails.add(am2.getArray_as_BigDecimal());
|
---|
3603 | break;
|
---|
3604 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3605 | this.upperOutlierDetails = upperOutliersAnscombeAsArrayList(bd, constant);
|
---|
3606 | break;
|
---|
3607 | case 14: throw new IllegalArgumentException("Outlier detection of Complex is not supported");
|
---|
3608 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3609 | }
|
---|
3610 | this.upperDone = true;
|
---|
3611 | return this.upperOutlierDetails;
|
---|
3612 | }
|
---|
3613 |
|
---|
3614 |
|
---|
3615 | public ArrayList<Object> upperOutliersAnscombe(BigInteger constant){
|
---|
3616 | return this.upperOutliersAnscombe_as_BigDecimal(new BigDecimal(constant));
|
---|
3617 | }
|
---|
3618 |
|
---|
3619 | public ArrayList<Object> upperOutliersAnscombe_as_BigDecimal(BigInteger constant){
|
---|
3620 | return this.upperOutliersAnscombe_as_BigDecimal(new BigDecimal(constant));
|
---|
3621 | }
|
---|
3622 |
|
---|
3623 | // Anscombe test for a lower outlier
|
---|
3624 | public ArrayList<Object> lowerOutliersAnscombe(double constant){
|
---|
3625 | return this.lowerOutliersAnscombe_as_double(constant);
|
---|
3626 | }
|
---|
3627 |
|
---|
3628 | // Anscombe test for a lower outlier
|
---|
3629 | public ArrayList<Object> lowerOutliersAnscombe_as_double(double constant){
|
---|
3630 |
|
---|
3631 | switch(this.type){
|
---|
3632 | case 1: double[] dd = this.getArray_as_double();
|
---|
3633 | this.lowerOutlierDetails = lowerOutliersAnscombeAsArrayList(dd, constant);
|
---|
3634 | break;
|
---|
3635 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3636 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
3637 | ret = lowerOutliersAnscombeAsArrayList(bd, new BigDecimal(constant));
|
---|
3638 | this.lowerOutlierDetails.add((Integer)ret.get(0));
|
---|
3639 | BigDecimal[] bd1 = (BigDecimal[])ret.get(1);
|
---|
3640 | ArrayMaths am1 = new ArrayMaths(bd1);
|
---|
3641 | this.lowerOutlierDetails.add(am1.getArray_as_Double());
|
---|
3642 | this.lowerOutlierDetails.add((int[])ret.get(2));
|
---|
3643 | BigDecimal[] bd2 = (BigDecimal[])ret.get(3);
|
---|
3644 | ArrayMaths am2 = new ArrayMaths(bd2);
|
---|
3645 | this.lowerOutlierDetails.add(am2.getArray_as_Double());
|
---|
3646 | break;
|
---|
3647 | case 14: throw new IllegalArgumentException("Outlier detection of Complex is not supported");
|
---|
3648 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3649 | }
|
---|
3650 | this.lowerDone = true;
|
---|
3651 | return this.lowerOutlierDetails;
|
---|
3652 | }
|
---|
3653 |
|
---|
3654 | public ArrayList<Object> lowerOutliersAnscombe(BigDecimal constant){
|
---|
3655 | return this.lowerOutliersAnscombe_as_BigDecimal(constant);
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 |
|
---|
3659 | public ArrayList<Object> lowerOutliersAnscombe_as_BigDecimal(BigDecimal constant){
|
---|
3660 |
|
---|
3661 | switch(this.type){
|
---|
3662 | case 1: double[] dd = this.getArray_as_double();
|
---|
3663 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
3664 | ret = lowerOutliersAnscombeAsArrayList(dd, constant.doubleValue());
|
---|
3665 | this.lowerOutlierDetails.add((Integer)ret.get(0));
|
---|
3666 | Double[] dd1 = (Double[])ret.get(1);
|
---|
3667 | ArrayMaths am1 = new ArrayMaths(dd1);
|
---|
3668 | this.lowerOutlierDetails.add(am1.getArray_as_BigDecimal());
|
---|
3669 | this.lowerOutlierDetails.add((int[])ret.get(2));
|
---|
3670 | Double[] dd2 = (Double[])ret.get(3);
|
---|
3671 | ArrayMaths am2 = new ArrayMaths(dd2);
|
---|
3672 | this.lowerOutlierDetails.add(am2.getArray_as_BigDecimal());
|
---|
3673 | break;
|
---|
3674 | case 12: BigDecimal[] bd = this.getArray_as_BigDecimal();
|
---|
3675 | this.lowerOutlierDetails = lowerOutliersAnscombeAsArrayList(bd, constant);
|
---|
3676 | break;
|
---|
3677 | case 14: throw new IllegalArgumentException("Outlier detection of Complex is not supported");
|
---|
3678 | default: throw new IllegalArgumentException("This type number, " + this.type +", should not be possible here!!!!");
|
---|
3679 | }
|
---|
3680 | this.lowerDone = true;
|
---|
3681 | return this.lowerOutlierDetails;
|
---|
3682 | }
|
---|
3683 |
|
---|
3684 | public ArrayList<Object> lowerOutliersAnscombe(BigInteger constant){
|
---|
3685 | return this.lowerOutliersAnscombe_as_BigDecimal(new BigDecimal(constant));
|
---|
3686 | }
|
---|
3687 |
|
---|
3688 | public ArrayList<Object> lowerOutliersAnscombe_as_BigDecimal(BigInteger constant){
|
---|
3689 | return this.lowerOutliersAnscombe_as_BigDecimal(new BigDecimal(constant));
|
---|
3690 | }
|
---|
3691 |
|
---|
3692 |
|
---|
3693 | // STATIC METHODS
|
---|
3694 | // WEIGHTING CHOICE (STATIC)
|
---|
3695 | // Set weights to 'big W' - multiplicative factor
|
---|
3696 | public static void setStaticWeightsToBigW(){
|
---|
3697 | Stat.weightingOptionS = false;
|
---|
3698 | }
|
---|
3699 |
|
---|
3700 | // Set weights to 'little w' - uncertainties
|
---|
3701 | public static void setStaticWeightsToLittleW(){
|
---|
3702 | Stat.weightingOptionS = true;
|
---|
3703 | }
|
---|
3704 |
|
---|
3705 | // CONVERSION OF WEIGHTING FACTORS
|
---|
3706 | // Converts weighting facors Wi to wi, i.e. to 1/sqrt(Wi)
|
---|
3707 | public static double[] convertBigWtoLittleW(double[] bigW){
|
---|
3708 | ArrayMaths am1 = new ArrayMaths(bigW);
|
---|
3709 | ArrayMaths am2 = am1.oneOverSqrt();
|
---|
3710 | return am2.getArray_as_double();
|
---|
3711 | }
|
---|
3712 |
|
---|
3713 | public static float[] convertBigWtoLittleW(float[] bigW){
|
---|
3714 | ArrayMaths am1 = new ArrayMaths(bigW);
|
---|
3715 | ArrayMaths am2 = am1.oneOverSqrt();
|
---|
3716 | return am2.getArray_as_float();
|
---|
3717 | }
|
---|
3718 |
|
---|
3719 | public static Complex[] convertBigWtoLittleW(Complex[] bigW){
|
---|
3720 | ArrayMaths am1 = new ArrayMaths(bigW);
|
---|
3721 | ArrayMaths am2 = am1.oneOverSqrt();
|
---|
3722 | return am2.getArray_as_Complex();
|
---|
3723 | }
|
---|
3724 |
|
---|
3725 | public static double[] convertBigWtoLittleW(BigDecimal[] bigW){
|
---|
3726 | ArrayMaths am1 = new ArrayMaths(bigW);
|
---|
3727 | ArrayMaths am2 = am1.oneOverSqrt();
|
---|
3728 | return am2.getArray_as_double();
|
---|
3729 | }
|
---|
3730 |
|
---|
3731 | public static double[] convertBigWtoLittleW(BigInteger[] bigW){
|
---|
3732 | ArrayMaths am1 = new ArrayMaths(bigW);
|
---|
3733 | ArrayMaths am2 = am1.oneOverSqrt();
|
---|
3734 | return am2.getArray_as_double();
|
---|
3735 | }
|
---|
3736 |
|
---|
3737 | // private weighting calculation
|
---|
3738 | // returns weight w
|
---|
3739 | // litte w to one over little w squared if uncertainties used
|
---|
3740 | private static double[] invertAndSquare(double[] ww){
|
---|
3741 | double[] weight = Conv.copy(ww);
|
---|
3742 | if(Stat.weightingOptionS){
|
---|
3743 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3744 | am = am.pow(2);
|
---|
3745 | am = am.invert();
|
---|
3746 | weight = am.array();
|
---|
3747 | }
|
---|
3748 | return weight;
|
---|
3749 | }
|
---|
3750 |
|
---|
3751 | private static float[] invertAndSquare(float[] ww){
|
---|
3752 | float[] weight = Conv.copy(ww);
|
---|
3753 | if(Stat.weightingOptionS){
|
---|
3754 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3755 | am = am.pow(2);
|
---|
3756 | am = am.invert();
|
---|
3757 | weight = am.array_as_float();
|
---|
3758 | }
|
---|
3759 | return weight;
|
---|
3760 | }
|
---|
3761 |
|
---|
3762 | private static Complex[] invertAndSquare(Complex[] ww){
|
---|
3763 | Complex[] weight = Conv.copy(ww);
|
---|
3764 | if(Stat.weightingOptionS){
|
---|
3765 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3766 | am = am.pow(2);
|
---|
3767 | am = am.invert();
|
---|
3768 | weight = am.array_as_Complex();
|
---|
3769 | }
|
---|
3770 | return weight;
|
---|
3771 | }
|
---|
3772 |
|
---|
3773 | private static BigDecimal[] invertAndSquare(BigDecimal[] ww){
|
---|
3774 | BigDecimal[] weight = Conv.copy(ww);
|
---|
3775 | if(Stat.weightingOptionS){
|
---|
3776 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3777 | am = am.pow(2);
|
---|
3778 | am = am.invert();
|
---|
3779 | weight = am.array_as_BigDecimal();
|
---|
3780 | }
|
---|
3781 | return weight;
|
---|
3782 | }
|
---|
3783 |
|
---|
3784 | private static BigDecimal[] invertAndSquare(BigInteger[] ww){
|
---|
3785 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3786 | BigDecimal[] weight = am.array_as_BigDecimal();
|
---|
3787 | if(Stat.weightingOptionS){
|
---|
3788 | am = am.pow(2);
|
---|
3789 | am = am.invert();
|
---|
3790 | weight = am.array_as_BigDecimal();
|
---|
3791 | }
|
---|
3792 | return weight;
|
---|
3793 | }
|
---|
3794 |
|
---|
3795 |
|
---|
3796 |
|
---|
3797 | // DENOMINATOR CHOICE (STATIC)
|
---|
3798 | // Set standard deviation, variance and covariance denominators to n
|
---|
3799 | public static void setStaticDenominatorToN(){
|
---|
3800 | Stat.nFactorOptionS = true;
|
---|
3801 | }
|
---|
3802 |
|
---|
3803 | // Set standard deviation, variance and covariance denominators to n
|
---|
3804 | public static void setStaticDenominatorToNminusOne(){
|
---|
3805 | Stat.nFactorOptionS = false;
|
---|
3806 | }
|
---|
3807 |
|
---|
3808 |
|
---|
3809 | // EFFECTIVE SAMPLE NUMBER
|
---|
3810 | // Repalce number of data points to the effective sample number in weighted calculations
|
---|
3811 | public static void useStaticEffectiveN(){
|
---|
3812 | Stat.nEffOptionS = true;
|
---|
3813 | }
|
---|
3814 |
|
---|
3815 | // Repalce the effective sample number in weighted calculations by the number of data points
|
---|
3816 | public static void useStaticTrueN(){
|
---|
3817 | Stat.nEffOptionS = false;
|
---|
3818 | }
|
---|
3819 |
|
---|
3820 | // Calculation of the effective sample number (double)
|
---|
3821 | public static double effectiveSampleNumber(double[] ww){
|
---|
3822 | double[] weight = Conv.copy(ww);
|
---|
3823 | if(Stat.weightingOptionS){
|
---|
3824 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3825 | am = am.pow(2);
|
---|
3826 | am = am.invert();
|
---|
3827 | weight = am.array();
|
---|
3828 | }
|
---|
3829 | int n = weight.length;
|
---|
3830 |
|
---|
3831 | double nEff = n;
|
---|
3832 | if(Stat.nEffOptionS){
|
---|
3833 | double sum2w = 0.0D;
|
---|
3834 | double sumw2 = 0.0D;
|
---|
3835 | for(int i=0; i<n; i++){
|
---|
3836 | sum2w += weight[i];
|
---|
3837 | sumw2 += weight[i]*weight[i];
|
---|
3838 | }
|
---|
3839 | sum2w *= sum2w;
|
---|
3840 | nEff = sum2w/sumw2;
|
---|
3841 | }
|
---|
3842 | return nEff;
|
---|
3843 | }
|
---|
3844 |
|
---|
3845 | // Calculation of the sample number (float)
|
---|
3846 | public static float effectiveSampleNumber(float[] ww){
|
---|
3847 | float[] weight = Conv.copy(ww);
|
---|
3848 | if(Stat.weightingOptionS){
|
---|
3849 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3850 | am = am.pow(2);
|
---|
3851 | am = am.invert();
|
---|
3852 | weight = am.array_as_float();
|
---|
3853 | }
|
---|
3854 | int n = weight.length;
|
---|
3855 |
|
---|
3856 | float nEff = n;
|
---|
3857 | if(Stat.nEffOptionS){
|
---|
3858 | float sum2w = 0.0F;
|
---|
3859 | float sumw2 = 0.0F;
|
---|
3860 | for(int i=0; i<n; i++){
|
---|
3861 | sum2w += weight[i];
|
---|
3862 | sumw2 += weight[i]*weight[i];
|
---|
3863 | }
|
---|
3864 | sum2w *= sum2w;
|
---|
3865 | nEff = sum2w/sumw2;
|
---|
3866 | }
|
---|
3867 | return nEff;
|
---|
3868 | }
|
---|
3869 |
|
---|
3870 | // Calculation of the sample number (Complex)
|
---|
3871 | public static Complex effectiveSampleNumber(Complex[] ww){
|
---|
3872 | Complex[] weight = Conv.copy(ww);
|
---|
3873 | if(Stat.weightingOptionS){
|
---|
3874 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3875 | am = am.pow(2);
|
---|
3876 | am = am.invert();
|
---|
3877 | weight = am.array_as_Complex();
|
---|
3878 | }
|
---|
3879 | int n = weight.length;
|
---|
3880 |
|
---|
3881 | Complex nEff = new Complex(n, 0.0);
|
---|
3882 | if(Stat.nEffOptionS){
|
---|
3883 | Complex sumw2 = Complex.zero();
|
---|
3884 | Complex sum2w = Complex.zero();
|
---|
3885 | for(int i=0; i<n; i++){
|
---|
3886 | sum2w = sum2w.plus(weight[i]);
|
---|
3887 | sumw2 = sumw2.plus(weight[i].times(weight[i]));
|
---|
3888 | }
|
---|
3889 | sum2w = sum2w.times(sum2w);
|
---|
3890 | nEff = sum2w.over(sumw2);
|
---|
3891 | }
|
---|
3892 | return nEff;
|
---|
3893 | }
|
---|
3894 |
|
---|
3895 | // Calculation of the sample number (Complex - Conjugate formula)
|
---|
3896 | public static double effectiveSampleNumberConjugateCalcn(Complex[] ww){
|
---|
3897 | Complex[] weight = Conv.copy(ww);
|
---|
3898 | if(Stat.weightingOptionS){
|
---|
3899 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3900 | am = am.pow(2);
|
---|
3901 | am = am.invert();
|
---|
3902 | weight = am.array_as_Complex();
|
---|
3903 | }
|
---|
3904 | int n = weight.length;
|
---|
3905 |
|
---|
3906 | double nEff = Double.NaN;
|
---|
3907 | if(Stat.nEffOptionS){
|
---|
3908 | Complex sumw2 = Complex.zero();
|
---|
3909 | Complex sum2w = Complex.zero();
|
---|
3910 | for(int i=0; i<n; i++){
|
---|
3911 | sum2w = sum2w.plus(weight[i]);
|
---|
3912 | sumw2 = sumw2.plus(weight[i].times(weight[i].conjugate()));
|
---|
3913 | }
|
---|
3914 | sum2w = sum2w.times(sum2w.conjugate());
|
---|
3915 | nEff = sum2w.getReal()/sumw2.getReal();
|
---|
3916 | }
|
---|
3917 | return nEff;
|
---|
3918 | }
|
---|
3919 |
|
---|
3920 | // Calculation of the sample number (BigDecimal)
|
---|
3921 | public static BigDecimal effectiveSampleNumber(BigDecimal[] ww){
|
---|
3922 | BigDecimal[] weight = Conv.copy(ww);
|
---|
3923 | if(Stat.weightingOptionS){
|
---|
3924 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3925 | am = am.pow(2);
|
---|
3926 | am = am.invert();
|
---|
3927 | weight = am.array_as_BigDecimal();
|
---|
3928 | }
|
---|
3929 | int n = weight.length;
|
---|
3930 |
|
---|
3931 | BigDecimal nEff = new BigDecimal(new Integer(n).toString());
|
---|
3932 | if(Stat.nEffOptionS){
|
---|
3933 | BigDecimal sumw2 = BigDecimal.ZERO;
|
---|
3934 | BigDecimal sum2w = BigDecimal.ZERO;
|
---|
3935 | for(int i=0; i<n; i++){
|
---|
3936 | sum2w = sum2w.add(weight[i]);
|
---|
3937 | sumw2 = sumw2.add(weight[i].multiply(weight[i]));
|
---|
3938 | }
|
---|
3939 | sum2w = sum2w.multiply(sum2w);
|
---|
3940 | nEff = sum2w.divide(sumw2, BigDecimal.ROUND_HALF_UP);
|
---|
3941 | sumw2 = null;
|
---|
3942 | sum2w = null;
|
---|
3943 | weight = null;
|
---|
3944 | }
|
---|
3945 | return nEff;
|
---|
3946 | }
|
---|
3947 |
|
---|
3948 | public static BigDecimal effectiveSampleNumber(BigInteger[] ww){
|
---|
3949 | ArrayMaths am = new ArrayMaths(ww);
|
---|
3950 | BigDecimal[] www = am.array_as_BigDecimal();
|
---|
3951 | return Stat.effectiveSampleNumber(www);
|
---|
3952 | }
|
---|
3953 |
|
---|
3954 |
|
---|
3955 | // ARITMETIC MEANS (STATIC)
|
---|
3956 |
|
---|
3957 | // Arithmetic mean of a 1D array of doubles, aa
|
---|
3958 | public static double mean(double[] aa){
|
---|
3959 | int n = aa.length;
|
---|
3960 | double sum=0.0D;
|
---|
3961 | for(int i=0; i<n; i++){
|
---|
3962 | sum+=aa[i];
|
---|
3963 | }
|
---|
3964 | return sum/((double)n);
|
---|
3965 | }
|
---|
3966 |
|
---|
3967 | // Arithmetic mean of a 1D array of floats, aa
|
---|
3968 | public static float mean(float[] aa){
|
---|
3969 | int n = aa.length;
|
---|
3970 | float sum=0.0F;
|
---|
3971 | for(int i=0; i<n; i++){
|
---|
3972 | sum+=aa[i];
|
---|
3973 | }
|
---|
3974 | return sum/((float)n);
|
---|
3975 | }
|
---|
3976 |
|
---|
3977 | // Arithmetic mean of a 1D array of int, aa
|
---|
3978 | public static double mean(long[] aa){
|
---|
3979 | int n = aa.length;
|
---|
3980 | double sum=0.0D;
|
---|
3981 | for(int i=0; i<n; i++){
|
---|
3982 | sum+=(double)aa[i];
|
---|
3983 | }
|
---|
3984 | return sum/((double)n);
|
---|
3985 | }
|
---|
3986 |
|
---|
3987 | // Arithmetic mean of a 1D array of int, aa
|
---|
3988 | public static double mean(int[] aa){
|
---|
3989 | int n = aa.length;
|
---|
3990 | double sum=0.0D;
|
---|
3991 | for(int i=0; i<n; i++){
|
---|
3992 | sum+=(double)aa[i];
|
---|
3993 | }
|
---|
3994 | return sum/((double)n);
|
---|
3995 | }
|
---|
3996 |
|
---|
3997 | // Arithmetic mean of a 1D array of short, aa
|
---|
3998 | public static double mean(short[] aa){
|
---|
3999 | int n = aa.length;
|
---|
4000 | double sum=0.0D;
|
---|
4001 | for(int i=0; i<n; i++){
|
---|
4002 | sum+=(double)aa[i];
|
---|
4003 | }
|
---|
4004 | return sum/((double)n);
|
---|
4005 | }
|
---|
4006 |
|
---|
4007 | // Arithmetic mean of a 1D array of byte, aa
|
---|
4008 | public static double mean(byte[] aa){
|
---|
4009 | int n = aa.length;
|
---|
4010 | double sum=0.0D;
|
---|
4011 | for(int i=0; i<n; i++){
|
---|
4012 | sum+=(double)aa[i];
|
---|
4013 | }
|
---|
4014 | return sum/((double)n);
|
---|
4015 | }
|
---|
4016 |
|
---|
4017 | // Arithmetic mean of a 1D array of Complex, aa
|
---|
4018 | public static Complex mean(Complex[] aa){
|
---|
4019 | int n = aa.length;
|
---|
4020 | Complex sum = new Complex(0.0D, 0.0D);
|
---|
4021 | for(int i=0; i<n; i++){
|
---|
4022 | sum = sum.plus(aa[i]);
|
---|
4023 | }
|
---|
4024 | return sum.over((double)n);
|
---|
4025 | }
|
---|
4026 |
|
---|
4027 | // Arithmetic mean of a 1D array of BigDecimal, aa
|
---|
4028 | public static BigDecimal mean(BigDecimal[] aa){
|
---|
4029 | int n = aa.length;
|
---|
4030 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4031 | for(int i=0; i<n; i++){
|
---|
4032 | sum = sum.add(aa[i]);
|
---|
4033 | }
|
---|
4034 | return sum.divide(new BigDecimal((double)n), BigDecimal.ROUND_HALF_UP);
|
---|
4035 | }
|
---|
4036 |
|
---|
4037 | // Arithmetic mean of a 1D array of BigInteger, aa
|
---|
4038 | public static BigDecimal mean(BigInteger[] aa){
|
---|
4039 | int n = aa.length;
|
---|
4040 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4041 | BigDecimal bi = BigDecimal.ZERO;
|
---|
4042 | for(int i=0; i<n; i++){
|
---|
4043 | bi = new BigDecimal(aa[i]);
|
---|
4044 | sum = sum.add(bi);
|
---|
4045 | }
|
---|
4046 | bi = null;
|
---|
4047 | return sum.divide(new BigDecimal((double)n), BigDecimal.ROUND_HALF_UP);
|
---|
4048 | }
|
---|
4049 |
|
---|
4050 |
|
---|
4051 |
|
---|
4052 |
|
---|
4053 | // WEIGHTED ARITHMETIC MEANS (STATIC)
|
---|
4054 | // Weighted arithmetic mean of a 1D array of doubles, aa
|
---|
4055 | public static double mean(double[] aa, double[] ww){
|
---|
4056 | int n = aa.length;
|
---|
4057 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4058 | double[] weight = Conv.copy(ww);
|
---|
4059 | if(Stat.weightingOptionS){
|
---|
4060 | ArrayMaths am = new ArrayMaths(ww);
|
---|
4061 | am = am.pow(2);
|
---|
4062 | am = am.invert();
|
---|
4063 | weight = am.array();
|
---|
4064 | }
|
---|
4065 | double sumx=0.0D;
|
---|
4066 | double sumw=0.0D;
|
---|
4067 | for(int i=0; i<n; i++){
|
---|
4068 | sumx+=aa[i]*weight[i];
|
---|
4069 | sumw+=weight[i];
|
---|
4070 | }
|
---|
4071 | return sumx/sumw;
|
---|
4072 | }
|
---|
4073 |
|
---|
4074 | // Weighted arithmetic mean of a 1D array of floats, aa
|
---|
4075 | public static float mean(float[] aa, float[] ww){
|
---|
4076 | int n = aa.length;
|
---|
4077 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4078 | float[] weight = Conv.copy(ww);
|
---|
4079 | if(Stat.weightingOptionS){
|
---|
4080 | ArrayMaths am = new ArrayMaths(ww);
|
---|
4081 | am = am.pow(2);
|
---|
4082 | am = am.invert();
|
---|
4083 | weight = am.array_as_float();
|
---|
4084 | }
|
---|
4085 |
|
---|
4086 | float sumx=0.0F;
|
---|
4087 | float sumw=0.0F;
|
---|
4088 | for(int i=0; i<n; i++){
|
---|
4089 | sumx+=aa[i]*weight[i];
|
---|
4090 | sumw+=weight[i];
|
---|
4091 | }
|
---|
4092 | return sumx/sumw;
|
---|
4093 | }
|
---|
4094 |
|
---|
4095 | // Weighted arithmetic mean of a 1D array of Complex, aa
|
---|
4096 | public static Complex mean(Complex[] aa, Complex[] ww){
|
---|
4097 | int n = aa.length;
|
---|
4098 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4099 | Complex[] weight = Conv.copy(ww);
|
---|
4100 | if(Stat.weightingOptionS){
|
---|
4101 | ArrayMaths am = new ArrayMaths(ww);
|
---|
4102 | am = am.pow(2);
|
---|
4103 | am = am.invert();
|
---|
4104 | weight = am.array_as_Complex();
|
---|
4105 | }
|
---|
4106 | Complex sumx=Complex.zero();
|
---|
4107 | Complex sumw=Complex.zero();
|
---|
4108 | for(int i=0; i<n; i++){
|
---|
4109 | sumx = sumx.plus(aa[i].times(weight[i]));
|
---|
4110 | sumw = sumw.plus(weight[i]);
|
---|
4111 | }
|
---|
4112 | return sumx.over(sumw);
|
---|
4113 | }
|
---|
4114 |
|
---|
4115 | // Weighted arithmetic mean of a 1D array of BigDecimal, aa
|
---|
4116 | public static BigDecimal mean(BigDecimal[] aa, BigDecimal[] ww){
|
---|
4117 | int n = aa.length;
|
---|
4118 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4119 | BigDecimal[] weight = Conv.copy(ww);
|
---|
4120 | if(Stat.weightingOptionS){
|
---|
4121 | ArrayMaths am = new ArrayMaths(ww);
|
---|
4122 | am = am.pow(2);
|
---|
4123 | am = am.invert();
|
---|
4124 | weight = am.array_as_BigDecimal();
|
---|
4125 | }
|
---|
4126 |
|
---|
4127 | BigDecimal sumx =BigDecimal.ZERO;
|
---|
4128 | BigDecimal sumw =BigDecimal.ZERO;
|
---|
4129 | for(int i=0; i<n; i++){
|
---|
4130 | sumx = sumx.add(aa[i].multiply(weight[i]));
|
---|
4131 | sumw = sumw.add(weight[i]);
|
---|
4132 | }
|
---|
4133 | sumx = sumx.divide(sumw, BigDecimal.ROUND_HALF_UP);
|
---|
4134 | sumw = null;
|
---|
4135 | weight = null;
|
---|
4136 | return sumx;
|
---|
4137 | }
|
---|
4138 |
|
---|
4139 | // Weighted arithmetic mean of a 1D array of BigInteger, aa
|
---|
4140 | public static BigDecimal mean(BigInteger[] aa, BigInteger[] ww){
|
---|
4141 | ArrayMaths amaa = new ArrayMaths(aa);
|
---|
4142 | ArrayMaths amww = new ArrayMaths(ww);
|
---|
4143 |
|
---|
4144 | return mean(amaa.array_as_BigDecimal(), amww.array_as_BigDecimal());
|
---|
4145 | }
|
---|
4146 |
|
---|
4147 | // SUBTRACT THE MEAN (STATIC)
|
---|
4148 | // Subtract arithmetic mean of an array from data array elements
|
---|
4149 | public static double[] subtractMean(double[] array){
|
---|
4150 | int n = array.length;
|
---|
4151 | double mean = Stat.mean(array);
|
---|
4152 | double[] arrayMinusMean = new double[n];
|
---|
4153 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i] - mean;
|
---|
4154 |
|
---|
4155 | return arrayMinusMean;
|
---|
4156 | }
|
---|
4157 |
|
---|
4158 | // Subtract arithmetic mean of an array from data array elements
|
---|
4159 | public static float[] subtractMean(float[] array){
|
---|
4160 | int n = array.length;
|
---|
4161 | float mean = Stat.mean(array);
|
---|
4162 | float[] arrayMinusMean = new float[n];
|
---|
4163 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i] - mean;
|
---|
4164 |
|
---|
4165 | return arrayMinusMean;
|
---|
4166 | }
|
---|
4167 |
|
---|
4168 |
|
---|
4169 | // Subtract arithmetic mean of an array from data array elements
|
---|
4170 | public static BigDecimal[] subtractMean(BigDecimal[] array){
|
---|
4171 | int n = array.length;
|
---|
4172 | BigDecimal mean = Stat.mean(array);
|
---|
4173 | BigDecimal[] arrayMinusMean = new BigDecimal[n];
|
---|
4174 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i].subtract(mean);
|
---|
4175 | mean = null;
|
---|
4176 | return arrayMinusMean;
|
---|
4177 | }
|
---|
4178 |
|
---|
4179 | // Subtract arithmetic mean of an array from data array elements
|
---|
4180 | public static BigDecimal[] subtractMean(BigInteger[] array){
|
---|
4181 | int n = array.length;
|
---|
4182 | BigDecimal mean = Stat.mean(array);
|
---|
4183 | BigDecimal[] arrayMinusMean = new BigDecimal[n];
|
---|
4184 | for(int i=0; i<n; i++)arrayMinusMean[i] = (new BigDecimal(array[i])).subtract(mean);
|
---|
4185 | mean = null;
|
---|
4186 | return arrayMinusMean;
|
---|
4187 | }
|
---|
4188 |
|
---|
4189 | // Subtract arithmetic mean of an array from data array elements
|
---|
4190 | public static Complex[] subtractMean(Complex[] array){
|
---|
4191 | int n = array.length;
|
---|
4192 | Complex mean = Stat.mean(array);
|
---|
4193 | Complex[] arrayMinusMean = new Complex[n];
|
---|
4194 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i].minus(mean);
|
---|
4195 |
|
---|
4196 | return arrayMinusMean;
|
---|
4197 | }
|
---|
4198 |
|
---|
4199 | // Subtract weighted arirhmetic mean of an array from data array elements
|
---|
4200 | public static double[] subtractMean(double[] array, double[] weights){
|
---|
4201 | int n = array.length;
|
---|
4202 | double mean = Stat.mean(array, weights);
|
---|
4203 | double[] arrayMinusMean = new double[n];
|
---|
4204 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i] - mean;
|
---|
4205 |
|
---|
4206 | return arrayMinusMean;
|
---|
4207 | }
|
---|
4208 |
|
---|
4209 | // Subtract weighted arirhmetic mean of an array from data array elements
|
---|
4210 | public static float[] subtractMean(float[] array, float[] weights){
|
---|
4211 | int n = array.length;
|
---|
4212 | float mean = Stat.mean(array, weights);
|
---|
4213 | float[] arrayMinusMean = new float[n];
|
---|
4214 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i] - mean;
|
---|
4215 |
|
---|
4216 | return arrayMinusMean;
|
---|
4217 | }
|
---|
4218 |
|
---|
4219 |
|
---|
4220 | // Subtract weighted arirhmetic mean of an array from data array elements
|
---|
4221 | public static BigDecimal[] subtractMean(BigDecimal[] array, BigDecimal[] weights){
|
---|
4222 | int n = array.length;
|
---|
4223 | BigDecimal mean = Stat.mean(array, weights);
|
---|
4224 | BigDecimal[] arrayMinusMean = new BigDecimal[n];
|
---|
4225 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i].subtract(mean);
|
---|
4226 | mean = null;
|
---|
4227 | return arrayMinusMean;
|
---|
4228 | }
|
---|
4229 |
|
---|
4230 | // Subtract weighted arirhmetic mean of an array from data array elements
|
---|
4231 | public static BigDecimal[] subtractMean(BigInteger[] array, BigInteger[] weights){
|
---|
4232 | int n = array.length;
|
---|
4233 | BigDecimal mean = Stat.mean(array, weights);
|
---|
4234 | BigDecimal[] arrayMinusMean = new BigDecimal[n];
|
---|
4235 | for(int i=0; i<n; i++)arrayMinusMean[i] = (new BigDecimal(array[i])).subtract(mean);
|
---|
4236 | mean = null;
|
---|
4237 | return arrayMinusMean;
|
---|
4238 | }
|
---|
4239 |
|
---|
4240 | // Subtract weighted arirhmetic mean of an array from data array elements
|
---|
4241 | public static Complex[] subtractMean(Complex[] array, Complex[] weights){
|
---|
4242 | int n = array.length;
|
---|
4243 | Complex mean = Stat.mean(array, weights);
|
---|
4244 | Complex[] arrayMinusMean = new Complex[n];
|
---|
4245 | for(int i=0; i<n; i++)arrayMinusMean[i] = array[i].minus(mean);
|
---|
4246 |
|
---|
4247 | return arrayMinusMean;
|
---|
4248 | }
|
---|
4249 |
|
---|
4250 | // GEOMETRIC MEANS (STATIC)
|
---|
4251 |
|
---|
4252 | // Geometric mean of a 1D array of BigDecimal, aa
|
---|
4253 | public static double geometricMean(BigDecimal[] aa){
|
---|
4254 | int n = aa.length;
|
---|
4255 | double sum = 0.0D;
|
---|
4256 | for(int i=0; i<n; i++)sum += Math.log(aa[i].doubleValue());
|
---|
4257 | return Math.exp(sum/(double)n);
|
---|
4258 | }
|
---|
4259 |
|
---|
4260 | // Geometric mean of a 1D array of BigInteger, aa
|
---|
4261 | public static double geometricMean(BigInteger[] aa){
|
---|
4262 | int n = aa.length;
|
---|
4263 | double sum = 0.0D;
|
---|
4264 | for(int i=0; i<n; i++)sum += Math.log(aa[i].doubleValue());
|
---|
4265 | return Math.exp(sum/(double)n);
|
---|
4266 | }
|
---|
4267 |
|
---|
4268 | // Geometric mean of a 1D array of Complex, aa
|
---|
4269 | public static Complex geometricMean(Complex[] aa){
|
---|
4270 | int n = aa.length;
|
---|
4271 | Complex sum = Complex.zero();
|
---|
4272 | for(int i=0; i<n; i++)sum = sum.plus(Complex.log(aa[i]));
|
---|
4273 | return Complex.exp(sum.over((double)n));
|
---|
4274 | }
|
---|
4275 |
|
---|
4276 | // Geometric mean of a 1D array of doubles, aa
|
---|
4277 | public static double geometricMean(double[] aa){
|
---|
4278 | int n = aa.length;
|
---|
4279 | double sum=0.0D;
|
---|
4280 | for(int i=0; i<n; i++)sum += Math.log(aa[i]);
|
---|
4281 | return Math.exp(sum/(double)n);
|
---|
4282 | }
|
---|
4283 |
|
---|
4284 | // Geometric mean of a 1D array of floats, aa
|
---|
4285 | public static float geometricMean(float[] aa){
|
---|
4286 | int n = aa.length;
|
---|
4287 | float sum=0.0F;
|
---|
4288 | for(int i=0; i<n; i++)sum += (float)Math.log(aa[i]);
|
---|
4289 | return (float)Math.exp(sum/(float)n);
|
---|
4290 | }
|
---|
4291 |
|
---|
4292 | // Weighted geometric mean of a 1D array of Complexs, aa
|
---|
4293 | public static Complex geometricMean(Complex[] aa, Complex[] ww){
|
---|
4294 | int n = aa.length;
|
---|
4295 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4296 | Complex sumW = Complex.zero();
|
---|
4297 | Complex[] weight = Stat.invertAndSquare(ww);
|
---|
4298 | for(int i=0; i<n; i++){
|
---|
4299 | sumW = sumW.plus(weight[i]);
|
---|
4300 | }
|
---|
4301 | Complex sum = Complex.zero();
|
---|
4302 | for(int i=0; i<n; i++){
|
---|
4303 | sum = sum.plus(Complex.log(aa[i]).times(weight[i]));
|
---|
4304 | }
|
---|
4305 | return Complex.exp(sum.over(sumW));
|
---|
4306 | }
|
---|
4307 |
|
---|
4308 | // Weighted geometric mean of a 1D array of BigDecimal, aa
|
---|
4309 | public static double geometricMean(BigDecimal[] aa, BigDecimal[] ww){
|
---|
4310 | int n = aa.length;
|
---|
4311 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4312 | ArrayMaths weighting = new ArrayMaths(Stat.invertAndSquare(ww));
|
---|
4313 | double[] weight = weighting.array();
|
---|
4314 |
|
---|
4315 | double sumW = 0.0D;
|
---|
4316 | for(int i=0; i<n; i++){
|
---|
4317 | sumW += weight[i];
|
---|
4318 | }
|
---|
4319 | double sum=0.0D;
|
---|
4320 | for(int i=0; i<n; i++){
|
---|
4321 | sum += Math.log(aa[i].doubleValue())*weight[i];
|
---|
4322 | }
|
---|
4323 | return Math.exp(sum/sumW);
|
---|
4324 | }
|
---|
4325 |
|
---|
4326 | // Weighted geometric mean of a 1D array of BigDecimal, aa
|
---|
4327 | public static double geometricMean(BigInteger[] aa, BigInteger[] ww){
|
---|
4328 | ArrayMaths amaa = new ArrayMaths(aa);
|
---|
4329 | ArrayMaths amww = new ArrayMaths(ww);
|
---|
4330 | return geometricMean(amaa.array_as_BigDecimal(), amww.array_as_BigDecimal());
|
---|
4331 | }
|
---|
4332 |
|
---|
4333 | // Weighted geometric mean of a 1D array of double, aa
|
---|
4334 | public static double geometricMean(double[] aa, double[] ww){
|
---|
4335 | int n = aa.length;
|
---|
4336 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4337 | double sumW = 0.0D;
|
---|
4338 | double[] weight = Stat.invertAndSquare(ww);
|
---|
4339 | for(int i=0; i<n; i++){
|
---|
4340 | sumW += weight[i];
|
---|
4341 | }
|
---|
4342 | double sum=0.0D;
|
---|
4343 | for(int i=0; i<n; i++){
|
---|
4344 | sum += Math.log(aa[i])*weight[i];
|
---|
4345 | }
|
---|
4346 | return Math.exp(sum/sumW);
|
---|
4347 | }
|
---|
4348 |
|
---|
4349 | // Weighted geometric mean of a 1D array of floats, aa
|
---|
4350 | public static float geometricMean(float[] aa, float[] ww){
|
---|
4351 | int n = aa.length;
|
---|
4352 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4353 | float sumW = 0.0F;
|
---|
4354 | float[] weight = Stat.invertAndSquare(ww);
|
---|
4355 | for(int i=0; i<n; i++){
|
---|
4356 | sumW += weight[i];
|
---|
4357 | }
|
---|
4358 | float sum=0.0F;
|
---|
4359 | for(int i=0; i<n; i++){
|
---|
4360 | sum += (float)Math.log(aa[i])*weight[i];
|
---|
4361 | }
|
---|
4362 | return (float)Math.exp(sum/sumW);
|
---|
4363 | }
|
---|
4364 |
|
---|
4365 | // HARMONIC MEANS (STATIC)
|
---|
4366 |
|
---|
4367 | // Harmonic mean of a 1D array of BigDecimal, aa
|
---|
4368 | public static BigDecimal harmonicMean(BigDecimal[] aa){
|
---|
4369 | int n = aa.length;
|
---|
4370 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4371 | for(int i=0; i<n; i++)sum = sum.add(BigDecimal.ONE.divide(aa[i], BigDecimal.ROUND_HALF_UP));
|
---|
4372 | sum = (new BigDecimal((double)n)).divide(sum, BigDecimal.ROUND_HALF_UP);
|
---|
4373 | return sum;
|
---|
4374 | }
|
---|
4375 |
|
---|
4376 | // Harmonic mean of a 1D array of BigInteger, aa
|
---|
4377 | public static BigDecimal harmonicMean(BigInteger[] aa){
|
---|
4378 | int n = aa.length;
|
---|
4379 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4380 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
4381 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4382 | for(int i=0; i<n; i++)sum = sum.add(BigDecimal.ONE.divide(bd[i], BigDecimal.ROUND_HALF_UP));
|
---|
4383 | sum = (new BigDecimal((double)n)).divide(sum, BigDecimal.ROUND_HALF_UP);
|
---|
4384 | bd = null;
|
---|
4385 | return sum;
|
---|
4386 | }
|
---|
4387 |
|
---|
4388 | // Harmonic mean of a 1D array of Complex, aa
|
---|
4389 | public static Complex harmonicMean(Complex[] aa){
|
---|
4390 | int n = aa.length;
|
---|
4391 | Complex sum = Complex.zero();
|
---|
4392 | for(int i=0; i<n; i++)sum = sum.plus(Complex.plusOne().over(aa[i]));
|
---|
4393 | sum = (new Complex((double)n)).over(sum);
|
---|
4394 | return sum;
|
---|
4395 | }
|
---|
4396 |
|
---|
4397 | // Harmonic mean of a 1D array of doubles, aa
|
---|
4398 | public static double harmonicMean(double[] aa){
|
---|
4399 | int n = aa.length;
|
---|
4400 | double sum = 0.0D;
|
---|
4401 | for(int i=0; i<n; i++)sum += 1.0D/aa[i];
|
---|
4402 | return (double)n/sum;
|
---|
4403 | }
|
---|
4404 |
|
---|
4405 | // Harmonic mean of a 1D array of floats, aa
|
---|
4406 | public static float harmonicMean(float[] aa){
|
---|
4407 | int n = aa.length;
|
---|
4408 | float sum = 0.0F;
|
---|
4409 | for(int i=0; i<n; i++)sum += 1.0F/aa[i];
|
---|
4410 | return (float)n/sum;
|
---|
4411 | }
|
---|
4412 |
|
---|
4413 | // Weighted harmonic mean of a 1D array of BigDecimal, aa
|
---|
4414 | public static BigDecimal harmonicMean(BigDecimal[] aa, BigDecimal[] ww){
|
---|
4415 | int n = aa.length;
|
---|
4416 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4417 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4418 | BigDecimal sumW = BigDecimal.ZERO;
|
---|
4419 | BigDecimal[] weight = Stat.invertAndSquare(ww);
|
---|
4420 | for(int i=0; i<n; i++){
|
---|
4421 | sumW = sumW.add(weight[i]);
|
---|
4422 | }
|
---|
4423 | for(int i=0; i<n; i++)sum = sum.add(weight[i].divide(aa[i], BigDecimal.ROUND_HALF_UP));
|
---|
4424 | sum = sumW.divide(sum, BigDecimal.ROUND_HALF_UP);
|
---|
4425 | sumW = null;
|
---|
4426 | weight = null;
|
---|
4427 | return sum;
|
---|
4428 | }
|
---|
4429 |
|
---|
4430 | // Weighted harmonic mean of a 1D array of BigInteger, aa
|
---|
4431 | public static BigDecimal harmonicMean(BigInteger[] aa, BigInteger[] ww){
|
---|
4432 | int n = aa.length;
|
---|
4433 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4434 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4435 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
4436 | return harmonicMean(am.getArray_as_BigDecimal(), wm.getArray_as_BigDecimal());
|
---|
4437 | }
|
---|
4438 |
|
---|
4439 | // Weighted harmonic mean of a 1D array of Complex, aa
|
---|
4440 | public static Complex harmonicMean(Complex[] aa, Complex[] ww){
|
---|
4441 | int n = aa.length;
|
---|
4442 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4443 | Complex sum = Complex.zero();
|
---|
4444 | Complex sumW = Complex.zero();
|
---|
4445 | Complex[] weight = Stat.invertAndSquare(ww);
|
---|
4446 | for(int i=0; i<n; i++){
|
---|
4447 | sumW = sumW.plus(weight[i]);
|
---|
4448 | }
|
---|
4449 | for(int i=0; i<n; i++)sum = sum.plus(weight[i].over(aa[i]));
|
---|
4450 | return sumW.over(sum);
|
---|
4451 | }
|
---|
4452 |
|
---|
4453 | // Weighted harmonic mean of a 1D array of doubles, aa
|
---|
4454 | public static double harmonicMean(double[] aa, double[] ww){
|
---|
4455 | int n = aa.length;
|
---|
4456 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4457 | double sum = 0.0D;
|
---|
4458 | double sumW = 0.0D;
|
---|
4459 | double[] weight = Stat.invertAndSquare(ww);
|
---|
4460 | for(int i=0; i<n; i++){
|
---|
4461 | sumW += weight[i];
|
---|
4462 | }
|
---|
4463 | for(int i=0; i<n; i++)sum += weight[i]/aa[i];
|
---|
4464 | return sumW/sum;
|
---|
4465 | }
|
---|
4466 |
|
---|
4467 | // Weighted harmonic mean of a 1D array of floats, aa
|
---|
4468 | public static float harmonicMean(float[] aa, float[] ww){
|
---|
4469 | int n = aa.length;
|
---|
4470 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4471 | float sum = 0.0F;
|
---|
4472 | float sumW = 0.0F;
|
---|
4473 | float[] weight = Stat.invertAndSquare(ww);
|
---|
4474 | for(int i=0; i<n; i++){
|
---|
4475 | sumW += weight[i];
|
---|
4476 | }
|
---|
4477 | for(int i=0; i<n; i++)sum += weight[i]/aa[i];
|
---|
4478 | return sumW/sum;
|
---|
4479 | }
|
---|
4480 |
|
---|
4481 | // GENERALIZED MEANS [POWER MEANS] (STATIC METHODS)
|
---|
4482 |
|
---|
4483 | // generalized mean of a 1D array of Complex, aa
|
---|
4484 | public static Complex generalizedMean(Complex[] aa, double m){
|
---|
4485 | int n = aa.length;
|
---|
4486 | Complex sum = Complex.zero();
|
---|
4487 | if(m==0.0D){
|
---|
4488 | for(int i=0; i<n; i++){
|
---|
4489 | sum = sum.plus(Complex.log(aa[i]));
|
---|
4490 | }
|
---|
4491 | return Complex.exp(sum);
|
---|
4492 | }
|
---|
4493 | else{
|
---|
4494 | for(int i=0; i<n; i++){
|
---|
4495 | sum = sum.plus(Complex.pow(aa[i],m));
|
---|
4496 | }
|
---|
4497 | return Complex.pow(sum.over((double)n), 1.0D/m);
|
---|
4498 | }
|
---|
4499 | }
|
---|
4500 |
|
---|
4501 | // generalized mean of a 1D array of Complex, aa
|
---|
4502 | public static Complex generalizedMean(Complex[] aa, Complex m){
|
---|
4503 | int n = aa.length;
|
---|
4504 | Complex sum = Complex.zero();
|
---|
4505 | if(m.equals(Complex.zero())){
|
---|
4506 | for(int i=0; i<n; i++){
|
---|
4507 | sum = sum.plus(Complex.log(aa[i]));
|
---|
4508 | }
|
---|
4509 | return Complex.exp(sum);
|
---|
4510 | }
|
---|
4511 | else{
|
---|
4512 | for(int i=0; i<n; i++){
|
---|
4513 | sum = sum.plus(Complex.pow(aa[i],m));
|
---|
4514 | }
|
---|
4515 | return Complex.pow(sum.over((double)n), Complex.plusOne().over(m));
|
---|
4516 | }
|
---|
4517 | }
|
---|
4518 |
|
---|
4519 | // generalized mean of a 1D array of BigDecimal, aa
|
---|
4520 | public static double generalizedMean(BigDecimal[] aa, double m){
|
---|
4521 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4522 | double[] dd = am.getArray_as_double();
|
---|
4523 | return generalizedMean(dd, m);
|
---|
4524 | }
|
---|
4525 |
|
---|
4526 | // generalized mean of a 1D array of BigDecimal, aa
|
---|
4527 | public static double generalizedMean(BigDecimal[] aa, BigDecimal m){
|
---|
4528 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4529 | double[] dd = am.getArray_as_double();
|
---|
4530 | return generalizedMean(dd, m.doubleValue());
|
---|
4531 | }
|
---|
4532 |
|
---|
4533 | // generalized mean of a 1D array of BigInteger, aa
|
---|
4534 | public static double generalizedMean(BigInteger[] aa, double m){
|
---|
4535 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4536 | double[] dd = am.getArray_as_double();
|
---|
4537 | return generalizedMean(dd, m);
|
---|
4538 | }
|
---|
4539 |
|
---|
4540 | // generalized mean of a 1D array of BigInteger, aa
|
---|
4541 | public static double generalizedMean(BigInteger[] aa, BigInteger m){
|
---|
4542 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4543 | double[] dd = am.getArray_as_double();
|
---|
4544 | return generalizedMean(dd, m.doubleValue());
|
---|
4545 | }
|
---|
4546 |
|
---|
4547 | // generalized mean of a 1D array of doubles, aa
|
---|
4548 | public static double generalizedMean(double[] aa, double m){
|
---|
4549 | int n = aa.length;
|
---|
4550 | double sum=0.0D;
|
---|
4551 | if(m==0){
|
---|
4552 | for(int i=0; i<n; i++){
|
---|
4553 | sum += Math.log(aa[i]);
|
---|
4554 | }
|
---|
4555 | return Math.exp(sum);
|
---|
4556 | }
|
---|
4557 | else{
|
---|
4558 | for(int i=0; i<n; i++){
|
---|
4559 | sum += Math.pow(aa[i],m);
|
---|
4560 | }
|
---|
4561 | return Math.pow(sum/((double)n), 1.0D/m);
|
---|
4562 | }
|
---|
4563 | }
|
---|
4564 |
|
---|
4565 | // generalized mean of a 1D array of floats, aa
|
---|
4566 | public static float generalizedMean(float[] aa, float m){
|
---|
4567 | int n = aa.length;
|
---|
4568 | float sum=0.0F;
|
---|
4569 | if(m==0){
|
---|
4570 | for(int i=0; i<n; i++){
|
---|
4571 | sum += (float)Math.log(aa[i]);
|
---|
4572 | }
|
---|
4573 | return (float)Math.exp(sum);
|
---|
4574 | }
|
---|
4575 | else{
|
---|
4576 | for(int i=0; i<n; i++){
|
---|
4577 | sum += Math.pow(aa[i],m);
|
---|
4578 | }
|
---|
4579 | return (float)Math.pow(sum/((float)n), 1.0F/m);
|
---|
4580 | }
|
---|
4581 | }
|
---|
4582 |
|
---|
4583 |
|
---|
4584 | // Generalised mean of a 1D array of Complex, aa
|
---|
4585 | public static Complex generalisedMean(Complex[] aa, double m){
|
---|
4586 | int n = aa.length;
|
---|
4587 | Complex sum = Complex.zero();
|
---|
4588 | if(m==0.0D){
|
---|
4589 | for(int i=0; i<n; i++){
|
---|
4590 | sum = sum.plus(Complex.log(aa[i]));
|
---|
4591 | }
|
---|
4592 | return Complex.exp(sum);
|
---|
4593 | }
|
---|
4594 | else{
|
---|
4595 | for(int i=0; i<n; i++){
|
---|
4596 | sum = sum.plus(Complex.pow(aa[i],m));
|
---|
4597 | }
|
---|
4598 | return Complex.pow(sum.over((double)n), 1.0D/m);
|
---|
4599 | }
|
---|
4600 | }
|
---|
4601 |
|
---|
4602 | // Generalised mean of a 1D array of Complex, aa
|
---|
4603 | public static Complex generalisedMean(Complex[] aa, Complex m){
|
---|
4604 | int n = aa.length;
|
---|
4605 | Complex sum = Complex.zero();
|
---|
4606 | if(m.equals(Complex.zero())){
|
---|
4607 | for(int i=0; i<n; i++){
|
---|
4608 | sum = sum.plus(Complex.log(aa[i]));
|
---|
4609 | }
|
---|
4610 | return Complex.exp(sum);
|
---|
4611 | }
|
---|
4612 | else{
|
---|
4613 | for(int i=0; i<n; i++){
|
---|
4614 | sum = sum.plus(Complex.pow(aa[i],m));
|
---|
4615 | }
|
---|
4616 | return Complex.pow(sum.over((double)n), Complex.plusOne().over(m));
|
---|
4617 | }
|
---|
4618 | }
|
---|
4619 |
|
---|
4620 | // Generalised mean of a 1D array of BigDecimal, aa
|
---|
4621 | public static double generalisedMean(BigDecimal[] aa, double m){
|
---|
4622 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4623 | double[] dd = am.getArray_as_double();
|
---|
4624 | return generalisedMean(dd, m);
|
---|
4625 | }
|
---|
4626 |
|
---|
4627 | // Generalised mean of a 1D array of BigDecimal, aa
|
---|
4628 | public static double generalisedMean(BigDecimal[] aa, BigDecimal m){
|
---|
4629 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4630 | double[] dd = am.getArray_as_double();
|
---|
4631 | return generalisedMean(dd, m.doubleValue());
|
---|
4632 | }
|
---|
4633 |
|
---|
4634 | // Generalised mean of a 1D array of BigInteger, aa
|
---|
4635 | public static double generalisedMean(BigInteger[] aa, double m){
|
---|
4636 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4637 | double[] dd = am.getArray_as_double();
|
---|
4638 | return generalisedMean(dd, m);
|
---|
4639 | }
|
---|
4640 |
|
---|
4641 | // Generalised mean of a 1D array of BigInteger, aa
|
---|
4642 | public static double generalisedMean(BigInteger[] aa, BigInteger m){
|
---|
4643 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4644 | double[] dd = am.getArray_as_double();
|
---|
4645 | return generalisedMean(dd, m.doubleValue());
|
---|
4646 | }
|
---|
4647 |
|
---|
4648 | // Generalised mean of a 1D array of doubles, aa
|
---|
4649 | public static double generalisedMean(double[] aa, double m){
|
---|
4650 | int n = aa.length;
|
---|
4651 | double sum=0.0D;
|
---|
4652 | if(m==0){
|
---|
4653 | for(int i=0; i<n; i++){
|
---|
4654 | sum += Math.log(aa[i]);
|
---|
4655 | }
|
---|
4656 | return Math.exp(sum);
|
---|
4657 | }
|
---|
4658 | else{
|
---|
4659 | for(int i=0; i<n; i++){
|
---|
4660 | sum += Math.pow(aa[i],m);
|
---|
4661 | }
|
---|
4662 | return Math.pow(sum/((double)n), 1.0D/m);
|
---|
4663 | }
|
---|
4664 | }
|
---|
4665 |
|
---|
4666 | // Generalised mean of a 1D array of floats, aa
|
---|
4667 | public static float generalisedMean(float[] aa, float m){
|
---|
4668 | int n = aa.length;
|
---|
4669 | float sum=0.0F;
|
---|
4670 | if(m==0){
|
---|
4671 | for(int i=0; i<n; i++){
|
---|
4672 | sum += (float)Math.log(aa[i]);
|
---|
4673 | }
|
---|
4674 | return (float)Math.exp(sum);
|
---|
4675 | }
|
---|
4676 | else{
|
---|
4677 | for(int i=0; i<n; i++){
|
---|
4678 | sum += Math.pow(aa[i],m);
|
---|
4679 | }
|
---|
4680 | return (float)Math.pow(sum/((float)n), 1.0F/m);
|
---|
4681 | }
|
---|
4682 | }
|
---|
4683 |
|
---|
4684 | // WEIGHTED GENERALIZED MEANS
|
---|
4685 |
|
---|
4686 | // weighted generalized mean of a 1D array of Complex, aa
|
---|
4687 | public static Complex generalisedMean(Complex[] aa, Complex[] ww, double m){
|
---|
4688 | int n = aa.length;
|
---|
4689 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4690 |
|
---|
4691 | Complex sum = Complex.zero();
|
---|
4692 | Complex sumw = Complex.zero();
|
---|
4693 | Complex[] weight = Stat.invertAndSquare(ww);
|
---|
4694 | for(int i=0; i<n; i++){
|
---|
4695 | sumw = sumw.plus(weight[i]);
|
---|
4696 | }
|
---|
4697 |
|
---|
4698 | if(m==0.0D){
|
---|
4699 | for(int i=0; i<n; i++){
|
---|
4700 | sum = sum.plus(Complex.log(weight[i].times(aa[i])).over(sumw));
|
---|
4701 | }
|
---|
4702 | return Complex.exp(sum);
|
---|
4703 | }
|
---|
4704 | else{
|
---|
4705 | for(int i=0; i<n; i++){
|
---|
4706 | sum = sum.plus(weight[i].times(Complex.pow(aa[i],m)));
|
---|
4707 | }
|
---|
4708 | return Complex.pow(sum.over(sumw), 1.0D/m);
|
---|
4709 | }
|
---|
4710 | }
|
---|
4711 |
|
---|
4712 | // weighted generalized mean of a 1D array of Complex, aa
|
---|
4713 | public static Complex generalisedMean(Complex[] aa, Complex[] ww, Complex m){
|
---|
4714 | int n = aa.length;
|
---|
4715 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4716 |
|
---|
4717 | Complex sum = Complex.zero();
|
---|
4718 | Complex sumw = Complex.zero();
|
---|
4719 | Complex[] weight = Stat.invertAndSquare(ww);
|
---|
4720 | for(int i=0; i<n; i++){
|
---|
4721 | sumw = sumw.plus(weight[i]);
|
---|
4722 | }
|
---|
4723 |
|
---|
4724 | if(m.equals(Complex.zero())){
|
---|
4725 | for(int i=0; i<n; i++){
|
---|
4726 | sum = sum.plus(Complex.log(weight[i].times(aa[i])).over(sumw));
|
---|
4727 | }
|
---|
4728 | return Complex.exp(sum);
|
---|
4729 | }
|
---|
4730 | else{
|
---|
4731 | for(int i=0; i<n; i++){
|
---|
4732 | sum = sum.plus(weight[i].times(Complex.pow(aa[i],m)));
|
---|
4733 | }
|
---|
4734 | return Complex.pow(sum.over(sumw), Complex.plusOne().over(m));
|
---|
4735 | }
|
---|
4736 | }
|
---|
4737 |
|
---|
4738 | // weighted generalized mean of a 1D array of BigDecimal, aa
|
---|
4739 | public static double generalisedMean(BigDecimal[] aa, BigDecimal[] ww, double m){
|
---|
4740 | int n = aa.length;
|
---|
4741 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4742 |
|
---|
4743 | ArrayMaths am1 = new ArrayMaths(aa);
|
---|
4744 | double[] dd = am1.getArray_as_double();
|
---|
4745 | ArrayMaths am2 = new ArrayMaths(ww);
|
---|
4746 | double[] wd = am2.getArray_as_double();
|
---|
4747 | return generalisedMean(dd, wd, m);
|
---|
4748 | }
|
---|
4749 |
|
---|
4750 | // weighted generalized mean of a 1D array of BigDecimal, aa
|
---|
4751 | public static double generalisedMean(BigDecimal[] aa, BigDecimal[] ww, BigDecimal m){
|
---|
4752 | int n = aa.length;
|
---|
4753 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4754 |
|
---|
4755 | ArrayMaths am1 = new ArrayMaths(aa);
|
---|
4756 | double[] dd = am1.getArray_as_double();
|
---|
4757 | ArrayMaths am2 = new ArrayMaths(ww);
|
---|
4758 | double[] wd = am2.getArray_as_double();
|
---|
4759 | return generalisedMean(dd, wd, m.doubleValue());
|
---|
4760 | }
|
---|
4761 |
|
---|
4762 | // weighted generalized mean of a 1D array of BigInteger, aa
|
---|
4763 | public static double generalisedMean(BigInteger[] aa, BigInteger[] ww, double m){
|
---|
4764 | int n = aa.length;
|
---|
4765 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4766 |
|
---|
4767 | ArrayMaths am1 = new ArrayMaths(aa);
|
---|
4768 | double[] dd = am1.getArray_as_double();
|
---|
4769 | ArrayMaths am2 = new ArrayMaths(ww);
|
---|
4770 | double[] wd = am2.getArray_as_double();
|
---|
4771 | return generalisedMean(dd, wd, m);
|
---|
4772 | }
|
---|
4773 |
|
---|
4774 | // weighted generalized mean of a 1D array of BigInteger, aa
|
---|
4775 | public static double generalisedMean(BigInteger[] aa, BigInteger[] ww, BigInteger m){
|
---|
4776 | int n = aa.length;
|
---|
4777 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4778 |
|
---|
4779 | ArrayMaths am1 = new ArrayMaths(aa);
|
---|
4780 | double[] dd = am1.getArray_as_double();
|
---|
4781 | ArrayMaths am2 = new ArrayMaths(ww);
|
---|
4782 | double[] wd = am2.getArray_as_double();
|
---|
4783 | return generalisedMean(dd, wd, m.doubleValue());
|
---|
4784 | }
|
---|
4785 |
|
---|
4786 | // weighted generalized mean of a 1D array of doubles, aa
|
---|
4787 | public static double generalisedMean(double[] aa, double[] ww, double m){
|
---|
4788 | int n = aa.length;
|
---|
4789 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4790 |
|
---|
4791 | double sum=0.0D;
|
---|
4792 | double sumw=0.0D;
|
---|
4793 | double[] weight = Stat.invertAndSquare(ww);
|
---|
4794 | for(int i=0; i<n; i++){
|
---|
4795 | sumw += weight[i];
|
---|
4796 | }
|
---|
4797 |
|
---|
4798 | if(m==0){
|
---|
4799 | for(int i=0; i<n; i++){
|
---|
4800 | sum += Math.log(aa[i]*weight[i]/sumw);
|
---|
4801 | }
|
---|
4802 | return Math.exp(sum);
|
---|
4803 | }
|
---|
4804 | else{
|
---|
4805 | for(int i=0; i<n; i++){
|
---|
4806 | sum += weight[i]*Math.pow(aa[i],m);
|
---|
4807 | }
|
---|
4808 | return Math.pow(sum/sumw, 1.0D/m);
|
---|
4809 | }
|
---|
4810 | }
|
---|
4811 |
|
---|
4812 | // weighted generalized mean of a 1D array of floats, aa
|
---|
4813 | public static float generalisedMean(float[] aa, float[] ww, float m){
|
---|
4814 | int n = aa.length;
|
---|
4815 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4816 |
|
---|
4817 | float sum=0.0F;
|
---|
4818 | float sumw=0.0F;
|
---|
4819 | float[] weight = Stat.invertAndSquare(ww);
|
---|
4820 | for(int i=0; i<n; i++){
|
---|
4821 | sumw += weight[i];
|
---|
4822 | }
|
---|
4823 | if(m==0){
|
---|
4824 | for(int i=0; i<n; i++){
|
---|
4825 | sum += (float)Math.log(aa[i]);
|
---|
4826 | }
|
---|
4827 | return (float)Math.exp(sum);
|
---|
4828 | }
|
---|
4829 | else{
|
---|
4830 | for(int i=0; i<n; i++){
|
---|
4831 | sum += Math.pow(aa[i],m);
|
---|
4832 | }
|
---|
4833 | return (float)Math.pow(sum/sumw, 1.0F/m);
|
---|
4834 | }
|
---|
4835 | }
|
---|
4836 |
|
---|
4837 |
|
---|
4838 | // weighted generalised mean of a 1D array of Complex, aa
|
---|
4839 | public static Complex weightedGeneralisedMean(Complex[] aa, Complex[] ww, double m){
|
---|
4840 | int n = aa.length;
|
---|
4841 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4842 |
|
---|
4843 | return generalisedMean(aa, ww, m);
|
---|
4844 | }
|
---|
4845 |
|
---|
4846 | // weighted generalised mean of a 1D array of Complex, aa
|
---|
4847 | public static Complex weightedGeneralisedMean(Complex[] aa, Complex[] ww, Complex m){
|
---|
4848 | int n = aa.length;
|
---|
4849 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4850 |
|
---|
4851 | return generalisedMean(aa, ww, m);
|
---|
4852 | }
|
---|
4853 |
|
---|
4854 | // weighted generalised mean of a 1D array of BigDecimal, aa
|
---|
4855 | public static double weightedGeneralisedMean(BigDecimal[] aa, BigDecimal[] ww, double m){
|
---|
4856 | int n = aa.length;
|
---|
4857 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4858 |
|
---|
4859 | return generalisedMean(aa, ww, m);
|
---|
4860 | }
|
---|
4861 |
|
---|
4862 | // weighted generalised mean of a 1D array of BigDecimal, aa
|
---|
4863 | public static double weightedGeneralisedMean(BigDecimal[] aa, BigDecimal[] ww, BigDecimal m){
|
---|
4864 | int n = aa.length;
|
---|
4865 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4866 |
|
---|
4867 | return generalisedMean(aa, ww, m);
|
---|
4868 | }
|
---|
4869 |
|
---|
4870 | // weighted generalised mean of a 1D array of BigInteger, aa
|
---|
4871 | public static double weightedGeneralisedMean(BigInteger[] aa, BigInteger[] ww, double m){
|
---|
4872 | int n = aa.length;
|
---|
4873 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4874 |
|
---|
4875 | return generalisedMean(aa, ww, m);
|
---|
4876 | }
|
---|
4877 |
|
---|
4878 | // weighted generalised mean of a 1D array of BigInteger, aa
|
---|
4879 | public static double weightedGeneralisedMean(BigInteger[] aa, BigInteger[] ww, BigInteger m){
|
---|
4880 | int n = aa.length;
|
---|
4881 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4882 |
|
---|
4883 | return generalisedMean(aa, ww, m);
|
---|
4884 | }
|
---|
4885 |
|
---|
4886 | // weighted generalised mean of a 1D array of doubles, aa
|
---|
4887 | public static double weightedGeneralisedMean(double[] aa, double[] ww, double m){
|
---|
4888 | int n = aa.length;
|
---|
4889 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4890 |
|
---|
4891 | return generalisedMean(aa, ww, m);
|
---|
4892 | }
|
---|
4893 |
|
---|
4894 | // weighted generalised mean of a 1D array of floats, aa
|
---|
4895 | public static float weightedGeneralisedMean(float[] aa, float[] ww, float m){
|
---|
4896 | int n = aa.length;
|
---|
4897 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
4898 |
|
---|
4899 | return generalisedMean(aa, ww, m);
|
---|
4900 | }
|
---|
4901 |
|
---|
4902 |
|
---|
4903 |
|
---|
4904 |
|
---|
4905 | // INTERQUARTILE MEANS
|
---|
4906 |
|
---|
4907 | // Interquartile mean of a 1D array of BigDecimal, aa
|
---|
4908 | public static BigDecimal interQuartileMean(BigDecimal[] aa){
|
---|
4909 | int n = aa.length;
|
---|
4910 | if(n<4)throw new IllegalArgumentException("At least 4 array elements needed");
|
---|
4911 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4912 | ArrayMaths as = am.sort();
|
---|
4913 | BigDecimal[] bb = as.getArray_as_BigDecimal();
|
---|
4914 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4915 | for(int i=n/4; i<3*n/4; i++)sum = sum.add(bb[i]);
|
---|
4916 | sum = sum.multiply(new BigDecimal(2.0D/(double)n));
|
---|
4917 | bb = null;
|
---|
4918 | return sum;
|
---|
4919 | }
|
---|
4920 |
|
---|
4921 | // Interquartile mean of a 1D array of BigInteger, aa
|
---|
4922 | public static BigDecimal interQuartileMean(BigInteger[] aa){
|
---|
4923 | int n = aa.length;
|
---|
4924 | if(n<4)throw new IllegalArgumentException("At least 4 array elements needed");
|
---|
4925 | ArrayMaths am = new ArrayMaths(aa);
|
---|
4926 | ArrayMaths as = am.sort();
|
---|
4927 | BigDecimal[] bb = as.getArray_as_BigDecimal();
|
---|
4928 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4929 | for(int i=n/4; i<3*n/4; i++)sum = sum.add(bb[i]);
|
---|
4930 | sum = sum.multiply(new BigDecimal(2.0D/(double)n));
|
---|
4931 | bb = null;
|
---|
4932 | return sum;
|
---|
4933 | }
|
---|
4934 |
|
---|
4935 | // Interquartile mean of a 1D array of doubles, aa
|
---|
4936 | public static double interQuartileMean(double[] aa){
|
---|
4937 | int n = aa.length;
|
---|
4938 | if(n<4)throw new IllegalArgumentException("At least 4 array elements needed");
|
---|
4939 | double[] bb = Fmath.selectionSort(aa);
|
---|
4940 | double sum = 0.0D;
|
---|
4941 | for(int i=n/4; i<3*n/4; i++)sum += bb[i];
|
---|
4942 | return 2.0*sum/(double)(n);
|
---|
4943 | }
|
---|
4944 |
|
---|
4945 | // Interquartile mean of a 1D array of floats, aa
|
---|
4946 | public static float interQuartileMean(float[] aa){
|
---|
4947 | int n = aa.length;
|
---|
4948 | if(n<4)throw new IllegalArgumentException("At least 4 array elements needed");
|
---|
4949 | float[] bb = Fmath.selectionSort(aa);
|
---|
4950 | float sum = 0.0F;
|
---|
4951 | for(int i=n/4; i<3*n/4; i++)sum += bb[i];
|
---|
4952 | return 2.0F*sum/(float)(n);
|
---|
4953 | }
|
---|
4954 |
|
---|
4955 | // ROOT MEAN SQUARES
|
---|
4956 |
|
---|
4957 | // Root mean square (rms) of a 1D array of doubles, aa
|
---|
4958 | public static double rms(double[] aa){
|
---|
4959 | int n = aa.length;
|
---|
4960 | double sum=0.0D;
|
---|
4961 | for(int i=0; i<n; i++){
|
---|
4962 | sum+=aa[i]*aa[i];
|
---|
4963 | }
|
---|
4964 | return Math.sqrt(sum/((double)n));
|
---|
4965 | }
|
---|
4966 |
|
---|
4967 | // Root mean square (rms) of a 1D array of floats, aa
|
---|
4968 | public static float rms(float[] aa){
|
---|
4969 | int n = aa.length;
|
---|
4970 | float sum = 0.0F;
|
---|
4971 | for(int i=0; i<n; i++){
|
---|
4972 | sum+=aa[i]*aa[i];
|
---|
4973 | }
|
---|
4974 | sum /= (float)n;
|
---|
4975 |
|
---|
4976 | return (float)Math.sqrt(sum);
|
---|
4977 | }
|
---|
4978 |
|
---|
4979 | // Root mean square (rms) of a 1D array of BigDecimal, aa
|
---|
4980 | public static double rms(BigDecimal[] aa){
|
---|
4981 | int n = aa.length;
|
---|
4982 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4983 | for(int i=0; i<n; i++){
|
---|
4984 | sum = sum.add(aa[i].multiply(aa[i]));
|
---|
4985 | }
|
---|
4986 | sum = sum.divide((new BigDecimal(n)), BigDecimal.ROUND_HALF_UP);
|
---|
4987 | double ret = Math.sqrt(sum.doubleValue());
|
---|
4988 | sum = null;
|
---|
4989 | return ret;
|
---|
4990 | }
|
---|
4991 |
|
---|
4992 | // Root mean square (rms) of a 1D array of BigInteger, aa
|
---|
4993 | public static double rms(BigInteger[] aa){
|
---|
4994 | int n = aa.length;
|
---|
4995 | BigDecimal sum = BigDecimal.ZERO;
|
---|
4996 | BigDecimal bd = BigDecimal.ZERO;
|
---|
4997 | for(int i=0; i<n; i++){
|
---|
4998 | bd = new BigDecimal(aa[i]);
|
---|
4999 | sum = sum.add(bd.multiply(bd));
|
---|
5000 | }
|
---|
5001 | sum = sum.divide((new BigDecimal(n)), BigDecimal.ROUND_HALF_UP);
|
---|
5002 | double ret = Math.sqrt(sum.doubleValue());
|
---|
5003 | bd = null;
|
---|
5004 | sum = null;
|
---|
5005 | return ret;
|
---|
5006 | }
|
---|
5007 |
|
---|
5008 | // WEIGHTED ROOT MEAN SQUARES
|
---|
5009 |
|
---|
5010 | // Weighted root mean square (rms) of a 1D array of doubles, aa
|
---|
5011 | public static double rms(double[] aa, double[] ww){
|
---|
5012 | int n = aa.length;
|
---|
5013 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5014 |
|
---|
5015 | double sumw =0.0D;
|
---|
5016 | double[] weight = Stat.invertAndSquare(ww);
|
---|
5017 | for(int i=0; i<n; i++){
|
---|
5018 | sumw += weight[i];
|
---|
5019 | }
|
---|
5020 | double sum=0.0D;
|
---|
5021 | for(int i=0; i<n; i++){
|
---|
5022 | sum += weight[i]*aa[i]*aa[i];
|
---|
5023 | }
|
---|
5024 | return Math.sqrt(sum/sumw);
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | // Weighted root mean square (rms) of a 1D array of floats, aa
|
---|
5028 | public static float rms(float[] aa, float[] ww){
|
---|
5029 | int n = aa.length;
|
---|
5030 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5031 |
|
---|
5032 | double sumw =0.0F;
|
---|
5033 | float[] weight = Stat.invertAndSquare(ww);
|
---|
5034 | for(int i=0; i<n; i++){
|
---|
5035 | sumw += weight[i];
|
---|
5036 | }
|
---|
5037 | float sum=0.0F;
|
---|
5038 | for(int i=0; i<n; i++){
|
---|
5039 | sum += weight[i]*aa[i]*aa[i];
|
---|
5040 | }
|
---|
5041 | return (float)Math.sqrt(sum/sumw);
|
---|
5042 | }
|
---|
5043 |
|
---|
5044 | // Weighted root mean square (rms) of a 1D array of BigDecimal, aa
|
---|
5045 | public static double rms(BigDecimal[] aa, BigDecimal[] ww){
|
---|
5046 | int n = aa.length;
|
---|
5047 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5048 |
|
---|
5049 | BigDecimal sumw = BigDecimal.ZERO;
|
---|
5050 | BigDecimal[] weight = Stat.invertAndSquare(ww);
|
---|
5051 | for(int i=0; i<n; i++){
|
---|
5052 | sumw = sumw.add(weight[i]);
|
---|
5053 | }
|
---|
5054 |
|
---|
5055 | BigDecimal sum = BigDecimal.ZERO;
|
---|
5056 | for(int i=0; i<n; i++){
|
---|
5057 | sum = sum.add((aa[i].multiply(aa[i])).multiply(weight[i]));
|
---|
5058 | }
|
---|
5059 | sum = sum.divide(sumw, BigDecimal.ROUND_HALF_UP);
|
---|
5060 | double ret = Math.sqrt(sum.doubleValue());
|
---|
5061 | sum = null;
|
---|
5062 | weight = null;
|
---|
5063 | return ret;
|
---|
5064 | }
|
---|
5065 |
|
---|
5066 | // Weighted root mean square (rms) of a 1D array of BigInteger, aa
|
---|
5067 | public static double rms(BigInteger[] aa, BigInteger[] ww){
|
---|
5068 | int n = aa.length;
|
---|
5069 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5070 |
|
---|
5071 |
|
---|
5072 | ArrayMaths amaa = new ArrayMaths(aa);
|
---|
5073 | ArrayMaths amww = new ArrayMaths(ww);
|
---|
5074 | return rms(amaa.array_as_BigDecimal(), amww.array_as_BigDecimal());
|
---|
5075 | }
|
---|
5076 |
|
---|
5077 | // MEDIANS
|
---|
5078 |
|
---|
5079 | // Median of a 1D array of BigDecimal, aa
|
---|
5080 | public static BigDecimal median(BigDecimal[] aa){
|
---|
5081 | int n = aa.length;
|
---|
5082 | int nOverTwo = n/2;
|
---|
5083 | BigDecimal med = BigDecimal.ZERO;
|
---|
5084 | ArrayMaths bm = new ArrayMaths(aa);
|
---|
5085 | ArrayMaths sm = bm.sort();
|
---|
5086 | BigDecimal[] bb = bm.getArray_as_BigDecimal();
|
---|
5087 | if(Fmath.isOdd(n)){
|
---|
5088 | med = bb[nOverTwo];
|
---|
5089 | }
|
---|
5090 | else{
|
---|
5091 | med = (bb[nOverTwo-1].add(bb[nOverTwo])).divide(new BigDecimal(2.0D), BigDecimal.ROUND_HALF_UP);
|
---|
5092 | }
|
---|
5093 | bb = null;
|
---|
5094 | return med;
|
---|
5095 | }
|
---|
5096 |
|
---|
5097 | // Median of a 1D array of BigInteger, aa
|
---|
5098 | public static BigInteger median(BigInteger[] aa){
|
---|
5099 | int n = aa.length;
|
---|
5100 | int nOverTwo = n/2;
|
---|
5101 | BigInteger med = BigInteger.ZERO;
|
---|
5102 | ArrayMaths bm = new ArrayMaths(aa);
|
---|
5103 | ArrayMaths sm = bm.sort();
|
---|
5104 | BigInteger[] bb = bm.getArray_as_BigInteger();
|
---|
5105 | if(Fmath.isOdd(n)){
|
---|
5106 | med = bb[nOverTwo];
|
---|
5107 | }
|
---|
5108 | else{
|
---|
5109 | med = (bb[nOverTwo-1].add(bb[nOverTwo])).divide(new BigInteger("2"));
|
---|
5110 | }
|
---|
5111 | bb = null;
|
---|
5112 | return med;
|
---|
5113 | }
|
---|
5114 |
|
---|
5115 | // Median of a 1D array of doubles, aa
|
---|
5116 | public static double median(double[] aa){
|
---|
5117 | int n = aa.length;
|
---|
5118 | int nOverTwo = n/2;
|
---|
5119 | double med = 0.0D;
|
---|
5120 | double[] bb = Fmath.selectionSort(aa);
|
---|
5121 | if(Fmath.isOdd(n)){
|
---|
5122 | med = bb[nOverTwo];
|
---|
5123 | }
|
---|
5124 | else{
|
---|
5125 | med = (bb[nOverTwo-1]+bb[nOverTwo])/2.0D;
|
---|
5126 | }
|
---|
5127 |
|
---|
5128 | return med;
|
---|
5129 | }
|
---|
5130 |
|
---|
5131 |
|
---|
5132 | // Median of a 1D array of floats, aa
|
---|
5133 | public static float median(float[] aa){
|
---|
5134 | int n = aa.length;
|
---|
5135 | int nOverTwo = n/2;
|
---|
5136 | float med = 0.0F;
|
---|
5137 | float[] bb = Fmath.selectionSort(aa);
|
---|
5138 | if(Fmath.isOdd(n)){
|
---|
5139 | med = bb[nOverTwo];
|
---|
5140 | }
|
---|
5141 | else{
|
---|
5142 | med = (bb[nOverTwo-1]+bb[nOverTwo])/2.0F;
|
---|
5143 | }
|
---|
5144 |
|
---|
5145 | return med;
|
---|
5146 | }
|
---|
5147 |
|
---|
5148 | // Median of a 1D array of int, aa
|
---|
5149 | public static double median(int[] aa){
|
---|
5150 | int n = aa.length;
|
---|
5151 | int nOverTwo = n/2;
|
---|
5152 | double med = 0.0D;
|
---|
5153 | int[] bb = Fmath.selectionSort(aa);
|
---|
5154 | if(Fmath.isOdd(n)){
|
---|
5155 | med = (double)bb[nOverTwo];
|
---|
5156 | }
|
---|
5157 | else{
|
---|
5158 | med = (double)(bb[nOverTwo-1]+bb[nOverTwo])/2.0D;
|
---|
5159 | }
|
---|
5160 |
|
---|
5161 | return med;
|
---|
5162 | }
|
---|
5163 |
|
---|
5164 | // Median of a 1D array of long, aa
|
---|
5165 | public static double median(long[] aa){
|
---|
5166 | int n = aa.length;
|
---|
5167 | int nOverTwo = n/2;
|
---|
5168 | double med = 0.0D;
|
---|
5169 | long[] bb = Fmath.selectionSort(aa);
|
---|
5170 | if(Fmath.isOdd(n)){
|
---|
5171 | med = (double)bb[nOverTwo];
|
---|
5172 | }
|
---|
5173 | else{
|
---|
5174 | med = (double)(bb[nOverTwo-1]+bb[nOverTwo])/2.0D;
|
---|
5175 | }
|
---|
5176 |
|
---|
5177 | return med;
|
---|
5178 | }
|
---|
5179 |
|
---|
5180 |
|
---|
5181 | // STANDARD DEVIATIONS (STATIC METHODS)
|
---|
5182 |
|
---|
5183 | // Standard deviation of a 1D array of BigDecimals, aa
|
---|
5184 | public static double standardDeviation(BigDecimal[] aa){
|
---|
5185 | return Math.sqrt(Stat.variance(aa).doubleValue());
|
---|
5186 | }
|
---|
5187 |
|
---|
5188 | // Standard deviation of a 1D array of BigIntegers, aa
|
---|
5189 | public static double standardDeviation(BigInteger[] aa){
|
---|
5190 | return Math.sqrt(Stat.variance(aa).doubleValue());
|
---|
5191 | }
|
---|
5192 |
|
---|
5193 | // Standard deviation of a 1D array of Complex, aa
|
---|
5194 | public static Complex standardDeviation(Complex[] aa){
|
---|
5195 | return Complex.sqrt(Stat.variance(aa));
|
---|
5196 | }
|
---|
5197 |
|
---|
5198 | // Standard deviation of a 1D array of Complex, aa, conjugate formula
|
---|
5199 | public static double standardDeviationConjugateCalcn(Complex[] aa){
|
---|
5200 | return Math.sqrt(Stat.varianceConjugateCalcn(aa));
|
---|
5201 | }
|
---|
5202 |
|
---|
5203 | // Standard deviation of the moduli of a 1D array of Complex aa
|
---|
5204 | public static double standardDeviationModuli(Complex[] aa){
|
---|
5205 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5206 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
5207 | double standardDeviation = Stat.standardDeviation(rl);
|
---|
5208 | return standardDeviation;
|
---|
5209 | }
|
---|
5210 |
|
---|
5211 | // Standard deviation of the real parts of a 1D array of Complex aa
|
---|
5212 | public static double standardDeviationRealParts(Complex[] aa){
|
---|
5213 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5214 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
5215 | double standardDeviation = Stat.standardDeviation(rl);
|
---|
5216 | return standardDeviation;
|
---|
5217 | }
|
---|
5218 |
|
---|
5219 | // Standard deviation of the imaginary parts of a 1D array of Complex aa
|
---|
5220 | public static double standardDeviationImaginaryParts(Complex[] aa){
|
---|
5221 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5222 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
5223 | double standardDeviation = Stat.standardDeviation(im);
|
---|
5224 | return standardDeviation;
|
---|
5225 | }
|
---|
5226 |
|
---|
5227 | // Standard deviation of a 1D array of doubles, aa
|
---|
5228 | public static double standardDeviation(double[] aa){
|
---|
5229 | return Math.sqrt(Stat.variance(aa));
|
---|
5230 | }
|
---|
5231 |
|
---|
5232 | // Standard deviation of a 1D array of floats, aa
|
---|
5233 | public static float standardDeviation(float[] aa){
|
---|
5234 | return (float)Math.sqrt(Stat.variance(aa));
|
---|
5235 | }
|
---|
5236 |
|
---|
5237 | // Standard deviation of a 1D array of int, aa
|
---|
5238 | public static double standardDeviation(int[] aa){
|
---|
5239 | return Math.sqrt(Stat.variance(aa));
|
---|
5240 | }
|
---|
5241 |
|
---|
5242 | // Standard deviation of a 1D array of long, aa
|
---|
5243 | public static double standardDeviation(long[] aa){
|
---|
5244 | return Math.sqrt(Stat.variance(aa));
|
---|
5245 | }
|
---|
5246 |
|
---|
5247 | // Weighted standard deviation of a 1D array of Complex, aa
|
---|
5248 | public static Complex standardDeviation(Complex[] aa, Complex[] ww){
|
---|
5249 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5250 | return Complex.sqrt(Stat.variance(aa, ww));
|
---|
5251 | }
|
---|
5252 |
|
---|
5253 | // Weighted standard deviation of a 1D array of Complex, aa, using conjugate formula
|
---|
5254 | public static double standardDeviationConjugateCalcn(Complex[] aa, Complex[] ww){
|
---|
5255 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5256 | return Math.sqrt(Stat.varianceConjugateCalcn(aa, ww));
|
---|
5257 | }
|
---|
5258 |
|
---|
5259 | // Weighted standard deviation of the moduli of a 1D array of Complex aa
|
---|
5260 | public static double standardDeviationModuli(Complex[] aa, Complex[] ww){
|
---|
5261 | int n = aa.length;
|
---|
5262 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5263 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5264 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
5265 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
5266 | double[] wt = wm.array_as_modulus_of_Complex();
|
---|
5267 | double standardDeviation = Stat.standardDeviation(rl, wt);
|
---|
5268 | return standardDeviation;
|
---|
5269 | }
|
---|
5270 |
|
---|
5271 | // Weighted standard deviation of the real parts of a 1D array of Complex aa
|
---|
5272 | public static double standardDeviationRealParts(Complex[] aa, Complex[] ww){
|
---|
5273 | int n = aa.length;
|
---|
5274 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5275 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5276 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
5277 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
5278 | double[] wt = wm.array_as_real_part_of_Complex();
|
---|
5279 | double standardDeviation = Stat.standardDeviation(rl, wt);
|
---|
5280 | return standardDeviation;
|
---|
5281 | }
|
---|
5282 |
|
---|
5283 | // Weighted standard deviation of the imaginary parts of a 1D array of Complex aa
|
---|
5284 | public static double standardDeviationImaginaryParts(Complex[] aa, Complex[] ww){
|
---|
5285 | int n = aa.length;
|
---|
5286 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
5287 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5288 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
5289 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
5290 | double[] wt = wm.array_as_imaginary_part_of_Complex();
|
---|
5291 | double standardDeviation = Stat.standardDeviation(im, wt);
|
---|
5292 | return standardDeviation;
|
---|
5293 | }
|
---|
5294 |
|
---|
5295 |
|
---|
5296 | // Weighted standard deviation of a 1D array of BigDecimal, aa
|
---|
5297 | public static double standardDeviation(BigDecimal[] aa, BigDecimal[] ww){
|
---|
5298 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5299 | return Math.sqrt(Stat.variance(aa, ww).doubleValue());
|
---|
5300 | }
|
---|
5301 |
|
---|
5302 | // Weighted standard deviation of a 1D array of BigInteger, aa
|
---|
5303 | public static double standardDeviation(BigInteger[] aa, BigInteger[] ww){
|
---|
5304 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5305 | return Math.sqrt(Stat.variance(aa, ww).doubleValue());
|
---|
5306 | }
|
---|
5307 |
|
---|
5308 | // Weighted standard deviation of a 1D array of doubles, aa
|
---|
5309 | public static double standardDeviation(double[] aa, double[] ww){
|
---|
5310 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5311 | return Math.sqrt(Stat.variance(aa, ww));
|
---|
5312 | }
|
---|
5313 |
|
---|
5314 | // Weighted standard deviation of a 1D array of floats, aa
|
---|
5315 | public static float standardDeviation(float[] aa, float[] ww){
|
---|
5316 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
5317 | return (float)Math.sqrt(Stat.variance(aa, ww));
|
---|
5318 | }
|
---|
5319 |
|
---|
5320 |
|
---|
5321 | // VOLATILITIES
|
---|
5322 |
|
---|
5323 | // volatility log (BigDecimal)
|
---|
5324 | public static double volatilityLogChange(BigDecimal[] array){
|
---|
5325 | int n = array.length-1;
|
---|
5326 | double[] change = new double[n];
|
---|
5327 | for(int i=0; i<n; i++)change[i] = Math.log((array[i+1].divide(array[i], BigDecimal.ROUND_HALF_UP)).doubleValue());
|
---|
5328 | return Stat.standardDeviation(change);
|
---|
5329 | }
|
---|
5330 |
|
---|
5331 | // volatility log (BigInteger)
|
---|
5332 | public static double volatilityLogChange(BigInteger[] array){
|
---|
5333 | int n = array.length-1;
|
---|
5334 | double[] change = new double[n];
|
---|
5335 | for(int i=0; i<n; i++)change[i] = Math.log(((new BigDecimal(array[i+1])).divide( new BigDecimal(array[i]), BigDecimal.ROUND_HALF_UP)).doubleValue());
|
---|
5336 | return Stat.standardDeviation(change);
|
---|
5337 | }
|
---|
5338 |
|
---|
5339 | // volatility log (doubles)
|
---|
5340 | public static double volatilityLogChange(double[] array){
|
---|
5341 | int n = array.length-1;
|
---|
5342 | double[] change = new double[n];
|
---|
5343 | for(int i=0; i<n; i++)change[i] = Math.log(array[i+1]/array[i]);
|
---|
5344 | return Stat.standardDeviation(change);
|
---|
5345 | }
|
---|
5346 |
|
---|
5347 | // volatility log (floats)
|
---|
5348 | public static float volatilityLogChange(float[] array){
|
---|
5349 | int n = array.length-1;
|
---|
5350 | float[] change = new float[n];
|
---|
5351 | for(int i=0; i<n; i++)change[i] = (float)Math.log(array[i+1]/array[i]);
|
---|
5352 | return Stat.standardDeviation(change);
|
---|
5353 | }
|
---|
5354 |
|
---|
5355 | // volatility percentage (BigDecimal)
|
---|
5356 | public static double volatilityPerCentChange(BigDecimal[] array){
|
---|
5357 | int n = array.length-1;
|
---|
5358 | double[] change = new double[n];
|
---|
5359 | for(int i=0; i<n; i++)change[i] = ((array[i+1].add(array[i])).multiply((new BigDecimal(100.0D)).divide(array[i], BigDecimal.ROUND_HALF_UP))).doubleValue();
|
---|
5360 | return Stat.standardDeviation(change);
|
---|
5361 | }
|
---|
5362 |
|
---|
5363 | // volatility percentage (Biginteger)
|
---|
5364 | public static double volatilityPerCentChange(BigInteger[] array){
|
---|
5365 | int n = array.length-1;
|
---|
5366 | double[] change = new double[n];
|
---|
5367 | ArrayMaths am = new ArrayMaths(array);
|
---|
5368 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
5369 | for(int i=0; i<n; i++)change[i] = ((bd[i+1].add(bd[i])).multiply((new BigDecimal(100.0D)).divide(bd[i], BigDecimal.ROUND_HALF_UP))).doubleValue();
|
---|
5370 | bd = null;
|
---|
5371 | return Stat.standardDeviation(change);
|
---|
5372 | }
|
---|
5373 |
|
---|
5374 | // volatility percentage (double)
|
---|
5375 | public static double volatilityPerCentChange(double[] array){
|
---|
5376 | int n = array.length-1;
|
---|
5377 | double[] change = new double[n];
|
---|
5378 | for(int i=0; i<n; i++)change[i] = (array[i+1] - array[i])*100.0D/array[i];
|
---|
5379 | return Stat.standardDeviation(change);
|
---|
5380 | }
|
---|
5381 |
|
---|
5382 | // volatility percentage (float)
|
---|
5383 | public static double volatilityPerCentChange(float[] array){
|
---|
5384 | int n = array.length-1;
|
---|
5385 | float[] change = new float[n];
|
---|
5386 | for(int i=0; i<n; i++)change[i] = (array[i+1] - array[i])*100.0F/array[i];
|
---|
5387 | return Stat.standardDeviation(change);
|
---|
5388 | }
|
---|
5389 |
|
---|
5390 |
|
---|
5391 | // COEFFICIENT OF VARIATION
|
---|
5392 |
|
---|
5393 | // Coefficient of variation of an array of BigInteger
|
---|
5394 | public static double coefficientOfVariation(BigInteger[] array){
|
---|
5395 | return 100.0D*Stat.standardDeviation(array)/Math.abs(Stat.mean(array).doubleValue());
|
---|
5396 | }
|
---|
5397 |
|
---|
5398 | // Coefficient of variation of an array of BigDecimals
|
---|
5399 | public static double coefficientOfVariation(BigDecimal[] array){
|
---|
5400 | return 100.0D*Stat.standardDeviation(array)/Math.abs(Stat.mean(array).doubleValue());
|
---|
5401 | }
|
---|
5402 |
|
---|
5403 | // Coefficient of variation of an array of doubles
|
---|
5404 | public static double coefficientOfVariation(double[] array){
|
---|
5405 | return 100.0D*Stat.standardDeviation(array)/Math.abs(Stat.mean(array));
|
---|
5406 | }
|
---|
5407 |
|
---|
5408 | // Coefficient of variation of an array of float
|
---|
5409 | public static float coefficientOfVariation(float[] array){
|
---|
5410 | return 100.0F*Stat.standardDeviation(array)/Math.abs(Stat.mean(array));
|
---|
5411 | }
|
---|
5412 |
|
---|
5413 |
|
---|
5414 | // WEIGHTED COEFFICIENT OF VARIATION
|
---|
5415 |
|
---|
5416 | // Weighted coefficient of variation of an array of BigInteger
|
---|
5417 | public static double coefficientOfVariation(BigInteger[] array, BigInteger[] weight){
|
---|
5418 | int n = array.length;
|
---|
5419 | if(n!=weight.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + weight.length + " are different");
|
---|
5420 |
|
---|
5421 | return 100.0D*Stat.standardDeviation(array, weight)/Math.abs(Stat.mean(array, weight).doubleValue());
|
---|
5422 | }
|
---|
5423 |
|
---|
5424 | // Weighted coefficient of variation of an array of BigDecimals
|
---|
5425 | public static double coefficientOfVariation(BigDecimal[] array, BigDecimal[] weight){
|
---|
5426 | int n = array.length;
|
---|
5427 | if(n!=weight.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + weight.length + " are different");
|
---|
5428 |
|
---|
5429 | return 100.0D*Stat.standardDeviation(array, weight)/Math.abs(Stat.mean(array, weight).doubleValue());
|
---|
5430 | }
|
---|
5431 |
|
---|
5432 | // Weighted coefficient of variation of an array of doubles
|
---|
5433 | public static double coefficientOfVariation(double[] array, double[] weight){
|
---|
5434 | int n = array.length;
|
---|
5435 | if(n!=weight.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + weight.length + " are different");
|
---|
5436 |
|
---|
5437 | return 100.0D*Stat.standardDeviation(array, weight)/Math.abs(Stat.mean(array, weight));
|
---|
5438 | }
|
---|
5439 |
|
---|
5440 | // Weighted coefficient of variation of an array of float
|
---|
5441 | public static float coefficientOfVariation(float[] array, float[] weight){
|
---|
5442 | int n = array.length;
|
---|
5443 | if(n!=weight.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + weight.length + " are different");
|
---|
5444 |
|
---|
5445 | return 100.0F*Stat.standardDeviation(array, weight)/Math.abs(Stat.mean(array, weight));
|
---|
5446 | }
|
---|
5447 |
|
---|
5448 |
|
---|
5449 | //STANDARDIZATION
|
---|
5450 | // Standardization of an array of doubles to a mean of 0 and a standard deviation of 1
|
---|
5451 | public static double[] standardize(double[] aa){
|
---|
5452 | double mean0 = Stat.mean(aa);
|
---|
5453 | double sd0 = Stat.standardDeviation(aa);
|
---|
5454 | int n = aa.length;
|
---|
5455 | double[] bb = new double[n];
|
---|
5456 | if(sd0==0.0){
|
---|
5457 | for(int i=0; i<n; i++){
|
---|
5458 | bb[i] = 1.0;
|
---|
5459 | }
|
---|
5460 | }
|
---|
5461 | else{
|
---|
5462 | for(int i=0; i<n; i++){
|
---|
5463 | bb[i] = (aa[i] - mean0)/sd0;
|
---|
5464 | }
|
---|
5465 | }
|
---|
5466 | return bb;
|
---|
5467 | }
|
---|
5468 |
|
---|
5469 | public static double[] standardise(double[] aa){
|
---|
5470 | return Stat.standardize(aa);
|
---|
5471 | }
|
---|
5472 |
|
---|
5473 | // Standardization of an array of floats to a mean of 0 and a standard deviation of 1
|
---|
5474 | public static float[] standardize(float[] aa){
|
---|
5475 | float mean0 = Stat.mean(aa);
|
---|
5476 | float sd0 = Stat.standardDeviation(aa);
|
---|
5477 | int n = aa.length;
|
---|
5478 | float[] bb = new float[n];
|
---|
5479 | if(sd0==0.0){
|
---|
5480 | for(int i=0; i<n; i++){
|
---|
5481 | bb[i] = 1.0F;
|
---|
5482 | }
|
---|
5483 | }
|
---|
5484 | else{
|
---|
5485 | for(int i=0; i<n; i++){
|
---|
5486 | bb[i] = (aa[i] - mean0)/sd0;
|
---|
5487 | }
|
---|
5488 | }
|
---|
5489 | return bb;
|
---|
5490 | }
|
---|
5491 |
|
---|
5492 | public static float[] standardise(float[] aa){
|
---|
5493 | return Stat.standardize(aa);
|
---|
5494 | }
|
---|
5495 |
|
---|
5496 | // Standardization of an array of longs to a mean of 0 and a standard deviation of 1
|
---|
5497 | // converts to double
|
---|
5498 | public static double[] standardize(long[] aa){
|
---|
5499 | double mean0 = Stat.mean(aa);
|
---|
5500 | double sd0 = Stat.standardDeviation(aa);
|
---|
5501 | int n = aa.length;
|
---|
5502 | double[] bb = new double[n];
|
---|
5503 | if(sd0==0.0){
|
---|
5504 | for(int i=0; i<n; i++){
|
---|
5505 | bb[i] = 1.0;
|
---|
5506 | }
|
---|
5507 | }
|
---|
5508 | else{
|
---|
5509 | for(int i=0; i<n; i++){
|
---|
5510 | bb[i] = ((double)aa[i] - mean0)/sd0;
|
---|
5511 | }
|
---|
5512 | }
|
---|
5513 | return bb;
|
---|
5514 | }
|
---|
5515 |
|
---|
5516 | public static double[] standardise(long[] aa){
|
---|
5517 | return Stat.standardize(aa);
|
---|
5518 | }
|
---|
5519 |
|
---|
5520 | // Standardization of an array of ints to a mean of 0 and a standard deviation of 1
|
---|
5521 | // converts to double
|
---|
5522 | public static double[] standardize(int[] aa){
|
---|
5523 | double mean0 = Stat.mean(aa);
|
---|
5524 | double sd0 = Stat.standardDeviation(aa);
|
---|
5525 | int n = aa.length;
|
---|
5526 | double[] bb = new double[n];
|
---|
5527 | if(sd0==0.0){
|
---|
5528 | for(int i=0; i<n; i++){
|
---|
5529 | bb[i] = 1.0;
|
---|
5530 | }
|
---|
5531 | }
|
---|
5532 | else{
|
---|
5533 | for(int i=0; i<n; i++){
|
---|
5534 | bb[i] = ((double)aa[i] - mean0)/sd0;
|
---|
5535 | }
|
---|
5536 | }
|
---|
5537 | return bb;
|
---|
5538 | }
|
---|
5539 |
|
---|
5540 | public static double[] standardise(int[] aa){
|
---|
5541 | return Stat.standardize(aa);
|
---|
5542 | }
|
---|
5543 |
|
---|
5544 | // Standardization of an array of BigDecimals to a mean of 0 and a standard deviation of 1
|
---|
5545 | // converts to double
|
---|
5546 | public static double[] standardize(BigDecimal[] aa){
|
---|
5547 | double mean0 = Stat.mean(aa).doubleValue();
|
---|
5548 | double sd0 = Stat.standardDeviation(aa);
|
---|
5549 | int n = aa.length;
|
---|
5550 | double[] bb = new double[n];
|
---|
5551 | if(sd0==0.0){
|
---|
5552 | for(int i=0; i<n; i++){
|
---|
5553 | bb[i] = 1.0;
|
---|
5554 | }
|
---|
5555 | }
|
---|
5556 | else{
|
---|
5557 | for(int i=0; i<n; i++){
|
---|
5558 | bb[i] = (aa[i].doubleValue() - mean0)/sd0;
|
---|
5559 | }
|
---|
5560 | }
|
---|
5561 | return bb;
|
---|
5562 | }
|
---|
5563 |
|
---|
5564 | public static double[] standardise(BigDecimal[] aa){
|
---|
5565 | return Stat.standardize(aa);
|
---|
5566 | }
|
---|
5567 |
|
---|
5568 | // Standardization of an array of BigIntegers to a mean of 0 and a standard deviation of 1
|
---|
5569 | // converts to double
|
---|
5570 | public static double[] standardize(BigInteger[] aa){
|
---|
5571 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5572 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
5573 |
|
---|
5574 | return Stat.standardize(bd);
|
---|
5575 | }
|
---|
5576 |
|
---|
5577 | public static double[] standardise(BigInteger[] aa){
|
---|
5578 | return Stat.standardize(aa);
|
---|
5579 | }
|
---|
5580 |
|
---|
5581 | // SCALING DATA
|
---|
5582 | // Scale an array of doubles to a new mean and new standard deviation
|
---|
5583 | public static double[] scale(double[] aa, double mean, double sd){
|
---|
5584 | double[] bb = Stat.standardize(aa);
|
---|
5585 | int n = aa.length;
|
---|
5586 | for(int i=0; i<n; i++){
|
---|
5587 | bb[i] = bb[i]*sd + mean;
|
---|
5588 | }
|
---|
5589 |
|
---|
5590 | return bb;
|
---|
5591 | }
|
---|
5592 |
|
---|
5593 | // Scale an array of floats to a new mean and new standard deviation
|
---|
5594 | public static float[] scale(float[] aa, float mean, float sd){
|
---|
5595 | float[] bb = Stat.standardize(aa);
|
---|
5596 | int n = aa.length;
|
---|
5597 | for(int i=0; i<n; i++){
|
---|
5598 | bb[i] = bb[i]*sd + mean;
|
---|
5599 | }
|
---|
5600 |
|
---|
5601 | return bb;
|
---|
5602 | }
|
---|
5603 |
|
---|
5604 | // Scale an array of longs to a new mean and new standard deviation
|
---|
5605 | public static double[] scale(long[] aa, double mean, double sd){
|
---|
5606 | double[] bb = Stat.standardize(aa);
|
---|
5607 | int n = aa.length;
|
---|
5608 | for(int i=0; i<n; i++){
|
---|
5609 | bb[i] = bb[i]*sd + mean;
|
---|
5610 | }
|
---|
5611 |
|
---|
5612 | return bb;
|
---|
5613 | }
|
---|
5614 |
|
---|
5615 | // Scale an array of longs to a new mean and new standard deviation
|
---|
5616 | public static double[] scale(int[] aa, double mean, double sd){
|
---|
5617 | double[] bb = Stat.standardize(aa);
|
---|
5618 | int n = aa.length;
|
---|
5619 | for(int i=0; i<n; i++){
|
---|
5620 | bb[i] = bb[i]*sd + mean;
|
---|
5621 | }
|
---|
5622 |
|
---|
5623 | return bb;
|
---|
5624 | }
|
---|
5625 |
|
---|
5626 | // Scale an array of BigDecimals to a new mean and new standard deviation
|
---|
5627 | public static double[] scale(BigDecimal[] aa, double mean, double sd){
|
---|
5628 | double[] bb = Stat.standardize(aa);
|
---|
5629 | int n = aa.length;
|
---|
5630 | for(int i=0; i<n; i++){
|
---|
5631 | bb[i] = bb[i]*sd + mean;
|
---|
5632 | }
|
---|
5633 |
|
---|
5634 | return bb;
|
---|
5635 | }
|
---|
5636 |
|
---|
5637 | // Scale an array of BigIntegers to a new mean and new standard deviation
|
---|
5638 | public static double[] scale(BigInteger[] aa, double mean, double sd){
|
---|
5639 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5640 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
5641 |
|
---|
5642 | return Stat.scale(bd, mean, sd);
|
---|
5643 | }
|
---|
5644 |
|
---|
5645 |
|
---|
5646 | // SKEWNESS
|
---|
5647 | // Static Methods
|
---|
5648 | // Moment skewness of a 1D array of doubles
|
---|
5649 | public static double momentSkewness(double[] aa){
|
---|
5650 | int n = aa.length;
|
---|
5651 | double denom = (double)(n-1);
|
---|
5652 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
5653 | double sum = 0.0D;
|
---|
5654 | double mean = Stat.mean(aa);
|
---|
5655 | for(int i=0; i<n; i++){
|
---|
5656 | sum+=Math.pow((aa[i]-mean), 3);
|
---|
5657 | }
|
---|
5658 | sum = sum/denom;
|
---|
5659 | return sum/Math.pow(Stat.standardDeviation(aa), 3);
|
---|
5660 | }
|
---|
5661 |
|
---|
5662 |
|
---|
5663 | // Moment skewness of a 1D array of floats
|
---|
5664 | public static float momentSkewness(float[] aa){
|
---|
5665 | int n = aa.length;
|
---|
5666 | float denom = (float)(n-1);
|
---|
5667 | if(Stat.nFactorOptionS)denom = (float)n;
|
---|
5668 | float sum = 0.0F;
|
---|
5669 | float mean = Stat.mean(aa);
|
---|
5670 | for(int i=0; i<n; i++){
|
---|
5671 | sum+=Math.pow((aa[i]-mean), 3);
|
---|
5672 | }
|
---|
5673 | sum = sum/denom;
|
---|
5674 | return sum/((float)Math.pow(Stat.standardDeviation(aa), 3));
|
---|
5675 | }
|
---|
5676 |
|
---|
5677 | // Moment skewness of a 1D array of BigDecimal
|
---|
5678 | public static double momentSkewness(BigDecimal[] aa){
|
---|
5679 | int n = aa.length;
|
---|
5680 | double denom = (double)(n-1);
|
---|
5681 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
5682 | BigDecimal sum = BigDecimal.ZERO;
|
---|
5683 | BigDecimal mean = Stat.mean(aa);
|
---|
5684 | double sd = Stat.standardDeviation(aa);
|
---|
5685 | for(int i=0; i<n; i++){
|
---|
5686 | BigDecimal hold = aa[i].subtract(mean);
|
---|
5687 | sum = sum.add(hold.multiply(hold.multiply(hold)) );
|
---|
5688 | }
|
---|
5689 | sum = sum.multiply(new BigDecimal(1.0/denom));
|
---|
5690 | return sum.doubleValue()/Math.pow(sd, 3);
|
---|
5691 | }
|
---|
5692 |
|
---|
5693 | // Moment skewness of a 1D array of long
|
---|
5694 | public static double momentSkewness(long[] aa){
|
---|
5695 | int n = aa.length;
|
---|
5696 | double denom = (double)(n-1);
|
---|
5697 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
5698 | double sum = 0.0D;
|
---|
5699 | double mean = Stat.mean(aa);
|
---|
5700 | for(int i=0; i<n; i++){
|
---|
5701 | sum+=Math.pow((aa[i]-mean), 3);
|
---|
5702 | }
|
---|
5703 | sum = sum/denom;
|
---|
5704 | return sum/Math.pow(Stat.standardDeviation(aa), 3);
|
---|
5705 | }
|
---|
5706 |
|
---|
5707 | // Moment skewness of a 1D array of int
|
---|
5708 | public static double momentSkewness(int[] aa){
|
---|
5709 | int n = aa.length;
|
---|
5710 | double denom = (double)(n-1);
|
---|
5711 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
5712 | double sum = 0.0D;
|
---|
5713 | double mean = Stat.mean(aa);
|
---|
5714 | for(int i=0; i<n; i++){
|
---|
5715 | sum+=Math.pow((aa[i]-mean), 3);
|
---|
5716 | }
|
---|
5717 | sum = sum/denom;
|
---|
5718 | return sum/Math.pow(Stat.standardDeviation(aa), 3);
|
---|
5719 | }
|
---|
5720 |
|
---|
5721 |
|
---|
5722 |
|
---|
5723 |
|
---|
5724 | // Median skewness of a 1D array of doubles
|
---|
5725 | public static double medianSkewness(double[] aa){
|
---|
5726 | double mean = Stat.mean(aa);
|
---|
5727 | double median = Stat.median(aa);
|
---|
5728 | double sd = Stat.standardDeviation(aa);
|
---|
5729 | return 3.0*(mean - median)/sd;
|
---|
5730 | }
|
---|
5731 |
|
---|
5732 | // Median skewness of a 1D array of floats
|
---|
5733 | public static float medianSkewness(float[] aa){
|
---|
5734 | float mean = Stat.mean(aa);
|
---|
5735 | float median = Stat.median(aa);
|
---|
5736 | float sd = Stat.standardDeviation(aa);
|
---|
5737 | return 3.0F*(mean - median)/sd;
|
---|
5738 | }
|
---|
5739 |
|
---|
5740 | // Median skewness of a 1D array of BigDecimal
|
---|
5741 | public static double medianSkewness(BigDecimal[] aa){
|
---|
5742 | BigDecimal mean = Stat.mean(aa);
|
---|
5743 | BigDecimal median = Stat.median(aa);
|
---|
5744 | double sd = Stat.standardDeviation(aa);
|
---|
5745 | return 3.0*(mean.subtract(median)).doubleValue()/sd;
|
---|
5746 | }
|
---|
5747 |
|
---|
5748 | // Median skewness of a 1D array of long
|
---|
5749 | public static double medianSkewness(long[] aa){
|
---|
5750 | double mean = Stat.mean(aa);
|
---|
5751 | double median = Stat.median(aa);
|
---|
5752 | double sd = Stat.standardDeviation(aa);
|
---|
5753 | return 3.0*(mean - median)/sd;
|
---|
5754 | }
|
---|
5755 |
|
---|
5756 | // Median skewness of a 1D array of int
|
---|
5757 | public static double medianSkewness(int[] aa){
|
---|
5758 | double mean = Stat.mean(aa);
|
---|
5759 | double median = Stat.median(aa);
|
---|
5760 | double sd = Stat.standardDeviation(aa);
|
---|
5761 | return 3.0*(mean - median)/sd;
|
---|
5762 | }
|
---|
5763 |
|
---|
5764 |
|
---|
5765 | // Quartile skewness of a 1D array of double
|
---|
5766 | public static double quartileSkewness(double[] aa){
|
---|
5767 | int n = aa.length;
|
---|
5768 | double median50 = Stat.median(aa);
|
---|
5769 | int start1 = 0;
|
---|
5770 | int start2 = 0;
|
---|
5771 | int end1 = n/2 - 1;
|
---|
5772 | int end2 = n-1;
|
---|
5773 | if(Fmath.isOdd(n)){
|
---|
5774 | start2 = end1 + 2;
|
---|
5775 | }
|
---|
5776 | else{
|
---|
5777 | start2 = end1 + 1;
|
---|
5778 | }
|
---|
5779 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5780 | double[] first = am.subarray_as_double(start1, end1);
|
---|
5781 | double[] last = am.subarray_as_double(start2, end2);
|
---|
5782 | double median25 = Stat.median(first);
|
---|
5783 | double median75 = Stat.median(last);
|
---|
5784 |
|
---|
5785 | double ret = (median25 - 2.0*median50 + median75)/(median75 - median25);
|
---|
5786 | if(Fmath.isNaN(ret))ret = 1.0;
|
---|
5787 | return ret;
|
---|
5788 | }
|
---|
5789 |
|
---|
5790 | // Quartile skewness of a 1D array of float
|
---|
5791 | public static float quartileSkewness(float[] aa){
|
---|
5792 | int n = aa.length;
|
---|
5793 | float median50 = Stat.median(aa);
|
---|
5794 | int start1 = 0;
|
---|
5795 | int start2 = 0;
|
---|
5796 | int end1 = n/2 - 1;
|
---|
5797 | int end2 = n-1;
|
---|
5798 | if(Fmath.isOdd(n)){
|
---|
5799 | start2 = end1 + 2;
|
---|
5800 | }
|
---|
5801 | else{
|
---|
5802 | start2 = end1 + 1;
|
---|
5803 | }
|
---|
5804 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5805 | float[] first = am.subarray_as_float(start1, end1);
|
---|
5806 | float[] last = am.subarray_as_float(start2, end2);
|
---|
5807 | float median25 = Stat.median(first);
|
---|
5808 | float median75 = Stat.median(last);
|
---|
5809 |
|
---|
5810 | float ret = (median25 - 2.0F*median50 + median75)/(median75 - median25);
|
---|
5811 | if(Fmath.isNaN(ret))ret = 1.0F;
|
---|
5812 | return ret;
|
---|
5813 | }
|
---|
5814 |
|
---|
5815 |
|
---|
5816 | // Quartile skewness of a 1D array of BigDecimal
|
---|
5817 | public static BigDecimal quartileSkewness(BigDecimal[] aa){
|
---|
5818 | int n = aa.length;
|
---|
5819 | BigDecimal median50 = Stat.median(aa);
|
---|
5820 | int start1 = 0;
|
---|
5821 | int start2 = 0;
|
---|
5822 | int end1 = n/2 - 1;
|
---|
5823 | int end2 = n-1;
|
---|
5824 | if(Fmath.isOdd(n)){
|
---|
5825 | start2 = end1 + 2;
|
---|
5826 | }
|
---|
5827 | else{
|
---|
5828 | start2 = end1 + 1;
|
---|
5829 | }
|
---|
5830 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5831 | BigDecimal[] first = am.subarray_as_BigDecimal(start1, end1);
|
---|
5832 | BigDecimal[] last = am.subarray_as_BigDecimal(start2, end2);
|
---|
5833 | BigDecimal median25 = Stat.median(first);
|
---|
5834 | BigDecimal median75 = Stat.median(last);
|
---|
5835 | BigDecimal ret1 = (median25.subtract(median50.multiply(new BigDecimal(2.0)))).add(median75);
|
---|
5836 | BigDecimal ret2 = median75.subtract(median25);
|
---|
5837 | BigDecimal ret = ret1.divide(ret2,BigDecimal.ROUND_HALF_UP);
|
---|
5838 | if(Fmath.isNaN(ret.doubleValue()))ret = new BigDecimal(1.0D);
|
---|
5839 | first = null;
|
---|
5840 | last = null;
|
---|
5841 | median25 = null;
|
---|
5842 | median50 = null;
|
---|
5843 | median75 = null;
|
---|
5844 | ret1 = null;
|
---|
5845 | ret2 = null;
|
---|
5846 | return ret;
|
---|
5847 | }
|
---|
5848 |
|
---|
5849 | // Quartile skewness of a 1D array of BigInteger
|
---|
5850 | public static BigDecimal quartileSkewness(BigInteger[] aa){
|
---|
5851 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5852 | BigDecimal[] bd = am.array_as_BigDecimal();
|
---|
5853 | return Stat.quartileSkewness(bd);
|
---|
5854 | }
|
---|
5855 |
|
---|
5856 |
|
---|
5857 | // Quartile skewness of a 1D array of long
|
---|
5858 | public static double quartileSkewness(long[] aa){
|
---|
5859 | int n = aa.length;
|
---|
5860 | double median50 = Stat.median(aa);
|
---|
5861 | int start1 = 0;
|
---|
5862 | int start2 = 0;
|
---|
5863 | int end1 = n/2 - 1;
|
---|
5864 | int end2 = n-1;
|
---|
5865 | if(Fmath.isOdd(n)){
|
---|
5866 | start2 = end1 + 2;
|
---|
5867 | }
|
---|
5868 | else{
|
---|
5869 | start2 = end1 + 1;
|
---|
5870 | }
|
---|
5871 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5872 | double[] first = am.subarray_as_double(start1, end1);
|
---|
5873 | double[] last = am.subarray_as_double(start2, end2);
|
---|
5874 | double median25 = Stat.median(first);
|
---|
5875 | double median75 = Stat.median(last);
|
---|
5876 |
|
---|
5877 | double ret = (median25 - 2.0*median50 + median75)/(median75 - median25);
|
---|
5878 | if(Fmath.isNaN(ret))ret = 1.0;
|
---|
5879 | return ret;
|
---|
5880 | }
|
---|
5881 |
|
---|
5882 | // Quartile skewness of a 1D array of int
|
---|
5883 | public static double quartileSkewness(int[] aa){
|
---|
5884 | int n = aa.length;
|
---|
5885 | double median50 = Stat.median(aa);
|
---|
5886 | int start1 = 0;
|
---|
5887 | int start2 = 0;
|
---|
5888 | int end1 = n/2 - 1;
|
---|
5889 | int end2 = n-1;
|
---|
5890 | if(Fmath.isOdd(n)){
|
---|
5891 | start2 = end1 + 2;
|
---|
5892 | }
|
---|
5893 | else{
|
---|
5894 | start2 = end1 + 1;
|
---|
5895 | }
|
---|
5896 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5897 | double[] first = am.subarray_as_double(start1, end1);
|
---|
5898 | double[] last = am.subarray_as_double(start2, end2);
|
---|
5899 | double median25 = Stat.median(first);
|
---|
5900 | double median75 = Stat.median(last);
|
---|
5901 |
|
---|
5902 | double ret = (median25 - 2.0*median50 + median75)/(median75 - median25);
|
---|
5903 | if(Fmath.isNaN(ret))ret = 1.0;
|
---|
5904 | return ret;
|
---|
5905 | }
|
---|
5906 |
|
---|
5907 |
|
---|
5908 |
|
---|
5909 | // KURTOSIS
|
---|
5910 | // Static Methods
|
---|
5911 | // Kutosis of a 1D array of doubles
|
---|
5912 | public static double kurtosis(double[] aa){
|
---|
5913 | int n = aa.length;
|
---|
5914 | double denom = (double)(n-1);
|
---|
5915 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
5916 | double sum=0.0D;
|
---|
5917 | double mean = Stat.mean(aa);
|
---|
5918 | for(int i=0; i<n; i++){
|
---|
5919 | sum+=Math.pow((aa[i]-mean), 4);
|
---|
5920 | }
|
---|
5921 |
|
---|
5922 | sum = sum/denom;
|
---|
5923 | double ret = sum/Fmath.square(Stat.variance(aa));
|
---|
5924 | if(Fmath.isNaN(ret))ret = 2.0/denom;
|
---|
5925 | return ret;
|
---|
5926 | }
|
---|
5927 |
|
---|
5928 | public static double curtosis(double[] aa){
|
---|
5929 | return Stat.kurtosis(aa);
|
---|
5930 | }
|
---|
5931 |
|
---|
5932 | // Kutosis excess of a 1D array of doubles
|
---|
5933 | public static double kurtosisExcess(double[] aa){
|
---|
5934 | return Stat.kurtosis(aa) - 3.0D;
|
---|
5935 | }
|
---|
5936 |
|
---|
5937 | public static double curtosisExcess(double[] aa){
|
---|
5938 | return Stat.kurtosisExcess(aa);
|
---|
5939 | }
|
---|
5940 |
|
---|
5941 | public static double excessKurtosis(double[] aa){
|
---|
5942 | return Stat.kurtosisExcess(aa);
|
---|
5943 | }
|
---|
5944 |
|
---|
5945 | public static double excessCurtosis(double[] aa){
|
---|
5946 | return Stat.kurtosisExcess(aa);
|
---|
5947 | }
|
---|
5948 |
|
---|
5949 | // Kutosis of a 1D array of floats
|
---|
5950 | public static float kurtosis(float[] aa){
|
---|
5951 | int n = aa.length;
|
---|
5952 | float denom = (float)(n-1);
|
---|
5953 | if(Stat.nFactorOptionS)denom = (float)n;
|
---|
5954 | float sum=0.0F;
|
---|
5955 | float mean = Stat.mean(aa);
|
---|
5956 | for(int i=0; i<n; i++){
|
---|
5957 | sum+=Math.pow((aa[i]-mean), 4);
|
---|
5958 | }
|
---|
5959 | sum = sum/denom;
|
---|
5960 | float ret = sum/Fmath.square(Stat.variance(aa));
|
---|
5961 | if(Fmath.isNaN(ret))ret = 2.0F/denom;
|
---|
5962 | return ret;
|
---|
5963 | }
|
---|
5964 |
|
---|
5965 | public static float curtosis(float[] aa){
|
---|
5966 | return Stat.kurtosis(aa);
|
---|
5967 | }
|
---|
5968 |
|
---|
5969 | // Kutosis excess of a 1D array of floats
|
---|
5970 | public static float kurtosisExcess(float[] aa){
|
---|
5971 | return Stat.kurtosis(aa) - 3.0F;
|
---|
5972 | }
|
---|
5973 |
|
---|
5974 | public static float curtosisExcess(float[] aa){
|
---|
5975 | return Stat.kurtosisExcess(aa);
|
---|
5976 | }
|
---|
5977 |
|
---|
5978 | public static float excessKurtosis(float[] aa){
|
---|
5979 | return Stat.kurtosisExcess(aa);
|
---|
5980 | }
|
---|
5981 |
|
---|
5982 | public static float excessCurtosis(float[] aa){
|
---|
5983 | return Stat.kurtosisExcess(aa);
|
---|
5984 | }
|
---|
5985 |
|
---|
5986 | // Kutosis of a 1D array of BigInteger
|
---|
5987 | public static BigDecimal kurtosis(BigInteger[] aa){
|
---|
5988 | ArrayMaths am = new ArrayMaths(aa);
|
---|
5989 | BigDecimal[] bd = am.array_as_BigDecimal();
|
---|
5990 | return Stat.kurtosis(bd);
|
---|
5991 | }
|
---|
5992 |
|
---|
5993 | public static BigDecimal curtosis(BigInteger[] aa){
|
---|
5994 | return Stat.kurtosis(aa);
|
---|
5995 | }
|
---|
5996 |
|
---|
5997 | // Kutosis excess of a 1D array of BigInteger
|
---|
5998 | public static BigDecimal kurtosisExcess(BigInteger[] aa){
|
---|
5999 | return Stat.kurtosis(aa).subtract(new BigDecimal("3.0"));
|
---|
6000 | }
|
---|
6001 |
|
---|
6002 | public static BigDecimal curtosisExcess(BigInteger[] aa){
|
---|
6003 | return Stat.kurtosisExcess(aa);
|
---|
6004 | }
|
---|
6005 |
|
---|
6006 | public static BigDecimal excessKurtosis(BigInteger[] aa){
|
---|
6007 | return Stat.kurtosisExcess(aa);
|
---|
6008 | }
|
---|
6009 |
|
---|
6010 | public static BigDecimal excessCurtosis(BigInteger[] aa){
|
---|
6011 | return Stat.kurtosisExcess(aa);
|
---|
6012 | }
|
---|
6013 |
|
---|
6014 |
|
---|
6015 | // Kutosis of a 1D array of BigDecimal
|
---|
6016 | public static BigDecimal kurtosis(BigDecimal[] aa){
|
---|
6017 | int n = aa.length;
|
---|
6018 | double denom = (double)(n-1);
|
---|
6019 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6020 | BigDecimal sum = BigDecimal.ZERO;
|
---|
6021 | BigDecimal mean = Stat.mean(aa);
|
---|
6022 | for(int i=0; i<n; i++){
|
---|
6023 | BigDecimal hold = aa[i].subtract(mean);
|
---|
6024 | sum = sum.add(hold.multiply(hold.multiply(hold.multiply(hold))));
|
---|
6025 | }
|
---|
6026 | sum = sum.divide(new BigDecimal(denom), BigDecimal.ROUND_HALF_UP);
|
---|
6027 | mean = Stat.variance(aa);
|
---|
6028 | if(mean.doubleValue()==0.0){
|
---|
6029 | sum = new BigDecimal(2.0/denom);
|
---|
6030 | }
|
---|
6031 | else{
|
---|
6032 | sum = sum.divide(mean.multiply(mean), BigDecimal.ROUND_HALF_UP);
|
---|
6033 | }
|
---|
6034 | mean = null;
|
---|
6035 | return sum;
|
---|
6036 | }
|
---|
6037 |
|
---|
6038 | public static BigDecimal curtosis(BigDecimal[] aa){
|
---|
6039 | return Stat.kurtosis(aa);
|
---|
6040 | }
|
---|
6041 |
|
---|
6042 | // Kutosis excess of a 1D array of BigDecimal
|
---|
6043 | public static BigDecimal kurtosisExcess(BigDecimal[] aa){
|
---|
6044 | return Stat.kurtosis(aa).subtract(new BigDecimal("3.0"));
|
---|
6045 | }
|
---|
6046 |
|
---|
6047 | public static BigDecimal curtosisExcess(BigDecimal[] aa){
|
---|
6048 | return Stat.kurtosisExcess(aa);
|
---|
6049 | }
|
---|
6050 |
|
---|
6051 | public static BigDecimal excessCurtosis(BigDecimal[] aa){
|
---|
6052 | return Stat.kurtosisExcess(aa);
|
---|
6053 | }
|
---|
6054 |
|
---|
6055 | public static BigDecimal excessKurtosis(BigDecimal[] aa){
|
---|
6056 | return Stat.kurtosisExcess(aa);
|
---|
6057 | }
|
---|
6058 |
|
---|
6059 |
|
---|
6060 | // Kutosis of a 1D array of long
|
---|
6061 | public static double kurtosis(long[] aa){
|
---|
6062 | int n = aa.length;
|
---|
6063 | double denom = (double)(n-1);
|
---|
6064 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6065 | double sum=0.0D;
|
---|
6066 | double mean = Stat.mean(aa);
|
---|
6067 | for(int i=0; i<n; i++){
|
---|
6068 | sum+=Math.pow(((double)aa[i]-mean), 4);
|
---|
6069 | }
|
---|
6070 | sum = sum/denom;
|
---|
6071 | double ret = sum/Fmath.square(Stat.variance(aa));
|
---|
6072 | if(Fmath.isNaN(ret))ret = 2.0/denom;
|
---|
6073 | return ret;
|
---|
6074 | }
|
---|
6075 |
|
---|
6076 | public static double curtosis(long[] aa){
|
---|
6077 | return Stat.kurtosis(aa);
|
---|
6078 | }
|
---|
6079 |
|
---|
6080 | // Kutosis excess of a 1D array of long
|
---|
6081 | public static double kurtosisExcess(long[] aa){
|
---|
6082 | return Stat.kurtosis(aa) - 3.0D;
|
---|
6083 | }
|
---|
6084 |
|
---|
6085 | public static double curtosisExcess(long[] aa){
|
---|
6086 | return Stat.kurtosisExcess(aa);
|
---|
6087 | }
|
---|
6088 |
|
---|
6089 | public static double excessCurtosis(long[] aa){
|
---|
6090 | return Stat.kurtosisExcess(aa);
|
---|
6091 | }
|
---|
6092 |
|
---|
6093 | public static double excessKurtosis(long[] aa){
|
---|
6094 | return Stat.kurtosisExcess(aa);
|
---|
6095 | }
|
---|
6096 |
|
---|
6097 |
|
---|
6098 | // Kutosis of a 1D array of int
|
---|
6099 | public static double kurtosis(int[] aa){
|
---|
6100 | int n = aa.length;
|
---|
6101 | double denom = (double)(n-1);
|
---|
6102 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6103 | double sum=0.0D;
|
---|
6104 | double mean = Stat.mean(aa);
|
---|
6105 | for(int i=0; i<n; i++){
|
---|
6106 | sum+=Math.pow((aa[i]-mean), 4);
|
---|
6107 | }
|
---|
6108 | sum = sum/denom;
|
---|
6109 | double ret = sum/Fmath.square(Stat.variance(aa));
|
---|
6110 | if(Fmath.isNaN(ret))ret = 2.0/denom;
|
---|
6111 | return ret;
|
---|
6112 | }
|
---|
6113 |
|
---|
6114 | public static double curtosis(int[] aa){
|
---|
6115 | return Stat.kurtosis(aa);
|
---|
6116 | }
|
---|
6117 |
|
---|
6118 | // Kutosis excess of a 1D array of int
|
---|
6119 | public static double kurtosisExcess(int[] aa){
|
---|
6120 | return Stat.kurtosis(aa) - 3.0D;
|
---|
6121 | }
|
---|
6122 |
|
---|
6123 | public static double curtosisExcess(int[] aa){
|
---|
6124 | return Stat.kurtosisExcess(aa);
|
---|
6125 | }
|
---|
6126 |
|
---|
6127 | public static double excessCurtosis(int[] aa){
|
---|
6128 | return Stat.kurtosisExcess(aa);
|
---|
6129 | }
|
---|
6130 |
|
---|
6131 | public static double excessKurtosis(int[] aa){
|
---|
6132 | return Stat.kurtosisExcess(aa);
|
---|
6133 | }
|
---|
6134 |
|
---|
6135 | // VARIANCE
|
---|
6136 | // Static methods
|
---|
6137 | // Variance of a 1D array of BigDecimals, aa
|
---|
6138 | public static BigDecimal variance(BigDecimal[] aa){
|
---|
6139 | int n = aa.length;
|
---|
6140 | BigDecimal sum = BigDecimal.ZERO;
|
---|
6141 | BigDecimal mean = Stat.mean(aa);
|
---|
6142 | for(int i=0; i<n; i++){
|
---|
6143 | BigDecimal hold = aa[i].subtract(mean);
|
---|
6144 | sum = sum.add(hold.multiply(hold));
|
---|
6145 | }
|
---|
6146 | BigDecimal ret = sum.divide(new BigDecimal((double)(n-1)), BigDecimal.ROUND_HALF_UP);
|
---|
6147 | if(Stat.nFactorOptionS) ret = sum.divide(new BigDecimal((double)n), BigDecimal.ROUND_HALF_UP);
|
---|
6148 | sum = null;
|
---|
6149 | mean = null;
|
---|
6150 | return ret;
|
---|
6151 | }
|
---|
6152 |
|
---|
6153 |
|
---|
6154 | // Variance of a 1D array of BigIntegers, aa
|
---|
6155 | public static BigDecimal variance(BigInteger[] aa){
|
---|
6156 | int n = aa.length;
|
---|
6157 | BigDecimal sum = BigDecimal.ZERO;
|
---|
6158 | BigDecimal mean = BigDecimal.ZERO;
|
---|
6159 | for(int i=0; i<n; i++){
|
---|
6160 | sum = sum.add(new BigDecimal(aa[i]));
|
---|
6161 | }
|
---|
6162 | mean = sum.divide(new BigDecimal((double)n), BigDecimal.ROUND_HALF_UP);
|
---|
6163 | sum = BigDecimal.ZERO;
|
---|
6164 | for(int i=0; i<n; i++){
|
---|
6165 | BigDecimal hold = new BigDecimal(aa[i]).subtract(mean);
|
---|
6166 | sum = sum.add(hold.multiply(hold));
|
---|
6167 | }
|
---|
6168 | BigDecimal ret = sum.divide(new BigDecimal((double)(n-1)), BigDecimal.ROUND_HALF_UP);
|
---|
6169 | if(Stat.nFactorOptionS) ret = sum.divide(new BigDecimal((double)n), BigDecimal.ROUND_HALF_UP);
|
---|
6170 | sum = null;
|
---|
6171 | mean = null;
|
---|
6172 | return ret;
|
---|
6173 | }
|
---|
6174 |
|
---|
6175 | // Variance of a 1D array of Complex, aa
|
---|
6176 | public static Complex variance(Complex[] aa){
|
---|
6177 | int n = aa.length;
|
---|
6178 | Complex sum = Complex.zero();
|
---|
6179 | Complex mean = Stat.mean(aa);
|
---|
6180 | for(int i=0; i<n; i++){
|
---|
6181 | Complex hold = new Complex(aa[i]).minus(mean);
|
---|
6182 | sum = sum.plus(hold.times(hold));
|
---|
6183 | }
|
---|
6184 | Complex ret = sum.over(new Complex((double)(n-1)));
|
---|
6185 | if(Stat.nFactorOptionS) ret = sum.over(new Complex((double)n));
|
---|
6186 | return ret;
|
---|
6187 | }
|
---|
6188 |
|
---|
6189 | // Variance of a 1D array of Complex, aa, using conjugate formula
|
---|
6190 | public static double varianceConjugateCalcn(Complex[] aa){
|
---|
6191 | int n = aa.length;
|
---|
6192 | Complex sum = Complex.zero();
|
---|
6193 | Complex mean = Stat.mean(aa);
|
---|
6194 | for(int i=0; i<n; i++){
|
---|
6195 | Complex hold = new Complex(aa[i]).minus(mean);
|
---|
6196 | sum = sum.plus(hold.times(hold.conjugate()));
|
---|
6197 | }
|
---|
6198 | double ret = sum.getReal()/(double)(n-1);
|
---|
6199 | if(Stat.nFactorOptionS) ret = sum.getReal()/(double)n;
|
---|
6200 | return ret;
|
---|
6201 | }
|
---|
6202 |
|
---|
6203 |
|
---|
6204 | // Variance of the moduli of a 1D array of Complex aa
|
---|
6205 | public static double varianceModuli(Complex[] aa){
|
---|
6206 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6207 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
6208 | double variance = Stat.variance(rl);
|
---|
6209 | return variance;
|
---|
6210 | }
|
---|
6211 |
|
---|
6212 | // Variance of the real parts of a 1D array of Complex aa
|
---|
6213 | public static double varianceRealParts(Complex[] aa){
|
---|
6214 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6215 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
6216 | double variance = Stat.variance(rl);
|
---|
6217 | return variance;
|
---|
6218 | }
|
---|
6219 |
|
---|
6220 | // Variance of the imaginary parts of a 1D array of Complex aa
|
---|
6221 | public static double varianceImaginaryParts(Complex[] aa){
|
---|
6222 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6223 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
6224 | double variance = Stat.variance(im);
|
---|
6225 | return variance;
|
---|
6226 | }
|
---|
6227 |
|
---|
6228 | // Variance of a 1D array of doubles, aa
|
---|
6229 | public static double variance(double[] aa){
|
---|
6230 | int n = aa.length;
|
---|
6231 | double sum=0.0D;
|
---|
6232 | double mean = Stat.mean(aa);
|
---|
6233 | sum=0.0D;
|
---|
6234 | for(int i=0; i<n; i++){
|
---|
6235 | sum+=Fmath.square(aa[i]-mean);
|
---|
6236 | }
|
---|
6237 | double ret = sum/((double)(n-1));
|
---|
6238 | if(Stat.nFactorOptionS) ret = sum/((double)n);
|
---|
6239 | return ret;
|
---|
6240 | }
|
---|
6241 |
|
---|
6242 | // Variance of a 1D array of floats, aa
|
---|
6243 | public static float variance(float[] aa){
|
---|
6244 | int n = aa.length;
|
---|
6245 | float sum=0.0F;
|
---|
6246 | float mean = Stat.mean(aa);
|
---|
6247 | for(int i=0; i<n; i++){
|
---|
6248 | sum+=Fmath.square(aa[i]-mean);
|
---|
6249 | }
|
---|
6250 | float ret = sum/((float)(n-1));
|
---|
6251 | if(Stat.nFactorOptionS) ret = sum/((float)n);
|
---|
6252 | return ret;
|
---|
6253 | }
|
---|
6254 |
|
---|
6255 | // Variance of a 1D array of int, aa
|
---|
6256 | public static double variance(int[] aa){
|
---|
6257 | int n = aa.length;
|
---|
6258 | double sum=0.0D;
|
---|
6259 | double mean = Stat.mean(aa);
|
---|
6260 | for(int i=0; i<n; i++){
|
---|
6261 | sum+=Fmath.square((double)aa[i]-mean);
|
---|
6262 | }
|
---|
6263 | double ret = sum/((double)(n-1));
|
---|
6264 | if(Stat.nFactorOptionS) ret = sum/((double)n);
|
---|
6265 | return ret;
|
---|
6266 | }
|
---|
6267 |
|
---|
6268 | // Variance of a 1D array of long, aa
|
---|
6269 | public static double variance(long[] aa){
|
---|
6270 | int n = aa.length;
|
---|
6271 | double sum=0.0D;
|
---|
6272 | double mean = Stat.mean(aa);
|
---|
6273 | for(int i=0; i<n; i++){
|
---|
6274 | sum+=Fmath.square((double)aa[i]-mean);
|
---|
6275 | }
|
---|
6276 | double ret = sum/((double)(n-1));
|
---|
6277 | if(Stat.nFactorOptionS) ret = sum/((double)n);
|
---|
6278 | return ret;
|
---|
6279 | }
|
---|
6280 |
|
---|
6281 | // Weighted variance of a 1D array of doubles, aa
|
---|
6282 | public static double variance(double[] aa, double[] ww){
|
---|
6283 | int n = aa.length;
|
---|
6284 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6285 | double nn = Stat.effectiveSampleNumber(ww);
|
---|
6286 | double nterm = nn/(nn - 1.0);
|
---|
6287 | if(Stat.nFactorOptionS)nterm = 1.0;
|
---|
6288 |
|
---|
6289 | double sumx=0.0D, sumw=0.0D, mean=0.0D;
|
---|
6290 | double[] weight = Stat.invertAndSquare(ww);
|
---|
6291 | for(int i=0; i<n; i++){
|
---|
6292 | sumx+=aa[i]*weight[i];
|
---|
6293 | sumw+=weight[i];
|
---|
6294 | }
|
---|
6295 | mean=sumx/sumw;
|
---|
6296 | sumx=0.0D;
|
---|
6297 | for(int i=0; i<n; i++){
|
---|
6298 | sumx+=weight[i]*Fmath.square(aa[i]-mean);
|
---|
6299 | }
|
---|
6300 | return sumx*nterm/sumw;
|
---|
6301 | }
|
---|
6302 |
|
---|
6303 | // Weighted variance of a 1D array of floats, aa
|
---|
6304 | public static float variance(float[] aa, float[] ww){
|
---|
6305 | int n = aa.length;
|
---|
6306 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6307 | float nn = Stat.effectiveSampleNumber(ww);
|
---|
6308 | float nterm = nn/(nn - 1.0F);
|
---|
6309 | if(Stat.nFactorOptionS)nterm = 1.0F;
|
---|
6310 |
|
---|
6311 | float sumx=0.0F, sumw=0.0F, mean=0.0F;
|
---|
6312 | float[] weight = Stat.invertAndSquare(ww);
|
---|
6313 | for(int i=0; i<n; i++){
|
---|
6314 | sumx+=aa[i]*weight[i];
|
---|
6315 | sumw+=weight[i];
|
---|
6316 | }
|
---|
6317 | mean=sumx/sumw;
|
---|
6318 | sumx=0.0F;
|
---|
6319 | for(int i=0; i<n; i++){
|
---|
6320 | sumx+=weight[i]*Fmath.square(aa[i]-mean);
|
---|
6321 | }
|
---|
6322 | return sumx*nterm/sumw;
|
---|
6323 | }
|
---|
6324 |
|
---|
6325 | // Weighted variance of a 1D array of Complex aa
|
---|
6326 | public static Complex variance(Complex[] aa, Complex[] ww){
|
---|
6327 | int n = aa.length;
|
---|
6328 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6329 | Complex nn = Stat.effectiveSampleNumber(ww);
|
---|
6330 | Complex nterm = nn.over(nn.minus(1.0));
|
---|
6331 | if(Stat.nFactorOptionS)nterm = Complex.plusOne();
|
---|
6332 | Complex sumx=Complex.zero();
|
---|
6333 | Complex sumw=Complex.zero();
|
---|
6334 | Complex mean=Complex.zero();
|
---|
6335 | Complex[] weight = Stat.invertAndSquare(ww);
|
---|
6336 | for(int i=0; i<n; i++){
|
---|
6337 | sumx = sumx.plus(aa[i].times(weight[i]));
|
---|
6338 | sumw = sumw.plus(weight[i]);
|
---|
6339 | }
|
---|
6340 | mean=sumx.over(sumw);
|
---|
6341 | sumx=Complex.zero();
|
---|
6342 | for(int i=0; i<n; i++){
|
---|
6343 | Complex hold = aa[i].minus(mean);
|
---|
6344 | sumx = sumx.plus(weight[i].times(hold).times(hold));
|
---|
6345 | }
|
---|
6346 | return (sumx.times(nterm)).over(sumw);
|
---|
6347 | }
|
---|
6348 |
|
---|
6349 | // Weighted variance of a 1D array of Complex aa, using conjugate formula
|
---|
6350 | public static double varianceConjugateCalcn(Complex[] aa, Complex[] ww){
|
---|
6351 | int n = aa.length;
|
---|
6352 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6353 | double nn = Stat.effectiveSampleNumberConjugateCalcn(ww);
|
---|
6354 | double nterm = nn/(nn-1.0);
|
---|
6355 | if(Stat.nFactorOptionS)nterm = 1.0;
|
---|
6356 | Complex sumx=Complex.zero();
|
---|
6357 | Complex sumw=Complex.zero();
|
---|
6358 | Complex sumwc=Complex.zero();
|
---|
6359 | Complex mean=Complex.zero();
|
---|
6360 | Stat st = new Stat(ww);
|
---|
6361 | st = st.invert();
|
---|
6362 | Complex[] weight = st.array_as_Complex();
|
---|
6363 | for(int i=0; i<n; i++){
|
---|
6364 | sumx = sumx.plus(aa[i].times(weight[i].times(weight[i])));
|
---|
6365 | sumw = sumw.plus(weight[i].times(weight[i]));
|
---|
6366 | sumwc = sumwc.plus(weight[i].times(weight[i].conjugate()));
|
---|
6367 | }
|
---|
6368 | mean=sumx.over(sumw);
|
---|
6369 | sumx=Complex.zero();
|
---|
6370 |
|
---|
6371 | for(int i=0; i<n; i++){
|
---|
6372 | Complex hold = aa[i].minus(mean);
|
---|
6373 | sumx = sumx.plus((weight[i].times(weight[i].conjugate())).times(hold).times(hold.conjugate()));
|
---|
6374 | }
|
---|
6375 | return nterm*((sumx.times(nterm)).over(sumwc)).getReal();
|
---|
6376 | }
|
---|
6377 |
|
---|
6378 | // Weighted variance of the moduli of a 1D array of Complex aa
|
---|
6379 | public static double varianceModuli(Complex[] aa, Complex[] ww){
|
---|
6380 | int n = aa.length;
|
---|
6381 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6382 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6383 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
6384 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6385 | double[] wt = wm.array_as_modulus_of_Complex();
|
---|
6386 | double variance = Stat.variance(rl, wt);
|
---|
6387 | return variance;
|
---|
6388 | }
|
---|
6389 |
|
---|
6390 | // Weighted variance of the real parts of a 1D array of Complex aa
|
---|
6391 | public static double varianceRealParts(Complex[] aa, Complex[] ww){
|
---|
6392 | int n = aa.length;
|
---|
6393 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6394 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6395 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
6396 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6397 | double[] wt = wm.array_as_real_part_of_Complex();
|
---|
6398 | double variance = Stat.variance(rl, wt);
|
---|
6399 | return variance;
|
---|
6400 | }
|
---|
6401 |
|
---|
6402 | // Weighted variance of the imaginary parts of a 1D array of Complex aa
|
---|
6403 | public static double varianceImaginaryParts(Complex[] aa, Complex[] ww){
|
---|
6404 | int n = aa.length;
|
---|
6405 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6406 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6407 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
6408 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6409 | double[] wt = wm.array_as_imaginary_part_of_Complex();
|
---|
6410 | double variance = Stat.variance(im, wt);
|
---|
6411 | return variance;
|
---|
6412 | }
|
---|
6413 |
|
---|
6414 |
|
---|
6415 | public static BigDecimal variance(BigDecimal[] aa, BigDecimal[] ww){
|
---|
6416 | int n = aa.length;
|
---|
6417 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6418 | BigDecimal nn = Stat.effectiveSampleNumber(ww);
|
---|
6419 | BigDecimal nterm = nn.divide(nn.subtract(BigDecimal.ONE), BigDecimal.ROUND_HALF_UP);
|
---|
6420 | if(Stat.nFactorOptionS)nterm = BigDecimal.ONE;
|
---|
6421 | BigDecimal sumx=BigDecimal.ZERO;
|
---|
6422 | BigDecimal sumw=BigDecimal.ZERO;
|
---|
6423 | BigDecimal mean=BigDecimal.ZERO;
|
---|
6424 | BigDecimal[] weight = Stat.invertAndSquare(ww);
|
---|
6425 | for(int i=0; i<n; i++){
|
---|
6426 | sumx = sumx.add(aa[i].multiply(weight[i]));
|
---|
6427 | sumw = sumw.add(weight[i]);
|
---|
6428 | }
|
---|
6429 | mean=sumx.divide(sumw, BigDecimal.ROUND_HALF_UP);
|
---|
6430 | sumx=BigDecimal.ZERO;
|
---|
6431 | for(int i=0; i<n; i++){
|
---|
6432 | sumx = sumx.add(weight[i].multiply(aa[i].subtract(mean)).multiply(aa[i].subtract(mean)));
|
---|
6433 | }
|
---|
6434 | sumx = (sumx.multiply(nterm).divide(sumw, BigDecimal.ROUND_HALF_UP));
|
---|
6435 | sumw = null;
|
---|
6436 | mean = null;
|
---|
6437 | weight = null;
|
---|
6438 | nn = null;
|
---|
6439 | nterm = null;
|
---|
6440 | return sumx;
|
---|
6441 | }
|
---|
6442 |
|
---|
6443 | public static BigDecimal variance(BigInteger[] aa, BigInteger[] ww){
|
---|
6444 | int n = aa.length;
|
---|
6445 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6446 | ArrayMaths aab = new ArrayMaths(aa);
|
---|
6447 | ArrayMaths wwb = new ArrayMaths(ww);
|
---|
6448 | return variance(aab.array_as_BigDecimal(), wwb.array_as_BigDecimal());
|
---|
6449 | }
|
---|
6450 |
|
---|
6451 |
|
---|
6452 | // STANDARD ERROR OF THE MEAN
|
---|
6453 |
|
---|
6454 | // Standard error of the mean of a 1D array of BigDecimals, aa
|
---|
6455 | public static double standardError(BigDecimal[] aa){
|
---|
6456 | return Math.sqrt(Stat.variance(aa).doubleValue()/aa.length);
|
---|
6457 | }
|
---|
6458 |
|
---|
6459 | // Standard error of the mean of a 1D array of BigIntegers, aa
|
---|
6460 | public static double standardError(BigInteger[] aa){
|
---|
6461 | return Math.sqrt(Stat.variance(aa).doubleValue()/aa.length);
|
---|
6462 | }
|
---|
6463 |
|
---|
6464 | // Standard error of the mean of a 1D array of Complex, aa
|
---|
6465 | public static Complex standardError(Complex[] aa){
|
---|
6466 | return Complex.sqrt(Stat.variance(aa).over(aa.length));
|
---|
6467 | }
|
---|
6468 |
|
---|
6469 | // Standard error of the mean of a 1D array of Complex, aa, conjugate formula
|
---|
6470 | public static double standardErrorConjugateCalcn(Complex[] aa){
|
---|
6471 | return Math.sqrt(Stat.varianceConjugateCalcn(aa)/aa.length);
|
---|
6472 | }
|
---|
6473 |
|
---|
6474 | // Standard error of the moduli of a 1D array of Complex aa
|
---|
6475 | public static double standardErrorModuli(Complex[] aa){
|
---|
6476 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6477 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
6478 | return Stat.standardError(rl);
|
---|
6479 | }
|
---|
6480 |
|
---|
6481 | // Standard error of the real parts of a 1D array of Complex aa
|
---|
6482 | public static double standardErrorRealParts(Complex[] aa){
|
---|
6483 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6484 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
6485 | return Stat.standardError(rl);
|
---|
6486 | }
|
---|
6487 |
|
---|
6488 | // Standard error of the imaginary parts of a 1D array of Complex aa
|
---|
6489 | public static double standardErrorImaginaryParts(Complex[] aa){
|
---|
6490 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6491 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
6492 | return Stat.standardError(im);
|
---|
6493 | }
|
---|
6494 |
|
---|
6495 | // Standard error of the mean of a 1D array of doubles, aa
|
---|
6496 | public static double standardError(double[] aa){
|
---|
6497 | return Math.sqrt(Stat.variance(aa)/aa.length);
|
---|
6498 | }
|
---|
6499 |
|
---|
6500 | // Standard error of the mean of a 1D array of floats, aa
|
---|
6501 | public static float standardError(float[] aa){
|
---|
6502 | return (float)Math.sqrt(Stat.variance(aa)/aa.length);
|
---|
6503 | }
|
---|
6504 |
|
---|
6505 | // Standard error of the mean of a 1D array of int, aa
|
---|
6506 | public static double standardError(int[] aa){
|
---|
6507 | return Math.sqrt(Stat.variance(aa)/aa.length);
|
---|
6508 | }
|
---|
6509 |
|
---|
6510 | // Standard error of the mean of a 1D array of long, aa
|
---|
6511 | public static double standardError(long[] aa){
|
---|
6512 | return Math.sqrt(Stat.variance(aa)/aa.length);
|
---|
6513 | }
|
---|
6514 |
|
---|
6515 | // Standard error of the weighted mean of a 1D array of Complex, aa
|
---|
6516 | public static Complex standardError(Complex[] aa, Complex[] ww){
|
---|
6517 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
6518 | Complex effectiveNumber = Stat.effectiveSampleNumber(ww);
|
---|
6519 | return Complex.sqrt((Stat.variance(aa, ww)).over(effectiveNumber));
|
---|
6520 | }
|
---|
6521 |
|
---|
6522 | // Standard error of the weighted mean of a 1D array of Complex, aa, using conjugate calculation
|
---|
6523 | public static double standardErrorConjugateCalcn(Complex[] aa, Complex[] ww){
|
---|
6524 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
6525 | double effectiveNumber = Stat.effectiveSampleNumberConjugateCalcn(ww);
|
---|
6526 | return Math.sqrt(Stat.varianceConjugateCalcn(aa, ww)/effectiveNumber);
|
---|
6527 | }
|
---|
6528 |
|
---|
6529 | // Weighted standard error of the moduli of a 1D array of Complex aa
|
---|
6530 | public static double standardErrorModuli(Complex[] aa, Complex[] ww){
|
---|
6531 | int n = aa.length;
|
---|
6532 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6533 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6534 | double[] rl = am.array_as_modulus_of_Complex();
|
---|
6535 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6536 | double[] wt = wm.array_as_modulus_of_Complex();
|
---|
6537 | return Stat.standardError(rl, wt);
|
---|
6538 | }
|
---|
6539 |
|
---|
6540 | // Weighted standard error of the real parts of a 1D array of Complex aa
|
---|
6541 | public static double standardErrorRealParts(Complex[] aa, Complex[] ww){
|
---|
6542 | int n = aa.length;
|
---|
6543 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6544 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6545 | double[] rl = am.array_as_real_part_of_Complex();
|
---|
6546 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6547 | double[] wt = wm.array_as_real_part_of_Complex();
|
---|
6548 | return Stat.standardError(rl, wt);
|
---|
6549 | }
|
---|
6550 |
|
---|
6551 | // Weighted standard error of the imaginary parts of a 1D array of Complex aa
|
---|
6552 | public static double standardErrorImaginaryParts(Complex[] aa, Complex[] ww){
|
---|
6553 | int n = aa.length;
|
---|
6554 | if(n!=ww.length)throw new IllegalArgumentException("length of variable array, " + n + " and length of weight array, " + ww.length + " are different");
|
---|
6555 | ArrayMaths am = new ArrayMaths(aa);
|
---|
6556 | double[] im = am.array_as_imaginary_part_of_Complex();
|
---|
6557 | ArrayMaths wm = new ArrayMaths(ww);
|
---|
6558 | double[] wt = wm.array_as_imaginary_part_of_Complex();
|
---|
6559 | return Stat.standardError(im, wt);
|
---|
6560 | }
|
---|
6561 |
|
---|
6562 |
|
---|
6563 | // Standard error of the weighted mean of a 1D array of BigDecimal, aa
|
---|
6564 | public static double standardError(BigDecimal[] aa, BigDecimal[] ww){
|
---|
6565 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
6566 | double effectiveNumber = (Stat.effectiveSampleNumber(ww)).doubleValue();
|
---|
6567 | return Math.sqrt(Stat.variance(aa, ww).doubleValue()/effectiveNumber);
|
---|
6568 | }
|
---|
6569 |
|
---|
6570 | // Standard error of the weighted mean of a 1D array of BigInteger, aa
|
---|
6571 | public static double standardError(BigInteger[] aa, BigInteger[] ww){
|
---|
6572 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
6573 | double effectiveNumber = (Stat.effectiveSampleNumber(ww)).doubleValue();
|
---|
6574 | return Math.sqrt(Stat.variance(aa, ww).doubleValue()/effectiveNumber);
|
---|
6575 | }
|
---|
6576 |
|
---|
6577 | // Standard error of the weighted mean of a 1D array of doubles, aa
|
---|
6578 | public static double standardError(double[] aa, double[] ww){
|
---|
6579 | if(aa.length!=ww.length)throw new IllegalArgumentException("length of variable array, " + aa.length + " and length of weight array, " + ww.length + " are different");
|
---|
6580 | double effectiveNumber = Stat.effectiveSampleNumber(ww);
|
---|
6581 | return Math.sqrt(Stat.variance(aa, ww)/effectiveNumber);
|
---|
6582 | }
|
---|
6583 |
|
---|
6584 | // Standard error of the weighted mean of a 1D array of floats, aa
|
---|
6585 | public static float standardError(float[] aa, float[] ww){
|
---|
6586 | float effectiveNumber = Stat.effectiveSampleNumber(ww);
|
---|
6587 | return (float)Math.sqrt(Stat.variance(aa, ww)/effectiveNumber);
|
---|
6588 | }
|
---|
6589 |
|
---|
6590 | // COVARIANCE
|
---|
6591 |
|
---|
6592 | // Covariance of two 1D arrays of doubles, xx and yy
|
---|
6593 | public static double covariance(double[] xx, double[] yy){
|
---|
6594 | int n = xx.length;
|
---|
6595 | if(n!=yy.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of y array, " + yy.length + " are different");
|
---|
6596 | double denom = (double)(n-1);
|
---|
6597 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6598 |
|
---|
6599 | double sumx=0.0D, meanx=0.0D;
|
---|
6600 | double sumy=0.0D, meany=0.0D;
|
---|
6601 | for(int i=0; i<n; i++){
|
---|
6602 | sumx+=xx[i];
|
---|
6603 | sumy+=yy[i];
|
---|
6604 | }
|
---|
6605 | meanx=sumx/((double)n);
|
---|
6606 | meany=sumy/((double)n);
|
---|
6607 | double sum=0.0D;
|
---|
6608 | for(int i=0; i<n; i++){
|
---|
6609 | sum+=(xx[i]-meanx)*(yy[i]-meany);
|
---|
6610 | }
|
---|
6611 | return sum/(denom);
|
---|
6612 | }
|
---|
6613 |
|
---|
6614 | // Covariance of two 1D arrays of floats, xx and yy
|
---|
6615 | public static float covariance(float[] xx, float[] yy){
|
---|
6616 | int n = xx.length;
|
---|
6617 | if(n!=yy.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of y array, " + yy.length + " are different");
|
---|
6618 | float denom = (float)(n-1);
|
---|
6619 | if(Stat.nFactorOptionS)denom = (float)n;
|
---|
6620 |
|
---|
6621 | float sumx=0.0F, meanx=0.0F;
|
---|
6622 | float sumy=0.0F, meany=0.0F;
|
---|
6623 | for(int i=0; i<n; i++){
|
---|
6624 | sumx+=xx[i];
|
---|
6625 | sumy+=yy[i];
|
---|
6626 | }
|
---|
6627 | meanx=sumx/((float)n);
|
---|
6628 | meany=sumy/((float)n);
|
---|
6629 | float sum=0.0F;
|
---|
6630 | for(int i=0; i<n; i++){
|
---|
6631 | sum+=(xx[i]-meanx)*(yy[i]-meany);
|
---|
6632 | }
|
---|
6633 | return sum/(denom);
|
---|
6634 | }
|
---|
6635 |
|
---|
6636 | // Covariance of two 1D arrays of ints, xx and yy
|
---|
6637 | public static double covariance(int[] xx, int[] yy){
|
---|
6638 | int n = xx.length;
|
---|
6639 | if(n!=yy.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of y array, " + yy.length + " are different");
|
---|
6640 | double denom = (double)(n-1);
|
---|
6641 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6642 |
|
---|
6643 | double sumx=0.0D, meanx=0.0D;
|
---|
6644 | double sumy=0.0D, meany=0.0D;
|
---|
6645 | for(int i=0; i<n; i++){
|
---|
6646 | sumx+=(double)xx[i];
|
---|
6647 | sumy+=(double)yy[i];
|
---|
6648 | }
|
---|
6649 | meanx=sumx/((double)n);
|
---|
6650 | meany=sumy/((double)n);
|
---|
6651 | double sum=0.0D;
|
---|
6652 | for(int i=0; i<n; i++){
|
---|
6653 | sum+=((double)xx[i]-meanx)*((double)yy[i]-meany);
|
---|
6654 | }
|
---|
6655 | return sum/(denom);
|
---|
6656 | }
|
---|
6657 |
|
---|
6658 | // Covariance of two 1D arrays of ints, xx and yy
|
---|
6659 | public static double covariance(long[] xx, long[] yy){
|
---|
6660 | int n = xx.length;
|
---|
6661 | if(n!=yy.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of y array, " + yy.length + " are different");
|
---|
6662 | double denom = (double)(n-1);
|
---|
6663 | if(Stat.nFactorOptionS)denom = (double)n;
|
---|
6664 |
|
---|
6665 | double sumx=0.0D, meanx=0.0D;
|
---|
6666 | double sumy=0.0D, meany=0.0D;
|
---|
6667 | for(int i=0; i<n; i++){
|
---|
6668 | sumx+=(double)xx[i];
|
---|
6669 | sumy+=(double)yy[i];
|
---|
6670 | }
|
---|
6671 | meanx=sumx/((double)n);
|
---|
6672 | meany=sumy/((double)n);
|
---|
6673 | double sum=0.0D;
|
---|
6674 | for(int i=0; i<n; i++){
|
---|
6675 | sum+=((double)xx[i]-meanx)*((double)yy[i]-meany);
|
---|
6676 | }
|
---|
6677 | return sum/(denom);
|
---|
6678 | }
|
---|
6679 |
|
---|
6680 | // Weighted covariance of two 1D arrays of doubles, xx and yy with weights ww
|
---|
6681 | public static double covariance(double[] xx, double[] yy, double[] ww){
|
---|
6682 | int n = xx.length;
|
---|
6683 | if(n!=yy.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of y array, " + yy.length + " are different");
|
---|
6684 | if(n!=ww.length)throw new IllegalArgumentException("length of x variable array, " + n + " and length of weight array, " + yy.length + " are different");
|
---|
6685 | double nn = Stat.effectiveSampleNumber(ww);
|
---|
6686 | double nterm = nn/(nn - 1.0);
|
---|
6687 | if(Stat.nFactorOptionS)nterm = 1.0;
|
---|
6688 | double sumx=0.0D, sumy=0.0D, sumw=0.0D, meanx=0.0D, meany=0.0D;
|
---|
6689 | double[] weight = Stat.invertAndSquare(ww);
|
---|
6690 | for(int i=0; i<n; i++){
|
---|
6691 | sumx+=xx[i]*weight[i];
|
---|
6692 | sumy+=yy[i]*weight[i];
|
---|
6693 | sumw+=weight[i];
|
---|
6694 | }
|
---|
6695 | meanx=sumx/sumw;
|
---|
6696 | meany=sumy/sumw;
|
---|
6697 |
|
---|
6698 | double sum=0.0D;
|
---|
6699 | for(int i=0; i<n; i++){
|
---|
6700 | sum+=weight[i]*(xx[i]-meanx)*(yy[i]-meany);
|
---|
6701 | }
|
---|
6702 | return sum*nterm/sumw;
|
---|
6703 | }
|
---|
6704 |
|
---|
6705 |
|
---|
6706 | // CORRELATION COEFFICIENT
|
---|
6707 |
|
---|
6708 | // Calculate correlation coefficient
|
---|
6709 | // x y data as double
|
---|
6710 | public static double corrCoeff(double[] xx, double[]yy){
|
---|
6711 |
|
---|
6712 | double temp0 = 0.0D, temp1 = 0.0D; // working variables
|
---|
6713 | int nData = xx.length;
|
---|
6714 | if(yy.length!=nData)throw new IllegalArgumentException("array lengths must be equal");
|
---|
6715 | int df = nData-1;
|
---|
6716 | // means
|
---|
6717 | double mx = 0.0D;
|
---|
6718 | double my = 0.0D;
|
---|
6719 | for(int i=0; i<nData; i++){
|
---|
6720 | mx += xx[i];
|
---|
6721 | my += yy[i];
|
---|
6722 | }
|
---|
6723 | mx /= nData;
|
---|
6724 | my /= nData;
|
---|
6725 |
|
---|
6726 | // calculate sample variances
|
---|
6727 | double s2xx = 0.0D;
|
---|
6728 | double s2yy = 0.0D;
|
---|
6729 | double s2xy = 0.0D;
|
---|
6730 | for(int i=0; i<nData; i++){
|
---|
6731 | s2xx += Fmath.square(xx[i]-mx);
|
---|
6732 | s2yy += Fmath.square(yy[i]-my);
|
---|
6733 | s2xy += (xx[i]-mx)*(yy[i]-my);
|
---|
6734 | }
|
---|
6735 |
|
---|
6736 | // calculate corelation coefficient
|
---|
6737 | double sampleR = s2xy/Math.sqrt(s2xx*s2yy);
|
---|
6738 |
|
---|
6739 | return sampleR;
|
---|
6740 | }
|
---|
6741 |
|
---|
6742 | // Calculate correlation coefficient
|
---|
6743 | // x y data as float
|
---|
6744 | public static float corrCoeff(float[] x, float[] y){
|
---|
6745 | int nData = x.length;
|
---|
6746 | if(y.length!=nData)throw new IllegalArgumentException("array lengths must be equal");
|
---|
6747 | int n = x.length;
|
---|
6748 | double[] xx = new double[n];
|
---|
6749 | double[] yy = new double[n];
|
---|
6750 | for(int i=0; i<n; i++){
|
---|
6751 | xx[i] = (double)x[i];
|
---|
6752 | yy[i] = (double)y[i];
|
---|
6753 | }
|
---|
6754 | return (float)Stat.corrCoeff(xx, yy);
|
---|
6755 | }
|
---|
6756 |
|
---|
6757 | // Calculate correlation coefficient
|
---|
6758 | // x y data as int
|
---|
6759 | public static double corrCoeff(int[] x, int[]y){
|
---|
6760 | int n = x.length;
|
---|
6761 | if(y.length!=n)throw new IllegalArgumentException("array lengths must be equal");
|
---|
6762 |
|
---|
6763 | double[] xx = new double[n];
|
---|
6764 | double[] yy = new double[n];
|
---|
6765 | for(int i=0; i<n; i++){
|
---|
6766 | xx[i] = (double)x[i];
|
---|
6767 | yy[i] = (double)y[i];
|
---|
6768 | }
|
---|
6769 | return Stat.corrCoeff(xx, yy);
|
---|
6770 | }
|
---|
6771 |
|
---|
6772 | // Calculate weighted correlation coefficient
|
---|
6773 | // x y data and weights w as double
|
---|
6774 | public static double corrCoeff(double[] x, double[]y, double[] w){
|
---|
6775 | int n = x.length;
|
---|
6776 | if(y.length!=n)throw new IllegalArgumentException("x and y array lengths must be equal");
|
---|
6777 | if(w.length!=n)throw new IllegalArgumentException("x and weight array lengths must be equal");
|
---|
6778 |
|
---|
6779 | double sxy = Stat.covariance(x, y, w);
|
---|
6780 | double sx = Stat.variance(x, w);
|
---|
6781 | double sy = Stat.variance(y, w);
|
---|
6782 | return sxy/Math.sqrt(sx*sy);
|
---|
6783 | }
|
---|
6784 |
|
---|
6785 | // Calculate correlation coefficient
|
---|
6786 | // Binary data x and y
|
---|
6787 | // Input is the frequency matrix, F, elements, f(i,j)
|
---|
6788 | // f(0,0) - element00 - frequency of x and y both = 1
|
---|
6789 | // f(0,1) - element01 - frequency of x = 0 and y = 1
|
---|
6790 | // f(1,0) - element10 - frequency of x = 1 and y = 0
|
---|
6791 | // f(1,1) - element11 - frequency of x and y both = 0
|
---|
6792 | public static double corrCoeff(int element00, int element01, int element10, int element11){
|
---|
6793 | return ((double)(element00*element11 - element01*element10))/Math.sqrt((double)((element00+element01)*(element10+element11)*(element00+element10)*(element01+element11)));
|
---|
6794 | }
|
---|
6795 |
|
---|
6796 | // Calculate correlation coefficient
|
---|
6797 | // Binary data x and y
|
---|
6798 | // Input is the frequency matrix, F
|
---|
6799 | // F(0,0) - frequency of x and y both = 1
|
---|
6800 | // F(0,1) - frequency of x = 0 and y = 1
|
---|
6801 | // F(1,0) - frequency of x = 1 and y = 0
|
---|
6802 | // F(1,1) - frequency of x and y both = 0
|
---|
6803 | public static double corrCoeff(int[][] freqMatrix){
|
---|
6804 | double element00 = (double)freqMatrix[0][0];
|
---|
6805 | double element01 = (double)freqMatrix[0][1];
|
---|
6806 | double element10 = (double)freqMatrix[1][0];
|
---|
6807 | double element11 = (double)freqMatrix[1][1];
|
---|
6808 | return ((element00*element11 - element01*element10))/Math.sqrt(((element00+element01)*(element10+element11)*(element00+element10)*(element01+element11)));
|
---|
6809 | }
|
---|
6810 |
|
---|
6811 | // Linear correlation coefficient cumulative probablity
|
---|
6812 | // old name calls renamed method
|
---|
6813 | public static double linearCorrCoeffProb(double rCoeff, int nu){
|
---|
6814 | return corrCoeffProb(rCoeff, nu);
|
---|
6815 | }
|
---|
6816 |
|
---|
6817 | // Linear correlation coefficient cumulative probablity
|
---|
6818 | public static double corrCoeffProb(double rCoeff, int nu){
|
---|
6819 | if(Math.abs(rCoeff)>1.0D)throw new IllegalArgumentException("|Correlation coefficient| > 1 : " + rCoeff);
|
---|
6820 |
|
---|
6821 | // Create instances of the classes holding the function evaluation methods
|
---|
6822 | CorrCoeff cc = new CorrCoeff();
|
---|
6823 |
|
---|
6824 | // Assign values to constant in the function
|
---|
6825 | cc.a = ((double)nu - 2.0D)/2.0D;
|
---|
6826 |
|
---|
6827 |
|
---|
6828 | double integral = Integration.gaussQuad(cc, Math.abs(rCoeff), 1.0D, 128);
|
---|
6829 |
|
---|
6830 | double preterm = Math.exp(Stat.logGamma((nu+1.0D)/2.0)-Stat.logGamma(nu/2.0D))/Math.sqrt(Math.PI);
|
---|
6831 |
|
---|
6832 | return preterm*integral;
|
---|
6833 | }
|
---|
6834 |
|
---|
6835 | // Linear correlation coefficient single probablity
|
---|
6836 | // old name calls renamed method
|
---|
6837 | public static double linearCorrCoeff(double rCoeff, int nu){
|
---|
6838 | return Stat.corrCoeffPDF(rCoeff, nu);
|
---|
6839 | }
|
---|
6840 |
|
---|
6841 | // Linear correlation coefficient single probablity
|
---|
6842 | public static double corrCoeffPDF(double rCoeff, int nu){
|
---|
6843 | if(Math.abs(rCoeff)>1.0D)throw new IllegalArgumentException("|Correlation coefficient| > 1 : " + rCoeff);
|
---|
6844 |
|
---|
6845 | double a = ((double)nu - 2.0D)/2.0D;
|
---|
6846 | double y = Math.pow((1.0D - Fmath.square(rCoeff)),a);
|
---|
6847 |
|
---|
6848 | double preterm = Math.exp(Stat.logGamma((nu+1.0D)/2.0)-Stat.logGamma(nu/2.0D))/Math.sqrt(Math.PI);
|
---|
6849 |
|
---|
6850 | return preterm*y;
|
---|
6851 | }
|
---|
6852 |
|
---|
6853 | // Linear correlation coefficient single probablity
|
---|
6854 | public static double corrCoeffPdf(double rCoeff, int nu){
|
---|
6855 | if(Math.abs(rCoeff)>1.0D)throw new IllegalArgumentException("|Correlation coefficient| > 1 : " + rCoeff);
|
---|
6856 |
|
---|
6857 | double a = ((double)nu - 2.0D)/2.0D;
|
---|
6858 | double y = Math.pow((1.0D - Fmath.square(rCoeff)),a);
|
---|
6859 |
|
---|
6860 | double preterm = Math.exp(Stat.logGamma((nu+1.0D)/2.0)-Stat.logGamma(nu/2.0D))/Math.sqrt(Math.PI);
|
---|
6861 |
|
---|
6862 | return preterm*y;
|
---|
6863 | }
|
---|
6864 |
|
---|
6865 | // SHANNON ENTROPY (STATIC METHODS)
|
---|
6866 | // Shannon Entropy returned as bits
|
---|
6867 | public static double shannonEntropy(double[] p){
|
---|
6868 | ArrayMaths am = new ArrayMaths(p);
|
---|
6869 | double max = am.getMaximum_as_double();
|
---|
6870 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
6871 | double min = am.getMinimum_as_double();
|
---|
6872 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
6873 | double total = am.getSum_as_double();
|
---|
6874 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
6875 |
|
---|
6876 | return am.minusxLog2x().getSum_as_double();
|
---|
6877 | }
|
---|
6878 |
|
---|
6879 | // Shannon Entropy returned as bits
|
---|
6880 | public static double shannonEntropyBit(double[] p){
|
---|
6881 | return shannonEntropy(p);
|
---|
6882 | }
|
---|
6883 |
|
---|
6884 | // Shannon Entropy returned as nats (nits)
|
---|
6885 | public static double shannonEntropyNat(double[] p){
|
---|
6886 | ArrayMaths am = new ArrayMaths(p);
|
---|
6887 | double max = am.getMaximum_as_double();
|
---|
6888 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
6889 | double min = am.getMinimum_as_double();
|
---|
6890 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
6891 | double total = am.getSum_as_double();
|
---|
6892 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
6893 |
|
---|
6894 | return am.minusxLogEx().getSum_as_double();
|
---|
6895 | }
|
---|
6896 |
|
---|
6897 | // Shannon Entropy returned as dits
|
---|
6898 | public static double shannonEntropyDit(double[] p){
|
---|
6899 | ArrayMaths am = new ArrayMaths(p);
|
---|
6900 | double max = am.getMaximum_as_double();
|
---|
6901 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
6902 | double min = am.getMinimum_as_double();
|
---|
6903 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
6904 | double total = am.getSum_as_double();
|
---|
6905 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
6906 |
|
---|
6907 | return am.minusxLog10x().getSum_as_double();
|
---|
6908 | }
|
---|
6909 |
|
---|
6910 | // Binary Shannon Entropy returned as bits
|
---|
6911 | public static double binaryShannonEntropy(double p){
|
---|
6912 | if(p>1.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be less than or equal to 1");
|
---|
6913 | if(p<0.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be greater than or equal to 0");
|
---|
6914 | double entropy = 0.0D;
|
---|
6915 | if(p>0.0D && p<1.0D){
|
---|
6916 | entropy = -p*Fmath.log2(p) - (1-p)*Fmath.log2(1-p);
|
---|
6917 | }
|
---|
6918 | return entropy;
|
---|
6919 | }
|
---|
6920 |
|
---|
6921 | // Binary Shannon Entropy returned as bits
|
---|
6922 | public static double binaryShannonEntropyBit(double p){
|
---|
6923 | return binaryShannonEntropy(p);
|
---|
6924 | }
|
---|
6925 |
|
---|
6926 | // Binary Shannon Entropy returned as nats (nits)
|
---|
6927 | public static double binaryShannonEntropyNat(double p){
|
---|
6928 | if(p>1.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be less than or equal to 1");
|
---|
6929 | if(p<0.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be greater than or equal to 0");
|
---|
6930 | double entropy = 0.0D;
|
---|
6931 | if(p>0.0D && p<1.0D){
|
---|
6932 | entropy = -p*Math.log(p) - (1-p)*Math.log(1-p);
|
---|
6933 | }
|
---|
6934 | return entropy;
|
---|
6935 | }
|
---|
6936 |
|
---|
6937 | // Binary Shannon Entropy returned as dits
|
---|
6938 | public static double binaryShannonEntropyDit(double p){
|
---|
6939 | if(p>1.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be less than or equal to 1");
|
---|
6940 | if(p<0.0)throw new IllegalArgumentException("The probabiliy, " + p + ", must be greater than or equal to 0");
|
---|
6941 | double entropy = 0.0D;
|
---|
6942 | if(p>0.0D && p<1.0D){
|
---|
6943 | entropy = -p*Math.log10(p) - (1-p)*Math.log10(1-p);
|
---|
6944 | }
|
---|
6945 | return entropy;
|
---|
6946 |
|
---|
6947 | }
|
---|
6948 |
|
---|
6949 | // RENYI ENTROPY
|
---|
6950 | // Renyi Entropy returned as bits
|
---|
6951 | public static double renyiEntropy(double[] p, double alpha){
|
---|
6952 | ArrayMaths am = new ArrayMaths(p);
|
---|
6953 | double max = am.getMaximum_as_double();
|
---|
6954 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
6955 | double min = am.getMinimum_as_double();
|
---|
6956 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
6957 | double total = am.getSum_as_double();
|
---|
6958 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
6959 | if(alpha<0.0D)throw new IllegalArgumentException("alpha, " + alpha + ", must be greater than or equal to 0");
|
---|
6960 | double entropy = 0.0;
|
---|
6961 | if(alpha==0.0D){
|
---|
6962 | entropy = Fmath.log2(p.length);
|
---|
6963 | }
|
---|
6964 | else{
|
---|
6965 | if(alpha==1.0D){
|
---|
6966 | entropy = Stat.shannonEntropy(p);
|
---|
6967 | }
|
---|
6968 | else{
|
---|
6969 | if(Fmath.isPlusInfinity(alpha)){
|
---|
6970 | entropy = -Fmath.log2(max);
|
---|
6971 | }
|
---|
6972 | else{
|
---|
6973 | if(alpha<=3000){
|
---|
6974 | am = am.pow(alpha);
|
---|
6975 | boolean testUnderFlow = false;
|
---|
6976 | if(am.getMaximum_as_double()==Double.MIN_VALUE)testUnderFlow = true;
|
---|
6977 | entropy = Fmath.log2(am.getSum_as_double())/(1.0D - alpha);
|
---|
6978 | if(Fmath.isPlusInfinity(entropy) || testUnderFlow){
|
---|
6979 | entropy = -Fmath.log2(max);
|
---|
6980 | double entropyMin = entropy;
|
---|
6981 | System.out.println("Stat: renyiEntropy/renyiEntopyBit: underflow or overflow in calculating the entropy");
|
---|
6982 | boolean test1 = true;
|
---|
6983 | boolean test2 = true;
|
---|
6984 | boolean test3 = true;
|
---|
6985 | int iter = 0;
|
---|
6986 | double alpha2 = alpha/2.0;
|
---|
6987 | double entropy2 = 0.0;
|
---|
6988 | while(test3){
|
---|
6989 | while(test1){
|
---|
6990 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
6991 | am2 = am2.pow(alpha2);
|
---|
6992 | entropy2 = Fmath.log2(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
6993 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
6994 | alpha2 /= 2.0D;
|
---|
6995 | iter++;
|
---|
6996 | if(iter==100000){
|
---|
6997 | test1=false;
|
---|
6998 | test2=false;
|
---|
6999 | }
|
---|
7000 | }
|
---|
7001 | else{
|
---|
7002 | test1 = false;
|
---|
7003 | }
|
---|
7004 | }
|
---|
7005 | double alphaTest = alpha2 + 40.0D*alpha/1000.0D;
|
---|
7006 | ArrayMaths am3 = new ArrayMaths(p);
|
---|
7007 | am3 = am3.pow(alphaTest);
|
---|
7008 | double entropy3 = Fmath.log2(am3.getSum_as_double())/(1.0D - alphaTest);
|
---|
7009 | if(!Fmath.isPlusInfinity(entropy3)){
|
---|
7010 | test3=false;
|
---|
7011 | }
|
---|
7012 | else{
|
---|
7013 | alpha2 /= 2.0D;
|
---|
7014 | }
|
---|
7015 | }
|
---|
7016 | double entropyLast = entropy2;
|
---|
7017 | double alphaLast = alpha2;
|
---|
7018 | ArrayList<Double> extrap = new ArrayList<Double>();
|
---|
7019 | if(test2){
|
---|
7020 | double diff = alpha2/1000.0D;
|
---|
7021 | test1 = true;
|
---|
7022 | while(test1){
|
---|
7023 | extrap.add(new Double(alpha2));
|
---|
7024 | extrap.add(new Double(entropy2));
|
---|
7025 | entropyLast = entropy2;
|
---|
7026 | alphaLast = alpha2;
|
---|
7027 | alpha2 += diff;
|
---|
7028 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
7029 | am2 = am2.pow(alpha2);
|
---|
7030 | entropy2 = Fmath.log2(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
7031 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
7032 | test1 = false;
|
---|
7033 | entropy2 = entropyLast;
|
---|
7034 | alpha2 = alphaLast;
|
---|
7035 | }
|
---|
7036 | }
|
---|
7037 | }
|
---|
7038 | int nex = extrap.size()/2 - 20;
|
---|
7039 | double[] alphaex= new double[nex];
|
---|
7040 | double[] entroex= new double[nex];
|
---|
7041 | int ii = -1;
|
---|
7042 | for(int i=0; i<nex; i++){
|
---|
7043 | alphaex[i] = (extrap.get(++ii)).doubleValue();
|
---|
7044 | entroex[i] = Math.log((extrap.get(++ii)).doubleValue() - entropyMin);
|
---|
7045 | }
|
---|
7046 | Regression reg = new Regression(alphaex, entroex);
|
---|
7047 | reg.linear();
|
---|
7048 | double[] param = reg.getCoeff();
|
---|
7049 | entropy = Math.exp(param[0] + param[1]*alpha) + entropyMin;
|
---|
7050 |
|
---|
7051 |
|
---|
7052 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7053 | System.out.println("Lowest calculable value = " + (Math.exp(entroex[nex-1])+entropyMin) + ", alpha = " + alphaex[nex-1]);
|
---|
7054 | System.out.println("Minimum entropy value = " + entropyMin + ", alpha = infinity");
|
---|
7055 | }
|
---|
7056 | }
|
---|
7057 | else{
|
---|
7058 | entropy = -Fmath.log2(max);
|
---|
7059 | System.out.println("Stat: renyiEntropy/renyiEntropyBit: underflow or overflow in calculating the entropy");
|
---|
7060 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7061 | }
|
---|
7062 | }
|
---|
7063 | }
|
---|
7064 | }
|
---|
7065 | return entropy;
|
---|
7066 | }
|
---|
7067 |
|
---|
7068 | // Renyi Entropy returned as nats
|
---|
7069 | public static double renyiEntropyNat(double[] p, double alpha){
|
---|
7070 | ArrayMaths am = new ArrayMaths(p);
|
---|
7071 | double max = am.getMaximum_as_double();
|
---|
7072 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
7073 | double min = am.getMinimum_as_double();
|
---|
7074 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
7075 | double total = am.getSum_as_double();
|
---|
7076 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
7077 | if(alpha<0.0D)throw new IllegalArgumentException("alpha, " + alpha + ", must be greater than or equal to 0");
|
---|
7078 | double entropy = 0.0;
|
---|
7079 | if(alpha==0.0D){
|
---|
7080 | entropy = Math.log(p.length);
|
---|
7081 | }
|
---|
7082 | else{
|
---|
7083 | if(alpha==1.0D){
|
---|
7084 | entropy = Stat.shannonEntropy(p);
|
---|
7085 | }
|
---|
7086 | else{
|
---|
7087 | if(Fmath.isPlusInfinity(alpha)){
|
---|
7088 | entropy = -Math.log(max);
|
---|
7089 | }
|
---|
7090 | else{
|
---|
7091 | if(alpha<=3000){
|
---|
7092 | am = am.pow(alpha);
|
---|
7093 | boolean testUnderFlow = false;
|
---|
7094 | if(am.getMaximum_as_double()==Double.MIN_VALUE)testUnderFlow = true;
|
---|
7095 | entropy = Math.log(am.getSum_as_double())/(1.0D - alpha);
|
---|
7096 | if(Fmath.isPlusInfinity(entropy) || testUnderFlow){
|
---|
7097 | entropy = -Math.log(max);
|
---|
7098 | double entropyMin = entropy;
|
---|
7099 | System.out.println("Stat: renyiEntropyNat: underflow or overflow in calculating the entropy");
|
---|
7100 | boolean test1 = true;
|
---|
7101 | boolean test2 = true;
|
---|
7102 | boolean test3 = true;
|
---|
7103 | int iter = 0;
|
---|
7104 | double alpha2 = alpha/2.0;
|
---|
7105 | double entropy2 = 0.0;
|
---|
7106 | while(test3){
|
---|
7107 | while(test1){
|
---|
7108 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
7109 | am2 = am2.pow(alpha2);
|
---|
7110 | entropy2 = Math.log(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
7111 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
7112 | alpha2 /= 2.0D;
|
---|
7113 | iter++;
|
---|
7114 | if(iter==100000){
|
---|
7115 | test1=false;
|
---|
7116 | test2=false;
|
---|
7117 | }
|
---|
7118 | }
|
---|
7119 | else{
|
---|
7120 | test1 = false;
|
---|
7121 | }
|
---|
7122 | }
|
---|
7123 | double alphaTest = alpha2 + 40.0D*alpha/1000.0D;
|
---|
7124 | ArrayMaths am3 = new ArrayMaths(p);
|
---|
7125 | am3 = am3.pow(alphaTest);
|
---|
7126 | double entropy3 = Math.log(am3.getSum_as_double())/(1.0D - alphaTest);
|
---|
7127 | if(!Fmath.isPlusInfinity(entropy3)){
|
---|
7128 | test3=false;
|
---|
7129 | }
|
---|
7130 | else{
|
---|
7131 | alpha2 /= 2.0D;
|
---|
7132 | }
|
---|
7133 | }
|
---|
7134 | double entropyLast = entropy2;
|
---|
7135 | double alphaLast = alpha2;
|
---|
7136 | ArrayList<Double> extrap = new ArrayList<Double>();
|
---|
7137 | if(test2){
|
---|
7138 | double diff = alpha2/1000.0D;
|
---|
7139 | test1 = true;
|
---|
7140 | while(test1){
|
---|
7141 | extrap.add(new Double(alpha2));
|
---|
7142 | extrap.add(new Double(entropy2));
|
---|
7143 | entropyLast = entropy2;
|
---|
7144 | alphaLast = alpha2;
|
---|
7145 | alpha2 += diff;
|
---|
7146 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
7147 | am2 = am2.pow(alpha2);
|
---|
7148 | entropy2 = Math.log(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
7149 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
7150 | test1 = false;
|
---|
7151 | entropy2 = entropyLast;
|
---|
7152 | alpha2 = alphaLast;
|
---|
7153 | }
|
---|
7154 | }
|
---|
7155 | }
|
---|
7156 | int nex = extrap.size()/2 - 20;
|
---|
7157 | double[] alphaex= new double[nex];
|
---|
7158 | double[] entroex= new double[nex];
|
---|
7159 | int ii = -1;
|
---|
7160 | for(int i=0; i<nex; i++){
|
---|
7161 | alphaex[i] = (extrap.get(++ii)).doubleValue();
|
---|
7162 | entroex[i] = Math.log((extrap.get(++ii)).doubleValue() - entropyMin);
|
---|
7163 | }
|
---|
7164 | Regression reg = new Regression(alphaex, entroex);
|
---|
7165 | reg.linear();
|
---|
7166 | double[] param = reg.getCoeff();
|
---|
7167 | entropy = Math.exp(param[0] + param[1]*alpha) + entropyMin;
|
---|
7168 |
|
---|
7169 |
|
---|
7170 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7171 | System.out.println("Lowest calculable value = " + (Math.exp(entroex[nex-1])+entropyMin) + ", alpha = " + alphaex[nex-1]);
|
---|
7172 | System.out.println("Minimum entropy value = " + entropyMin + ", alpha = infinity");
|
---|
7173 | }
|
---|
7174 | }
|
---|
7175 | else{
|
---|
7176 | entropy = -Math.log(max);
|
---|
7177 | System.out.println("Stat: renyiEntropyNat: underflow or overflow in calculating the entropy");
|
---|
7178 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7179 | }
|
---|
7180 | }
|
---|
7181 | }
|
---|
7182 | }
|
---|
7183 | return entropy;
|
---|
7184 | }
|
---|
7185 |
|
---|
7186 | // Renyi Entropy returned as dits
|
---|
7187 | public static double renyiEntropyDit(double[] p, double alpha){
|
---|
7188 | ArrayMaths am = new ArrayMaths(p);
|
---|
7189 | double max = am.getMaximum_as_double();
|
---|
7190 | if(max>1.0)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
7191 | double min = am.getMinimum_as_double();
|
---|
7192 | if(min<0.0)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
7193 | double total = am.getSum_as_double();
|
---|
7194 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
7195 | if(alpha<0.0D)throw new IllegalArgumentException("alpha, " + alpha + ", must be greater than or equal to 0");
|
---|
7196 | double entropy = 0.0;
|
---|
7197 | if(alpha==0.0D){
|
---|
7198 | entropy = Math.log10(p.length);
|
---|
7199 | }
|
---|
7200 | else{
|
---|
7201 | if(alpha==1.0D){
|
---|
7202 | entropy = Stat.shannonEntropy(p);
|
---|
7203 | }
|
---|
7204 | else{
|
---|
7205 | if(Fmath.isPlusInfinity(alpha)){
|
---|
7206 | entropy = -Math.log10(max);
|
---|
7207 | }
|
---|
7208 | else{
|
---|
7209 | if(alpha<=3000){
|
---|
7210 | am = am.pow(alpha);
|
---|
7211 | boolean testUnderFlow = false;
|
---|
7212 | if(am.getMaximum_as_double()==Double.MIN_VALUE)testUnderFlow = true;
|
---|
7213 | entropy = Math.log10(am.getSum_as_double())/(1.0D - alpha);
|
---|
7214 | if(Fmath.isPlusInfinity(entropy) || testUnderFlow){
|
---|
7215 | entropy = -Math.log10(max);
|
---|
7216 | double entropyMin = entropy;
|
---|
7217 | System.out.println("Stat: renyiEntropyDit: underflow or overflow in calculating the entropy");
|
---|
7218 | boolean test1 = true;
|
---|
7219 | boolean test2 = true;
|
---|
7220 | boolean test3 = true;
|
---|
7221 | int iter = 0;
|
---|
7222 | double alpha2 = alpha/2.0;
|
---|
7223 | double entropy2 = 0.0;
|
---|
7224 | while(test3){
|
---|
7225 | while(test1){
|
---|
7226 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
7227 | am2 = am2.pow(alpha2);
|
---|
7228 | entropy2 = Math.log10(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
7229 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
7230 | alpha2 /= 2.0D;
|
---|
7231 | iter++;
|
---|
7232 | if(iter==100000){
|
---|
7233 | test1=false;
|
---|
7234 | test2=false;
|
---|
7235 | }
|
---|
7236 | }
|
---|
7237 | else{
|
---|
7238 | test1 = false;
|
---|
7239 | }
|
---|
7240 | }
|
---|
7241 | double alphaTest = alpha2 + 40.0D*alpha/1000.0D;
|
---|
7242 | ArrayMaths am3 = new ArrayMaths(p);
|
---|
7243 | am3 = am3.pow(alphaTest);
|
---|
7244 | double entropy3 = Math.log10(am3.getSum_as_double())/(1.0D - alphaTest);
|
---|
7245 | if(!Fmath.isPlusInfinity(entropy3)){
|
---|
7246 | test3=false;
|
---|
7247 | }
|
---|
7248 | else{
|
---|
7249 | alpha2 /= 2.0D;
|
---|
7250 | }
|
---|
7251 | }
|
---|
7252 | double entropyLast = entropy2;
|
---|
7253 | double alphaLast = alpha2;
|
---|
7254 | ArrayList<Double> extrap = new ArrayList<Double>();
|
---|
7255 | if(test2){
|
---|
7256 | double diff = alpha2/1000.0D;
|
---|
7257 | test1 = true;
|
---|
7258 | while(test1){
|
---|
7259 | extrap.add(new Double(alpha2));
|
---|
7260 | extrap.add(new Double(entropy2));
|
---|
7261 | entropyLast = entropy2;
|
---|
7262 | alphaLast = alpha2;
|
---|
7263 | alpha2 += diff;
|
---|
7264 | ArrayMaths am2 = new ArrayMaths(p);
|
---|
7265 | am2 = am2.pow(alpha2);
|
---|
7266 | entropy2 = Math.log10(am2.getSum_as_double())/(1.0D - alpha2);
|
---|
7267 | if(Fmath.isPlusInfinity(entropy2)){
|
---|
7268 | test1 = false;
|
---|
7269 | entropy2 = entropyLast;
|
---|
7270 | alpha2 = alphaLast;
|
---|
7271 | }
|
---|
7272 | }
|
---|
7273 | }
|
---|
7274 | int nex = extrap.size()/2 - 20;
|
---|
7275 | double[] alphaex= new double[nex];
|
---|
7276 | double[] entroex= new double[nex];
|
---|
7277 | int ii = -1;
|
---|
7278 | for(int i=0; i<nex; i++){
|
---|
7279 | alphaex[i] = (extrap.get(++ii)).doubleValue();
|
---|
7280 | entroex[i] = Math.log10((extrap.get(++ii)).doubleValue() - entropyMin);
|
---|
7281 | }
|
---|
7282 | Regression reg = new Regression(alphaex, entroex);
|
---|
7283 | reg.linear();
|
---|
7284 | double[] param = reg.getCoeff();
|
---|
7285 | entropy = Math.exp(param[0] + param[1]*alpha) + entropyMin;
|
---|
7286 |
|
---|
7287 |
|
---|
7288 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7289 | System.out.println("Lowest calculable value = " + (Math.exp(entroex[nex-1])+entropyMin) + ", alpha = " + alphaex[nex-1]);
|
---|
7290 | System.out.println("Minimum entropy value = " + entropyMin + ", alpha = infinity");
|
---|
7291 | }
|
---|
7292 | }
|
---|
7293 | else{
|
---|
7294 | entropy = -Math.log10(max);
|
---|
7295 | System.out.println("Stat: renyiEntropyDit: underflow or overflow in calculating the entropy");
|
---|
7296 | System.out.println("An interpolated entropy of " + entropy + " returned (see documentation for exponential interpolation)");
|
---|
7297 | }
|
---|
7298 | }
|
---|
7299 | }
|
---|
7300 | }
|
---|
7301 | return entropy;
|
---|
7302 | }
|
---|
7303 |
|
---|
7304 |
|
---|
7305 |
|
---|
7306 | // Renyi Entropy returned as bits
|
---|
7307 | public static double renyiEntropyBit(double[] p, double alpha){
|
---|
7308 | return renyiEntropy(p, alpha);
|
---|
7309 | }
|
---|
7310 |
|
---|
7311 |
|
---|
7312 | // TSALLIS ENTROPY (STATIC METHODS)
|
---|
7313 | // Tsallis Entropy
|
---|
7314 | public static double tsallisEntropyNat(double[] p, double q){
|
---|
7315 | ArrayMaths am = new ArrayMaths(p);
|
---|
7316 | double max = am.getMaximum_as_double();
|
---|
7317 | if(max>1.0D)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
7318 | double min = am.getMinimum_as_double();
|
---|
7319 | if(min<0.0D)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
7320 | double total = am.getSum_as_double();
|
---|
7321 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
7322 |
|
---|
7323 | if(q==1.0D){
|
---|
7324 | return Stat.shannonEntropyNat(p);
|
---|
7325 | }
|
---|
7326 | else{
|
---|
7327 | am = am.pow(q);
|
---|
7328 | return (1.0D - am.getSum_as_double())/(q - 1.0D);
|
---|
7329 |
|
---|
7330 | }
|
---|
7331 | }
|
---|
7332 |
|
---|
7333 | // GENERALIZED ENTROPY (STATIC METHOD)
|
---|
7334 | public static double generalizedEntropyOneNat(double[] p, double q, double r){
|
---|
7335 | ArrayMaths am = new ArrayMaths(p);
|
---|
7336 | double max = am.getMaximum_as_double();
|
---|
7337 | if(max>1.0D)throw new IllegalArgumentException("All probabilites must be less than or equal to 1; the maximum supplied probabilty is " + max);
|
---|
7338 | double min = am.getMinimum_as_double();
|
---|
7339 | if(min<0.0D)throw new IllegalArgumentException("All probabilites must be greater than or equal to 0; the minimum supplied probabilty is " + min);
|
---|
7340 | double total = am.getSum_as_double();
|
---|
7341 | if(!Fmath.isEqualWithinPerCent(total, 1.0D, 0.1D))throw new IllegalArgumentException("the probabilites must add up to 1 within an error of 0.1%; they add up to " + total);
|
---|
7342 | if(r==0.0D){
|
---|
7343 | return Stat.renyiEntropyNat(p, q);
|
---|
7344 | }
|
---|
7345 | else{
|
---|
7346 | if(r==1.0D){
|
---|
7347 | return Stat.tsallisEntropyNat(p, q);
|
---|
7348 | }
|
---|
7349 | else{
|
---|
7350 | if(q==1.0D){
|
---|
7351 | double[] tsen = new double[10];
|
---|
7352 | double[] tsqq = new double[10];
|
---|
7353 | double qq = 0.995;
|
---|
7354 | for(int i=0; i<5; i++){
|
---|
7355 | ArrayMaths am1 = am.pow(qq);
|
---|
7356 | tsen[i] = (1.0D - Math.pow(am1.getSum_as_double(), r))/(r*(qq - 1.0));
|
---|
7357 | tsqq[i] = qq;
|
---|
7358 | qq += 0.001;
|
---|
7359 | }
|
---|
7360 | qq = 1.001;
|
---|
7361 | for(int i=5; i<10; i++){
|
---|
7362 | ArrayMaths am1 = am.pow(qq);
|
---|
7363 | tsen[i]= (1.0D - Math.pow(am1.getSum_as_double(), r))/(r*(qq - 1.0));
|
---|
7364 | tsqq[i] = qq;
|
---|
7365 | qq += 0.001;
|
---|
7366 | }
|
---|
7367 | Regression reg = new Regression(tsqq, tsen);
|
---|
7368 | reg.polynomial(2);
|
---|
7369 | double[] param = reg.getCoeff();
|
---|
7370 | return param[0] + param[1] + param[2];
|
---|
7371 | }
|
---|
7372 | else{
|
---|
7373 | am = am.pow(q);
|
---|
7374 | return (1.0D - Math.pow(am.getSum_as_double(), r))/(r*(q - 1.0));
|
---|
7375 | }
|
---|
7376 | }
|
---|
7377 | }
|
---|
7378 | }
|
---|
7379 |
|
---|
7380 | public static double generalisedEntropyOneNat(double[] p, double q, double r){
|
---|
7381 | return generalizedEntropyOneNat(p, q, r);
|
---|
7382 | }
|
---|
7383 |
|
---|
7384 |
|
---|
7385 | // HISTOGRAMS
|
---|
7386 |
|
---|
7387 | // Distribute data into bins to obtain histogram
|
---|
7388 | // zero bin position and upper limit provided
|
---|
7389 | public static double[][] histogramBins(double[] data, double binWidth, double binZero, double binUpper){
|
---|
7390 | int n = 0; // new array length
|
---|
7391 | int m = data.length; // old array length;
|
---|
7392 | for(int i=0; i<m; i++)if(data[i]<=binUpper)n++;
|
---|
7393 | if(n!=m){
|
---|
7394 | double[] newData = new double[n];
|
---|
7395 | int j = 0;
|
---|
7396 | for(int i=0; i<m; i++){
|
---|
7397 | if(data[i]<=binUpper){
|
---|
7398 | newData[j] = data[i];
|
---|
7399 | j++;
|
---|
7400 | }
|
---|
7401 | }
|
---|
7402 | System.out.println((m-n)+" data points, above histogram upper limit, excluded in Stat.histogramBins");
|
---|
7403 | return histogramBins(newData, binWidth, binZero);
|
---|
7404 | }
|
---|
7405 | else{
|
---|
7406 | return histogramBins(data, binWidth, binZero);
|
---|
7407 |
|
---|
7408 | }
|
---|
7409 | }
|
---|
7410 |
|
---|
7411 | // Distribute data into bins to obtain histogram
|
---|
7412 | // zero bin position provided
|
---|
7413 | public static double[][] histogramBins(double[] data, double binWidth, double binZero){
|
---|
7414 | double dmax = Fmath.maximum(data);
|
---|
7415 | int nBins = (int) Math.ceil((dmax - binZero)/binWidth);
|
---|
7416 | if(binZero+nBins*binWidth>dmax)nBins++;
|
---|
7417 | int nPoints = data.length;
|
---|
7418 | int[] dataCheck = new int[nPoints];
|
---|
7419 | for(int i=0; i<nPoints; i++)dataCheck[i]=0;
|
---|
7420 | double[]binWall = new double[nBins+1];
|
---|
7421 | binWall[0]=binZero;
|
---|
7422 | for(int i=1; i<=nBins; i++){
|
---|
7423 | binWall[i] = binWall[i-1] + binWidth;
|
---|
7424 | }
|
---|
7425 | double[][] binFreq = new double[2][nBins];
|
---|
7426 | for(int i=0; i<nBins; i++){
|
---|
7427 | binFreq[0][i]= (binWall[i]+binWall[i+1])/2.0D;
|
---|
7428 | binFreq[1][i]= 0.0D;
|
---|
7429 | }
|
---|
7430 | boolean test = true;
|
---|
7431 |
|
---|
7432 | for(int i=0; i<nPoints; i++){
|
---|
7433 | test=true;
|
---|
7434 | int j=0;
|
---|
7435 | while(test){
|
---|
7436 | if(j==nBins-1){
|
---|
7437 | if(data[i]>=binWall[j] && data[i]<=binWall[j+1]*(1.0D + Stat.histTol)){
|
---|
7438 | binFreq[1][j]+= 1.0D;
|
---|
7439 | dataCheck[i]=1;
|
---|
7440 | test=false;
|
---|
7441 | }
|
---|
7442 | }
|
---|
7443 | else{
|
---|
7444 | if(data[i]>=binWall[j] && data[i]<binWall[j+1]){
|
---|
7445 | binFreq[1][j]+= 1.0D;
|
---|
7446 | dataCheck[i]=1;
|
---|
7447 | test=false;
|
---|
7448 | }
|
---|
7449 | }
|
---|
7450 | if(test){
|
---|
7451 | if(j==nBins-1){
|
---|
7452 | test=false;
|
---|
7453 | }
|
---|
7454 | else{
|
---|
7455 | j++;
|
---|
7456 | }
|
---|
7457 | }
|
---|
7458 | }
|
---|
7459 | }
|
---|
7460 | int nMissed=0;
|
---|
7461 | for(int i=0; i<nPoints; i++)if(dataCheck[i]==0){
|
---|
7462 | nMissed++;
|
---|
7463 | System.out.println("p " + i + " " + data[i] + " " + binWall[0] + " " + binWall[nBins]);
|
---|
7464 | }
|
---|
7465 | if(nMissed>0)System.out.println(nMissed+" data points, outside histogram limits, excluded in Stat.histogramBins");
|
---|
7466 | return binFreq;
|
---|
7467 | }
|
---|
7468 |
|
---|
7469 | // Distribute data into bins to obtain histogram
|
---|
7470 | // zero bin position calculated
|
---|
7471 | public static double[][] histogramBins(double[] data, double binWidth){
|
---|
7472 |
|
---|
7473 | double dmin = Fmath.minimum(data);
|
---|
7474 | double dmax = Fmath.maximum(data);
|
---|
7475 | double span = dmax - dmin;
|
---|
7476 | double binZero = dmin;
|
---|
7477 | int nBins = (int) Math.ceil(span/binWidth);
|
---|
7478 | double histoSpan = ((double)nBins)*binWidth;
|
---|
7479 | double rem = histoSpan - span;
|
---|
7480 | if(rem>=0){
|
---|
7481 | binZero -= rem/2.0D;
|
---|
7482 | }
|
---|
7483 | else{
|
---|
7484 | if(Math.abs(rem)/span>histTol){
|
---|
7485 | // readjust binWidth
|
---|
7486 | boolean testBw = true;
|
---|
7487 | double incr = histTol/nBins;
|
---|
7488 | int iTest = 0;
|
---|
7489 | while(testBw){
|
---|
7490 | binWidth += incr;
|
---|
7491 | histoSpan = ((double)nBins)*binWidth;
|
---|
7492 | rem = histoSpan - span;
|
---|
7493 | if(rem<0){
|
---|
7494 | iTest++;
|
---|
7495 | if(iTest>1000){
|
---|
7496 | testBw = false;
|
---|
7497 | System.out.println("histogram method could not encompass all data within histogram\nContact Michael thomas Flanagan");
|
---|
7498 | }
|
---|
7499 | }
|
---|
7500 | else{
|
---|
7501 | testBw = false;
|
---|
7502 | }
|
---|
7503 | }
|
---|
7504 | }
|
---|
7505 | }
|
---|
7506 |
|
---|
7507 | return Stat.histogramBins(data, binWidth, binZero);
|
---|
7508 | }
|
---|
7509 |
|
---|
7510 | // Distribute data into bins to obtain histogram and plot histogram
|
---|
7511 | // zero bin position and upper limit provided
|
---|
7512 | public static double[][] histogramBinsPlot(double[] data, double binWidth, double binZero, double binUpper){
|
---|
7513 | String xLegend = null;
|
---|
7514 | return histogramBinsPlot(data, binWidth, binZero, binUpper, xLegend);
|
---|
7515 | }
|
---|
7516 |
|
---|
7517 | // Distribute data into bins to obtain histogram and plot histogram
|
---|
7518 | // zero bin position, upper limit and x-axis legend provided
|
---|
7519 | public static double[][] histogramBinsPlot(double[] data, double binWidth, double binZero, double binUpper, String xLegend){
|
---|
7520 | int n = 0; // new array length
|
---|
7521 | int m = data.length; // old array length;
|
---|
7522 | for(int i=0; i<m; i++)if(data[i]<=binUpper)n++;
|
---|
7523 | if(n!=m){
|
---|
7524 | double[] newData = new double[n];
|
---|
7525 | int j = 0;
|
---|
7526 | for(int i=0; i<m; i++){
|
---|
7527 | if(data[i]<=binUpper){
|
---|
7528 | newData[j] = data[i];
|
---|
7529 | j++;
|
---|
7530 | }
|
---|
7531 | }
|
---|
7532 | System.out.println((m-n)+" data points, above histogram upper limit, excluded in Stat.histogramBins");
|
---|
7533 | return histogramBinsPlot(newData, binWidth, binZero, xLegend);
|
---|
7534 | }
|
---|
7535 | else{
|
---|
7536 | return histogramBinsPlot(data, binWidth, binZero, xLegend);
|
---|
7537 |
|
---|
7538 | }
|
---|
7539 | }
|
---|
7540 |
|
---|
7541 | // Distribute data into bins to obtain histogram and plot the histogram
|
---|
7542 | // zero bin position provided
|
---|
7543 | public static double[][] histogramBinsPlot(double[] data, double binWidth, double binZero){
|
---|
7544 | String xLegend = null;
|
---|
7545 | return histogramBinsPlot(data, binWidth, binZero, xLegend);
|
---|
7546 | }
|
---|
7547 |
|
---|
7548 | // Distribute data into bins to obtain histogram and plot the histogram
|
---|
7549 | // zero bin position and x-axis legend provided
|
---|
7550 | public static double[][] histogramBinsPlot(double[] data, double binWidth, double binZero, String xLegend){
|
---|
7551 | double[][] results = histogramBins(data, binWidth, binZero);
|
---|
7552 | int nBins = results[0].length;
|
---|
7553 | int nPoints = nBins*3+1;
|
---|
7554 | double[][] cdata = PlotGraph.data(1, nPoints);
|
---|
7555 | cdata[0][0]=binZero;
|
---|
7556 | cdata[1][0]=0.0D;
|
---|
7557 | int k=1;
|
---|
7558 | for(int i=0; i<nBins; i++){
|
---|
7559 | cdata[0][k]=cdata[0][k-1];
|
---|
7560 | cdata[1][k]=results[1][i];
|
---|
7561 | k++;
|
---|
7562 | cdata[0][k]=cdata[0][k-1]+binWidth;
|
---|
7563 | cdata[1][k]=results[1][i];
|
---|
7564 | k++;
|
---|
7565 | cdata[0][k]=cdata[0][k-1];
|
---|
7566 | cdata[1][k]=0.0D;
|
---|
7567 | k++;
|
---|
7568 | }
|
---|
7569 |
|
---|
7570 | PlotGraph pg = new PlotGraph(cdata);
|
---|
7571 | pg.setGraphTitle("Histogram: Bin Width = "+binWidth);
|
---|
7572 | pg.setLine(3);
|
---|
7573 | pg.setPoint(0);
|
---|
7574 | pg.setYaxisLegend("Frequency");
|
---|
7575 | if(xLegend!=null)pg.setXaxisLegend(xLegend);
|
---|
7576 | pg.plot();
|
---|
7577 |
|
---|
7578 | return results;
|
---|
7579 | }
|
---|
7580 |
|
---|
7581 | // Distribute data into bins to obtain histogram and plot the histogram
|
---|
7582 | // zero bin position calculated
|
---|
7583 | public static double[][] histogramBinsPlot(double[] data, double binWidth){
|
---|
7584 | String xLegend = null;
|
---|
7585 | return Stat.histogramBinsPlot(data, binWidth, xLegend);
|
---|
7586 | }
|
---|
7587 |
|
---|
7588 | // Distribute data into bins to obtain histogram and plot the histogram
|
---|
7589 | // zero bin position calculated, x-axis legend provided
|
---|
7590 | public static double[][] histogramBinsPlot(double[] data, double binWidth, String xLegend){
|
---|
7591 | double dmin = Fmath.minimum(data);
|
---|
7592 | double dmax = Fmath.maximum(data);
|
---|
7593 | double span = dmax - dmin;
|
---|
7594 | int nBins = (int) Math.ceil(span/binWidth);
|
---|
7595 | double rem = ((double)nBins)*binWidth-span;
|
---|
7596 | double binZero =dmin-rem/2.0D;
|
---|
7597 | return Stat.histogramBinsPlot(data, binWidth, binZero, xLegend);
|
---|
7598 | }
|
---|
7599 |
|
---|
7600 |
|
---|
7601 |
|
---|
7602 | // UNIFORM ORDER STATISTIC MEDIANS
|
---|
7603 | public static double[] uniformOrderStatisticMedians(int n){
|
---|
7604 | double nn = (double)n;
|
---|
7605 | double[] uosm = new double[n];
|
---|
7606 | uosm[n-1] = Math.pow(0.5, 1.0/nn);
|
---|
7607 | uosm[0] = 1.0 - uosm[n-1];
|
---|
7608 | for(int i=1; i<n-1; i++){
|
---|
7609 | uosm[i] = (i + 1 - 0.3175)/(nn + 0.365);
|
---|
7610 | }
|
---|
7611 | return uosm;
|
---|
7612 | }
|
---|
7613 |
|
---|
7614 |
|
---|
7615 |
|
---|
7616 | // GAMMA DISTRIBUTION AND GAMMA FUNCTIONS
|
---|
7617 |
|
---|
7618 | // Gamma distribution - three parameter
|
---|
7619 | // Cumulative distribution function
|
---|
7620 | public static double gammaCDF(double mu, double beta, double gamma, double upperLimit){
|
---|
7621 | if(upperLimit<mu)throw new IllegalArgumentException("The upper limit, " + upperLimit + "must be equal to or greater than the location parameter, " + mu);
|
---|
7622 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7623 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7624 | double xx = (upperLimit - mu)/beta;
|
---|
7625 | return regularisedGammaFunction(gamma, xx);
|
---|
7626 | }
|
---|
7627 |
|
---|
7628 | // Gamma distribution - standard
|
---|
7629 | // Cumulative distribution function
|
---|
7630 | public static double gammaCDF(double gamma, double upperLimit){
|
---|
7631 | if(upperLimit<0.0D)throw new IllegalArgumentException("The upper limit, " + upperLimit + "must be equal to or greater than zero");
|
---|
7632 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7633 | return regularisedGammaFunction(gamma, upperLimit);
|
---|
7634 | }
|
---|
7635 |
|
---|
7636 | // Gamma distribution - three parameter
|
---|
7637 | // probablity density function
|
---|
7638 | public static double gammaPDF(double mu, double beta, double gamma, double x){
|
---|
7639 | if(x<mu)throw new IllegalArgumentException("The variable, x, " + x + "must be equal to or greater than the location parameter, " + mu);
|
---|
7640 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7641 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7642 | double xx = (x - mu)/beta;
|
---|
7643 | return Math.pow(xx, gamma-1)*Math.exp(-xx)/(beta*gammaFunction(gamma));
|
---|
7644 | }
|
---|
7645 |
|
---|
7646 | // Gamma distribution - standard
|
---|
7647 | // probablity density function
|
---|
7648 | public static double gammaPDF(double gamma, double x){
|
---|
7649 | if(x<0.0D)throw new IllegalArgumentException("The variable, x, " + x + "must be equal to or greater than zero");
|
---|
7650 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7651 | return Math.pow(x, gamma-1)*Math.exp(-x)/gammaFunction(gamma);
|
---|
7652 | }
|
---|
7653 |
|
---|
7654 | // Gamma distribution - three parameter
|
---|
7655 | // mean
|
---|
7656 | public static double gammaMean(double mu, double beta, double gamma){
|
---|
7657 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7658 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7659 | return gamma*beta - mu;
|
---|
7660 | }
|
---|
7661 |
|
---|
7662 | // Gamma distribution - three parameter
|
---|
7663 | // mode
|
---|
7664 | public static double gammaMode(double mu, double beta, double gamma){
|
---|
7665 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7666 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7667 | double mode = Double.NaN;
|
---|
7668 | if(gamma>=1.0D)mode = (gamma-1.0D)*beta - mu;
|
---|
7669 | return mode;
|
---|
7670 | }
|
---|
7671 |
|
---|
7672 | // Gamma distribution - three parameter
|
---|
7673 | // standard deviation
|
---|
7674 | public static double gammaStandardDeviation(double mu, double beta, double gamma){
|
---|
7675 | return gammaStandDev(mu, beta, gamma);
|
---|
7676 | }
|
---|
7677 |
|
---|
7678 |
|
---|
7679 | // Gamma distribution - three parameter
|
---|
7680 | // standard deviation
|
---|
7681 | public static double gammaStandDev(double mu, double beta, double gamma){
|
---|
7682 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7683 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7684 | return Math.sqrt(gamma)*beta;
|
---|
7685 | }
|
---|
7686 |
|
---|
7687 |
|
---|
7688 | // Returns an array of Gamma random deviates - clock seed
|
---|
7689 | public static double[] gammaRand(double mu, double beta, double gamma, int n){
|
---|
7690 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7691 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7692 | PsRandom psr = new PsRandom();
|
---|
7693 | return psr.gammaArray(mu, beta, gamma, n);
|
---|
7694 | }
|
---|
7695 |
|
---|
7696 | // Returns an array of Gamma random deviates - user supplied seed
|
---|
7697 | public static double[] gammaRand(double mu, double beta, double gamma, int n, long seed){
|
---|
7698 | if(beta<=0.0D)throw new IllegalArgumentException("The scale parameter, " + beta + "must be greater than zero");
|
---|
7699 | if(gamma<=0.0D)throw new IllegalArgumentException("The shape parameter, " + gamma + "must be greater than zero");
|
---|
7700 | PsRandom psr = new PsRandom(seed);
|
---|
7701 | return psr.gammaArray(mu, beta, gamma, n);
|
---|
7702 | }
|
---|
7703 |
|
---|
7704 | // Gamma function
|
---|
7705 | // Lanczos approximation (6 terms)
|
---|
7706 | public static double gammaFunction(double x){
|
---|
7707 |
|
---|
7708 | double xcopy = x;
|
---|
7709 | double first = x + lgfGamma + 0.5;
|
---|
7710 | double second = lgfCoeff[0];
|
---|
7711 | double fg = 0.0D;
|
---|
7712 |
|
---|
7713 | if(x>=0.0){
|
---|
7714 | first = Math.pow(first, x + 0.5)*Math.exp(-first);
|
---|
7715 | for(int i=1; i<=lgfN; i++)second += lgfCoeff[i]/++xcopy;
|
---|
7716 | fg = first*Math.sqrt(2.0*Math.PI)*second/x;
|
---|
7717 | }
|
---|
7718 | else{
|
---|
7719 | fg = -Math.PI/(x*Stat.gamma(-x)*Math.sin(Math.PI*x));
|
---|
7720 | }
|
---|
7721 | return fg;
|
---|
7722 | }
|
---|
7723 |
|
---|
7724 | // Gamma function
|
---|
7725 | // Lanczos approximation (6 terms)
|
---|
7726 | // retained for backward compatibity
|
---|
7727 | public static double gamma(double x){
|
---|
7728 |
|
---|
7729 | double xcopy = x;
|
---|
7730 | double first = x + lgfGamma + 0.5;
|
---|
7731 | double second = lgfCoeff[0];
|
---|
7732 | double fg = 0.0D;
|
---|
7733 |
|
---|
7734 | if(x>=0.0){
|
---|
7735 | first = Math.pow(first, x + 0.5)*Math.exp(-first);
|
---|
7736 | for(int i=1; i<=lgfN; i++)second += lgfCoeff[i]/++xcopy;
|
---|
7737 | fg = first*Math.sqrt(2.0*Math.PI)*second/x;
|
---|
7738 | }
|
---|
7739 | else{
|
---|
7740 | fg = -Math.PI/(x*Stat.gamma(-x)*Math.sin(Math.PI*x));
|
---|
7741 | }
|
---|
7742 | return fg;
|
---|
7743 | }
|
---|
7744 |
|
---|
7745 | // Return the Lanczos constant gamma
|
---|
7746 | public static double getLanczosGamma(){
|
---|
7747 | return Stat.lgfGamma;
|
---|
7748 | }
|
---|
7749 |
|
---|
7750 | // Return the Lanczos constant N (number of coeeficients + 1)
|
---|
7751 | public static int getLanczosN(){
|
---|
7752 | return Stat.lgfN;
|
---|
7753 | }
|
---|
7754 |
|
---|
7755 | // Return the Lanczos coeeficients
|
---|
7756 | public static double[] getLanczosCoeff(){
|
---|
7757 | int n = Stat.getLanczosN()+1;
|
---|
7758 | double[] coef = new double[n];
|
---|
7759 | for(int i=0; i<n; i++){
|
---|
7760 | coef[i] = Stat.lgfCoeff[i];
|
---|
7761 | }
|
---|
7762 | return coef;
|
---|
7763 | }
|
---|
7764 |
|
---|
7765 | // Return the nearest smallest representable floating point number to zero with mantissa rounded to 1.0
|
---|
7766 | public static double getFpmin(){
|
---|
7767 | return Stat.FPMIN;
|
---|
7768 | }
|
---|
7769 |
|
---|
7770 | // log to base e of the Gamma function
|
---|
7771 | // Lanczos approximation (6 terms)
|
---|
7772 | public static double logGammaFunction(double x){
|
---|
7773 | double xcopy = x;
|
---|
7774 | double fg = 0.0D;
|
---|
7775 | double first = x + lgfGamma + 0.5;
|
---|
7776 | double second = lgfCoeff[0];
|
---|
7777 |
|
---|
7778 | if(x>=0.0){
|
---|
7779 | first -= (x + 0.5)*Math.log(first);
|
---|
7780 | for(int i=1; i<=lgfN; i++)second += lgfCoeff[i]/++xcopy;
|
---|
7781 | fg = Math.log(Math.sqrt(2.0*Math.PI)*second/x) - first;
|
---|
7782 | }
|
---|
7783 | else{
|
---|
7784 | fg = Math.PI/(Stat.gamma(1.0D-x)*Math.sin(Math.PI*x));
|
---|
7785 |
|
---|
7786 | if(fg!=1.0/0.0 && fg!=-1.0/0.0){
|
---|
7787 | if(fg<0){
|
---|
7788 | throw new IllegalArgumentException("\nThe gamma function is negative");
|
---|
7789 | }
|
---|
7790 | else{
|
---|
7791 | fg = Math.log(fg);
|
---|
7792 | }
|
---|
7793 | }
|
---|
7794 | }
|
---|
7795 | return fg;
|
---|
7796 | }
|
---|
7797 |
|
---|
7798 | // log to base e of the Gamma function
|
---|
7799 | // Lanczos approximation (6 terms)
|
---|
7800 | // Retained for backward compatibility
|
---|
7801 | public static double logGamma(double x){
|
---|
7802 | double xcopy = x;
|
---|
7803 | double fg = 0.0D;
|
---|
7804 | double first = x + lgfGamma + 0.5;
|
---|
7805 | double second = lgfCoeff[0];
|
---|
7806 |
|
---|
7807 | if(x>=0.0){
|
---|
7808 | first -= (x + 0.5)*Math.log(first);
|
---|
7809 | for(int i=1; i<=lgfN; i++)second += lgfCoeff[i]/++xcopy;
|
---|
7810 | fg = Math.log(Math.sqrt(2.0*Math.PI)*second/x) - first;
|
---|
7811 | }
|
---|
7812 | else{
|
---|
7813 | fg = Math.PI/(Stat.gamma(1.0D-x)*Math.sin(Math.PI*x));
|
---|
7814 |
|
---|
7815 | if(fg!=1.0/0.0 && fg!=-1.0/0.0){
|
---|
7816 | if(fg<0){
|
---|
7817 | throw new IllegalArgumentException("\nThe gamma function is negative");
|
---|
7818 | }
|
---|
7819 | else{
|
---|
7820 | fg = Math.log(fg);
|
---|
7821 | }
|
---|
7822 | }
|
---|
7823 | }
|
---|
7824 | return fg;
|
---|
7825 | }
|
---|
7826 |
|
---|
7827 |
|
---|
7828 | // Inverse Gamma Function
|
---|
7829 | public static double[] inverseGammaFunction(double gamma){
|
---|
7830 | double gammaMinimum = 0.8856031944108839;
|
---|
7831 | double iGammaMinimum = 1.4616321399961483;
|
---|
7832 | if(gamma<gammaMinimum)throw new IllegalArgumentException("Entered argument (gamma) value, " + gamma + ", must be equal to or greater than 0.8856031944108839 - this method does not handle the negative domain");
|
---|
7833 |
|
---|
7834 | double[] igamma = new double[2];
|
---|
7835 |
|
---|
7836 | // required tolerance
|
---|
7837 | double tolerance = 1e-12;
|
---|
7838 |
|
---|
7839 |
|
---|
7840 | // x value between 0 and 1.4616321399961483
|
---|
7841 | if(gamma==1.0){
|
---|
7842 | igamma[0] = 1.0;
|
---|
7843 | }
|
---|
7844 | else{
|
---|
7845 | if(gamma==gammaMinimum){
|
---|
7846 | igamma[0] = iGammaMinimum;
|
---|
7847 | }
|
---|
7848 | else{
|
---|
7849 | // Create instance of the class holding the gamma inverse function
|
---|
7850 | InverseGammaFunct gif1 = new InverseGammaFunct();
|
---|
7851 |
|
---|
7852 | // Set inverse gamma function variable
|
---|
7853 | gif1.gamma = gamma;
|
---|
7854 |
|
---|
7855 | // lower bounds
|
---|
7856 | double lowerBound1 = 0.0;
|
---|
7857 |
|
---|
7858 | // upper bound
|
---|
7859 | double upperBound1 = iGammaMinimum;
|
---|
7860 |
|
---|
7861 | // Create instance of RealRoot
|
---|
7862 | RealRoot realR1 = new RealRoot();
|
---|
7863 |
|
---|
7864 | // Set extension limits
|
---|
7865 | realR1.noBoundsExtensions();
|
---|
7866 |
|
---|
7867 | // Set tolerance
|
---|
7868 | realR1.setTolerance(tolerance);
|
---|
7869 |
|
---|
7870 | // Supress error messages and arrange for NaN to be returned as root if root not found
|
---|
7871 | realR1.resetNaNexceptionToTrue();
|
---|
7872 | realR1.supressLimitReachedMessage();
|
---|
7873 | realR1.supressNaNmessage();
|
---|
7874 |
|
---|
7875 | // call root searching method
|
---|
7876 | igamma[0] = realR1.bisect(gif1, lowerBound1, upperBound1);
|
---|
7877 | }
|
---|
7878 | }
|
---|
7879 |
|
---|
7880 | // x value above 1.4616321399961483
|
---|
7881 | if(gamma==1.0){
|
---|
7882 | igamma[1] = 2.0;
|
---|
7883 | }
|
---|
7884 | else{
|
---|
7885 | if(gamma==gammaMinimum){
|
---|
7886 | igamma[1] = iGammaMinimum;
|
---|
7887 | }
|
---|
7888 | else{
|
---|
7889 | // Create instance of the class holding the gamma inverse function
|
---|
7890 | InverseGammaFunct gif2 = new InverseGammaFunct();
|
---|
7891 |
|
---|
7892 | // Set inverse gamma function variable
|
---|
7893 | gif2.gamma = gamma;
|
---|
7894 |
|
---|
7895 | // bounds
|
---|
7896 | double lowerBound2 = iGammaMinimum;
|
---|
7897 | double upperBound2 = 2.0;
|
---|
7898 | double ii = 2.0;
|
---|
7899 | double gii = Stat.gamma(ii);
|
---|
7900 | if(gamma>gii){
|
---|
7901 | boolean test = true;
|
---|
7902 | while(test){
|
---|
7903 | ii += 1.0;
|
---|
7904 | gii = Stat.gamma(ii);
|
---|
7905 | if(gamma<=gii){
|
---|
7906 | upperBound2 = ii;
|
---|
7907 | lowerBound2 = ii - 1.0;
|
---|
7908 | test = false;
|
---|
7909 | }
|
---|
7910 | }
|
---|
7911 | }
|
---|
7912 |
|
---|
7913 | // Create instance of RealRoot
|
---|
7914 | RealRoot realR2 = new RealRoot();
|
---|
7915 |
|
---|
7916 | // Set extension limits
|
---|
7917 | realR2.noBoundsExtensions();
|
---|
7918 |
|
---|
7919 | // Set tolerance
|
---|
7920 | realR2.setTolerance(tolerance);
|
---|
7921 |
|
---|
7922 | // Supress error messages and arrange for NaN to be returned as root if root not found
|
---|
7923 | realR2.resetNaNexceptionToTrue();
|
---|
7924 | realR2.supressLimitReachedMessage();
|
---|
7925 | realR2.supressNaNmessage();
|
---|
7926 |
|
---|
7927 | // call root searching method
|
---|
7928 | igamma[1] = realR2.bisect(gif2, lowerBound2, upperBound2);
|
---|
7929 | }
|
---|
7930 | }
|
---|
7931 |
|
---|
7932 | return igamma;
|
---|
7933 | }
|
---|
7934 |
|
---|
7935 | // Return Gamma function minimum
|
---|
7936 | // First element contains the Gamma Function minimum value
|
---|
7937 | // Second element contains the x value at which the minimum occors
|
---|
7938 | public static double[] gammaFunctionMinimum(){
|
---|
7939 | double[] ret = {0.8856031944108839, 1.4616321399961483};
|
---|
7940 | return ret;
|
---|
7941 | }
|
---|
7942 |
|
---|
7943 |
|
---|
7944 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
7945 | public static double regularisedGammaFunction(double a, double x){
|
---|
7946 | if(a<0.0D || x<0.0D)throw new IllegalArgumentException("\nFunction defined only for a >= 0 and x>=0");
|
---|
7947 |
|
---|
7948 | Stat.igSupress = true;
|
---|
7949 | double igf = 0.0D;
|
---|
7950 |
|
---|
7951 | if(x!=0){
|
---|
7952 | if(x < a+1.0D){
|
---|
7953 | // Series representation
|
---|
7954 | igf = incompleteGammaSer(a, x);
|
---|
7955 | }
|
---|
7956 | else{
|
---|
7957 | // Continued fraction representation
|
---|
7958 | igf = incompleteGammaFract(a, x);
|
---|
7959 | }
|
---|
7960 | if(igf!=igf)igf = 1.0 - Stat.crigfGaussQuad(a, x);
|
---|
7961 | }
|
---|
7962 | if(igf<0.0)igf = 0.0;
|
---|
7963 | Stat.igSupress = false;
|
---|
7964 | return igf;
|
---|
7965 | }
|
---|
7966 |
|
---|
7967 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
7968 | public static double regularizedGammaFunction(double a, double x){
|
---|
7969 | return regularisedGammaFunction(a, x);
|
---|
7970 | }
|
---|
7971 |
|
---|
7972 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
7973 | // Retained for backward compatibility
|
---|
7974 | public static double regIncompleteGamma(double a, double x){
|
---|
7975 | return regularisedGammaFunction(a, x);
|
---|
7976 | }
|
---|
7977 |
|
---|
7978 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
7979 | // Retained for backward compatibility
|
---|
7980 | public static double incompleteGamma(double a, double x){
|
---|
7981 | return regularisedGammaFunction(a, x);
|
---|
7982 | }
|
---|
7983 |
|
---|
7984 | // Complementary Regularised Incomplete Gamma Function Q(a,x) = 1 - P(a,x) = 1 - integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
7985 | public static double complementaryRegularisedGammaFunction(double a, double x){
|
---|
7986 | if(a<0.0D || x<0.0D)throw new IllegalArgumentException("\nFunction defined only for a >= 0 and x>=0");
|
---|
7987 |
|
---|
7988 | Stat.igSupress = true;
|
---|
7989 | double igf = 1.0D;
|
---|
7990 |
|
---|
7991 | if(x!=0.0D){
|
---|
7992 | if(x==1.0D/0.0D)
|
---|
7993 | {
|
---|
7994 | igf=0.0D;
|
---|
7995 | }
|
---|
7996 | else{
|
---|
7997 | if(x < a+1.0D){
|
---|
7998 | // Series representation
|
---|
7999 | igf = 1.0 - Stat.incompleteGammaSer(a, x);
|
---|
8000 | }
|
---|
8001 | else{
|
---|
8002 | // Continued fraction representation
|
---|
8003 | igf = 1.0 - Stat.incompleteGammaFract(a, x);
|
---|
8004 | }
|
---|
8005 | }
|
---|
8006 | if(igf!=igf)igf = Stat.crigfGaussQuad(a, x);
|
---|
8007 | }
|
---|
8008 | if(igf>1.0)igf = 1.0;
|
---|
8009 | Stat.igSupress = false;
|
---|
8010 | return igf;
|
---|
8011 | }
|
---|
8012 |
|
---|
8013 | // Complementary Regularised Incomplete Gamma Function Q(a,x) = 1 - P(a,x) = 1 - integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
8014 | public static double complementaryRegularizedGammaFunction(double a, double x){
|
---|
8015 | return complementaryRegularisedGammaFunction(a , x);
|
---|
8016 | }
|
---|
8017 |
|
---|
8018 | // Complementary Regularised Incomplete Gamma Function Q(a,x) = 1 - P(a,x) = 1 - integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
8019 | // Retained for backward compatibility
|
---|
8020 | public static double incompleteGammaComplementary(double a, double x){
|
---|
8021 | return complementaryRegularisedGammaFunction(a , x);
|
---|
8022 | }
|
---|
8023 |
|
---|
8024 | // Complementary Regularised Incomplete Gamma Function Q(a,x) = 1 - P(a,x) = 1 - integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
8025 | // Retained for backward compatibility
|
---|
8026 | public static double regIncompleteGammaComplementary(double a, double x){
|
---|
8027 | return complementaryRegularisedGammaFunction(a , x);
|
---|
8028 | }
|
---|
8029 |
|
---|
8030 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
8031 | // Series representation of the function - valid for x < a + 1
|
---|
8032 | public static double incompleteGammaSer(double a, double x){
|
---|
8033 | if(a<0.0D || x<0.0D)throw new IllegalArgumentException("\nFunction defined only for a >= 0 and x>=0");
|
---|
8034 | if(x>=a+1) throw new IllegalArgumentException("\nx >= a+1 use Continued Fraction Representation");
|
---|
8035 |
|
---|
8036 | double igf = 0.0D;
|
---|
8037 |
|
---|
8038 | if(x!=0.0D){
|
---|
8039 |
|
---|
8040 | int i = 0;
|
---|
8041 | boolean check = true;
|
---|
8042 |
|
---|
8043 | double acopy = a;
|
---|
8044 | double sum = 1.0/a;
|
---|
8045 | double incr = sum;
|
---|
8046 | double loggamma = Stat.logGamma(a);
|
---|
8047 |
|
---|
8048 | while(check){
|
---|
8049 | ++i;
|
---|
8050 | ++a;
|
---|
8051 | incr *= x/a;
|
---|
8052 | sum += incr;
|
---|
8053 | if(Math.abs(incr) < Math.abs(sum)*Stat.igfeps){
|
---|
8054 | igf = sum*Math.exp(-x+acopy*Math.log(x)- loggamma);
|
---|
8055 | check = false;
|
---|
8056 | }
|
---|
8057 | if(i>=Stat.igfiter){
|
---|
8058 | check=false;
|
---|
8059 | igf = Double.NaN;
|
---|
8060 | if(!Stat.igSupress){
|
---|
8061 | System.out.println("\nMaximum number of iterations were exceeded in Stat.incompleteGammaSer().");
|
---|
8062 | System.out.println("NaN returned.\nIncrement = "+String.valueOf(incr)+".");
|
---|
8063 | System.out.println("Sum = "+String.valueOf(sum)+".\nTolerance = "+String.valueOf(igfeps));
|
---|
8064 | }
|
---|
8065 | }
|
---|
8066 | }
|
---|
8067 | }
|
---|
8068 |
|
---|
8069 | return igf;
|
---|
8070 | }
|
---|
8071 |
|
---|
8072 | // Regularised Incomplete Gamma Function P(a,x) = integral from zero to x of (exp(-t)t^(a-1))dt
|
---|
8073 | // Continued Fraction representation of the function - valid for x >= a + 1
|
---|
8074 | // This method follows the general procedure used in Numerical Recipes for C,
|
---|
8075 | // The Art of Scientific Computing
|
---|
8076 | // by W H Press, S A Teukolsky, W T Vetterling & B P Flannery
|
---|
8077 | // Cambridge University Press, http://www.nr.com/
|
---|
8078 | public static double incompleteGammaFract(double a, double x){
|
---|
8079 | if(a<0.0D || x<0.0D)throw new IllegalArgumentException("\nFunction defined only for a >= 0 and x>=0");
|
---|
8080 | if(x<a+1) throw new IllegalArgumentException("\nx < a+1 Use Series Representation");
|
---|
8081 |
|
---|
8082 | double igf = 0.0D;
|
---|
8083 |
|
---|
8084 | if(x!=0.0D){
|
---|
8085 |
|
---|
8086 | int i = 0;
|
---|
8087 | double ii = 0;
|
---|
8088 | boolean check = true;
|
---|
8089 |
|
---|
8090 | double loggamma = Stat.logGamma(a);
|
---|
8091 | double numer = 0.0D;
|
---|
8092 | double incr = 0.0D;
|
---|
8093 | double denom = x - a + 1.0D;
|
---|
8094 | double first = 1.0D/denom;
|
---|
8095 | double term = 1.0D/FPMIN;
|
---|
8096 | double prod = first;
|
---|
8097 |
|
---|
8098 | while(check){
|
---|
8099 | ++i;
|
---|
8100 | ii = (double)i;
|
---|
8101 | numer = -ii*(ii - a);
|
---|
8102 | denom += 2.0D;
|
---|
8103 | first = numer*first + denom;
|
---|
8104 | if(Math.abs(first) < Stat.FPMIN){
|
---|
8105 | first = Stat.FPMIN;
|
---|
8106 | }
|
---|
8107 | term = denom + numer/term;
|
---|
8108 | if(Math.abs(term) < Stat.FPMIN){
|
---|
8109 | term = Stat.FPMIN;
|
---|
8110 | }
|
---|
8111 | first = 1.0D/first;
|
---|
8112 | incr = first*term;
|
---|
8113 | prod *= incr;
|
---|
8114 | if(Math.abs(incr - 1.0D) < igfeps)check = false;
|
---|
8115 | if(i>=Stat.igfiter){
|
---|
8116 | check=false;
|
---|
8117 | igf = Double.NaN;
|
---|
8118 | if(!Stat.igSupress){
|
---|
8119 | System.out.println("\nMaximum number of iterations were exceeded in Stat.incompleteGammaFract().");
|
---|
8120 | System.out.println("NaN returned.\nIncrement - 1 = "+String.valueOf(incr-1)+".");
|
---|
8121 | System.out.println("Tolerance = "+String.valueOf(igfeps));
|
---|
8122 | }
|
---|
8123 | }
|
---|
8124 | }
|
---|
8125 | igf = 1.0D - Math.exp(-x+a*Math.log(x)-loggamma)*prod;
|
---|
8126 | }
|
---|
8127 |
|
---|
8128 | return igf;
|
---|
8129 | }
|
---|
8130 |
|
---|
8131 | // Guassian quadrature estimation of the complementary regularised incomplete gamma function
|
---|
8132 | private static double crigfGaussQuad(double a, double x){
|
---|
8133 | double sum = 0.0;
|
---|
8134 |
|
---|
8135 | // set increment details
|
---|
8136 | double upper = 100.0*a;
|
---|
8137 | double range = upper - x;
|
---|
8138 | double incr = 0;
|
---|
8139 | if(upper>x && range >100){
|
---|
8140 | incr = range/1000;
|
---|
8141 | }
|
---|
8142 | else{
|
---|
8143 | upper = x + 100.0;
|
---|
8144 | range = 100.0;
|
---|
8145 | incr = 0.1;
|
---|
8146 | }
|
---|
8147 | int nIncr = (int)Math.round(range/incr);
|
---|
8148 | incr = range/nIncr;
|
---|
8149 |
|
---|
8150 | // Instantiate integration function
|
---|
8151 | CrigFunct f1 = new CrigFunct();
|
---|
8152 | f1.setA(a);
|
---|
8153 | f1.setB(Stat.logGammaFunction(a));
|
---|
8154 |
|
---|
8155 | // Instantiate Integration
|
---|
8156 | Integration intgn1 = new Integration(f1);
|
---|
8157 | double xx = x;
|
---|
8158 | double yy = x + incr;
|
---|
8159 | intgn1.setLimits(xx, yy);
|
---|
8160 |
|
---|
8161 | // Perform quadrature
|
---|
8162 | sum = intgn1.gaussQuad(64);
|
---|
8163 | boolean test2 = true;
|
---|
8164 | for(int i=1; i<nIncr; i++){
|
---|
8165 | xx = yy;
|
---|
8166 | yy = xx + incr;
|
---|
8167 | intgn1.setLimits(xx, yy);
|
---|
8168 | sum += intgn1.gaussQuad(64);
|
---|
8169 | }
|
---|
8170 | return sum;
|
---|
8171 | }
|
---|
8172 |
|
---|
8173 | // Suppress error message in incomplete gamma series and incomplete gamma fraction methods supressed
|
---|
8174 | public static void igSupress(){
|
---|
8175 | Stat.igSupress = true;
|
---|
8176 | }
|
---|
8177 |
|
---|
8178 | // Reset the maximum number of iterations allowed in the calculation of the incomplete gamma functions
|
---|
8179 | public static void setIncGammaMaxIter(int igfiter){
|
---|
8180 | Stat.igfiter=igfiter;
|
---|
8181 | }
|
---|
8182 |
|
---|
8183 | // Return the maximum number of iterations allowed in the calculation of the incomplete gamma functions
|
---|
8184 | public static int getIncGammaMaxIter(){
|
---|
8185 | return Stat.igfiter;
|
---|
8186 | }
|
---|
8187 |
|
---|
8188 | // Reset the tolerance used in the calculation of the incomplete gamma functions
|
---|
8189 | public static void setIncGammaTol(double igfeps){
|
---|
8190 | Stat.igfeps=igfeps;
|
---|
8191 | }
|
---|
8192 |
|
---|
8193 | // Return the tolerance used in the calculation of the incomplete gamm functions
|
---|
8194 | public static double getIncGammaTol(){
|
---|
8195 | return Stat.igfeps;
|
---|
8196 | }
|
---|
8197 |
|
---|
8198 | // FACTORIALS
|
---|
8199 |
|
---|
8200 | // factorial of n
|
---|
8201 | // argument and return are integer, therefore limited to 0<=n<=12
|
---|
8202 | // see below for long and double arguments
|
---|
8203 | public static int factorial(int n){
|
---|
8204 | if(n<0)throw new IllegalArgumentException("n must be a positive integer");
|
---|
8205 | if(n>12)throw new IllegalArgumentException("n must less than 13 to avoid integer overflow\nTry long or double argument");
|
---|
8206 | int f = 1;
|
---|
8207 | for(int i=2; i<=n; i++)f*=i;
|
---|
8208 | return f;
|
---|
8209 | }
|
---|
8210 |
|
---|
8211 | // factorial of n
|
---|
8212 | // argument and return are long, therefore limited to 0<=n<=20
|
---|
8213 | // see below for double argument
|
---|
8214 | public static long factorial(long n){
|
---|
8215 | if(n<0)throw new IllegalArgumentException("n must be a positive integer");
|
---|
8216 | if(n>20)throw new IllegalArgumentException("n must less than 21 to avoid long integer overflow\nTry double argument");
|
---|
8217 | long f = 1;
|
---|
8218 | long iCount = 2L;
|
---|
8219 | while(iCount<=n){
|
---|
8220 | f*=iCount;
|
---|
8221 | iCount += 1L;
|
---|
8222 | }
|
---|
8223 | return f;
|
---|
8224 | }
|
---|
8225 |
|
---|
8226 | // factorial of n
|
---|
8227 | // Argument is of type BigInteger
|
---|
8228 | public static BigInteger factorial(BigInteger n){
|
---|
8229 | if(n.compareTo(BigInteger.ZERO)==-1)throw new IllegalArgumentException("\nn must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8230 | BigInteger one = BigInteger.ONE;
|
---|
8231 | BigInteger f = one;
|
---|
8232 | BigInteger iCount = new BigInteger("2");
|
---|
8233 | while(iCount.compareTo(n)!=1){
|
---|
8234 | f = f.multiply(iCount);
|
---|
8235 | iCount = iCount.add(one);
|
---|
8236 | }
|
---|
8237 | one = null;
|
---|
8238 | iCount = null;
|
---|
8239 | return f;
|
---|
8240 | }
|
---|
8241 |
|
---|
8242 | // factorial of n
|
---|
8243 | // Argument is of type double but must be, numerically, an integer
|
---|
8244 | // factorial returned as double but is, numerically, should be an integer
|
---|
8245 | // numerical rounding may makes this an approximation after n = 21
|
---|
8246 | public static double factorial(double n){
|
---|
8247 | if(n<0 || (n-Math.floor(n))!=0)throw new IllegalArgumentException("\nn must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8248 | double f = 1.0D;
|
---|
8249 | double iCount = 2.0D;
|
---|
8250 | while(iCount<=n){
|
---|
8251 | f*=iCount;
|
---|
8252 | iCount += 1.0D;
|
---|
8253 | }
|
---|
8254 | return f;
|
---|
8255 | }
|
---|
8256 |
|
---|
8257 | // factorial of n
|
---|
8258 | // Argument is of type BigDecimal but must be, numerically, an integer
|
---|
8259 | public static BigDecimal factorial(BigDecimal n){
|
---|
8260 | if(n.compareTo(BigDecimal.ZERO)==-1 || !Fmath.isInteger(n))throw new IllegalArgumentException("\nn must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8261 | BigDecimal one = BigDecimal.ONE;
|
---|
8262 | BigDecimal f = one;
|
---|
8263 | BigDecimal iCount = new BigDecimal(2.0D);
|
---|
8264 | while(iCount.compareTo(n)!=1){
|
---|
8265 | f = f.multiply(iCount);
|
---|
8266 | iCount = iCount.add(one);
|
---|
8267 | }
|
---|
8268 | one = null;
|
---|
8269 | iCount = null;
|
---|
8270 | return f;
|
---|
8271 | }
|
---|
8272 |
|
---|
8273 |
|
---|
8274 | // log to base e of the factorial of n
|
---|
8275 | // log[e](factorial) returned as double
|
---|
8276 | // numerical rounding may makes this an approximation
|
---|
8277 | public static double logFactorial(int n){
|
---|
8278 | if(n<0)throw new IllegalArgumentException("\nn, " + n + ", must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8279 | double f = 0.0D;
|
---|
8280 | for(int i=2; i<=n; i++)f+=Math.log(i);
|
---|
8281 | return f;
|
---|
8282 | }
|
---|
8283 |
|
---|
8284 | // log to base e of the factorial of n
|
---|
8285 | // Argument is of type double but must be, numerically, an integer
|
---|
8286 | // log[e](factorial) returned as double
|
---|
8287 | // numerical rounding may makes this an approximation
|
---|
8288 | public static double logFactorial(long n){
|
---|
8289 | if(n<0)throw new IllegalArgumentException("\nn, " + n + ", must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8290 | double f = 0.0D;
|
---|
8291 | long iCount = 2L;
|
---|
8292 | while(iCount<=n){
|
---|
8293 | f+=Math.log(iCount);
|
---|
8294 | iCount += 1L;
|
---|
8295 | }
|
---|
8296 | return f;
|
---|
8297 | }
|
---|
8298 |
|
---|
8299 | // log to base e of the factorial of n
|
---|
8300 | // Argument is of type double but must be, numerically, an integer
|
---|
8301 | // log[e](factorial) returned as double
|
---|
8302 | // numerical rounding may makes this an approximation
|
---|
8303 | public static double logFactorial(double n){
|
---|
8304 | if(n<0 || (n-Math.floor(n))!=0)throw new IllegalArgumentException("\nn must be a positive integer\nIs a Gamma funtion [Fmath.gamma(x)] more appropriate?");
|
---|
8305 | double f = 0.0D;
|
---|
8306 | double iCount = 2.0D;
|
---|
8307 | while(iCount<=n){
|
---|
8308 | f+=Math.log(iCount);
|
---|
8309 | iCount += 1.0D;
|
---|
8310 | }
|
---|
8311 | return f;
|
---|
8312 | }
|
---|
8313 |
|
---|
8314 |
|
---|
8315 | // ERLANG DISTRIBUTION AND ERLANG EQUATIONS
|
---|
8316 |
|
---|
8317 | // Erlang distribution
|
---|
8318 | // Cumulative distribution function
|
---|
8319 | public static double erlangCDF(double lambda, int kay, double upperLimit){
|
---|
8320 | return gammaCDF(0.0D, 1.0D/lambda, (double)kay, upperLimit);
|
---|
8321 | }
|
---|
8322 |
|
---|
8323 | public static double erlangCDF(double lambda, long kay, double upperLimit){
|
---|
8324 | return gammaCDF(0.0D, 1.0D/lambda, (double)kay, upperLimit);
|
---|
8325 | }
|
---|
8326 |
|
---|
8327 | public static double erlangCDF(double lambda, double kay, double upperLimit){
|
---|
8328 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8329 | return gammaCDF(0.0D, 1.0D/lambda, kay, upperLimit);
|
---|
8330 | }
|
---|
8331 |
|
---|
8332 | // Erlang distribution
|
---|
8333 | // probablity density function
|
---|
8334 | public static double erlangPDF(double lambda, int kay, double x){
|
---|
8335 | return gammaPDF(0.0D, 1.0D/lambda, (double)kay, x);
|
---|
8336 | }
|
---|
8337 |
|
---|
8338 | public static double erlangPDF(double lambda, long kay, double x){
|
---|
8339 | return gammaPDF(0.0D, 1.0D/lambda, (double)kay, x);
|
---|
8340 | }
|
---|
8341 |
|
---|
8342 | public static double erlangPDF(double lambda, double kay, double x){
|
---|
8343 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8344 |
|
---|
8345 | return gammaPDF(0.0D, 1.0D/lambda, kay, x);
|
---|
8346 | }
|
---|
8347 |
|
---|
8348 | // Erlang distribution
|
---|
8349 | // mean
|
---|
8350 | public static double erlangMean(double lambda, int kay){
|
---|
8351 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8352 | return (double)kay/lambda;
|
---|
8353 | }
|
---|
8354 |
|
---|
8355 | public static double erlangMean(double lambda, long kay){
|
---|
8356 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8357 | return (double)kay/lambda;
|
---|
8358 | }
|
---|
8359 |
|
---|
8360 | public static double erlangMean(double lambda, double kay){
|
---|
8361 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8362 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8363 | return kay/lambda;
|
---|
8364 | }
|
---|
8365 |
|
---|
8366 | // erlang distribution
|
---|
8367 | // mode
|
---|
8368 | public static double erlangMode(double lambda, int kay){
|
---|
8369 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8370 | double mode = Double.NaN;
|
---|
8371 | if(kay>=1)mode = ((double)kay-1.0D)/lambda;
|
---|
8372 | return mode;
|
---|
8373 | }
|
---|
8374 |
|
---|
8375 | public static double erlangMode(double lambda, long kay){
|
---|
8376 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8377 | double mode = Double.NaN;
|
---|
8378 | if(kay>=1)mode = ((double)kay-1.0D)/lambda;
|
---|
8379 | return mode;
|
---|
8380 | }
|
---|
8381 |
|
---|
8382 | public static double erlangMode(double lambda, double kay){
|
---|
8383 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8384 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8385 | double mode = Double.NaN;
|
---|
8386 | if(kay>=1)mode = (kay-1.0D)/lambda;
|
---|
8387 | return mode;
|
---|
8388 | }
|
---|
8389 |
|
---|
8390 |
|
---|
8391 | // Erlang distribution
|
---|
8392 | // standard deviation
|
---|
8393 | public static double erlangStandardDeviation(double lambda, int kay){
|
---|
8394 | return erlangStandDev(lambda, kay);
|
---|
8395 | }
|
---|
8396 |
|
---|
8397 | // standard deviation
|
---|
8398 | public static double erlangStandardDeviation(double lambda, long kay){
|
---|
8399 | return erlangStandDev(lambda, kay);
|
---|
8400 | }
|
---|
8401 |
|
---|
8402 | // standard deviation
|
---|
8403 | public static double erlangStandardDeviation(double lambda, double kay){
|
---|
8404 | return erlangStandDev(lambda, kay);
|
---|
8405 | }
|
---|
8406 |
|
---|
8407 | // standard deviation
|
---|
8408 | public static double erlangStandDev(double lambda, int kay){
|
---|
8409 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8410 | return Math.sqrt((double)kay)/lambda;
|
---|
8411 | }
|
---|
8412 |
|
---|
8413 | public static double erlangStandDev(double lambda, long kay){
|
---|
8414 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8415 | return Math.sqrt((double)kay)/lambda;
|
---|
8416 | }
|
---|
8417 |
|
---|
8418 | public static double erlangStandDev(double lambda, double kay){
|
---|
8419 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8420 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8421 | return Math.sqrt(kay)/lambda;
|
---|
8422 | }
|
---|
8423 |
|
---|
8424 | // Returns an array of Erlang random deviates - clock seed
|
---|
8425 | public static double[] erlangRand(double lambda, int kay, int n){
|
---|
8426 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8427 | return gammaRand(0.0D, 1.0D/lambda, (double) kay, n);
|
---|
8428 | }
|
---|
8429 |
|
---|
8430 | public static double[] erlangRand(double lambda, long kay, int n){
|
---|
8431 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8432 | return gammaRand(0.0D, 1.0D/lambda, (double) kay, n);
|
---|
8433 | }
|
---|
8434 |
|
---|
8435 | public static double[] erlangRand(double lambda, double kay, int n){
|
---|
8436 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8437 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8438 | return gammaRand(0.0D, 1.0D/lambda, kay, n);
|
---|
8439 | }
|
---|
8440 |
|
---|
8441 | // Returns an array of Erlang random deviates - user supplied seed
|
---|
8442 | public static double[] erlangRand(double lambda, int kay, int n, long seed){
|
---|
8443 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8444 | return gammaRand(0.0D, 1.0D/lambda, (double) kay, n, seed);
|
---|
8445 | }
|
---|
8446 |
|
---|
8447 | public static double[] erlangRand(double lambda, long kay, int n, long seed){
|
---|
8448 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8449 | return gammaRand(0.0D, 1.0D/lambda, (double) kay, n, seed);
|
---|
8450 | }
|
---|
8451 |
|
---|
8452 | public static double[] erlangRand(double lambda, double kay, int n, long seed){
|
---|
8453 | if(kay<1)throw new IllegalArgumentException("The rate parameter, " + kay + "must be equal to or greater than one");
|
---|
8454 | if(kay - Math.round(kay)!=0.0D)throw new IllegalArgumentException("kay must, mathematically, be an integer even though it may be entered as a double\nTry the Gamma distribution instead of the Erlang distribution");
|
---|
8455 | return gammaRand(0.0D, 1.0D/lambda, kay, n, seed);
|
---|
8456 | }
|
---|
8457 |
|
---|
8458 |
|
---|
8459 | // ERLANG CONNECTIONS BUSY, B AND C EQUATIONS
|
---|
8460 |
|
---|
8461 | // returns the probablility that m resources (connections) are busy
|
---|
8462 | // totalTraffic: total traffic in Erlangs
|
---|
8463 | // totalResouces: total number of resources in the system
|
---|
8464 | public static double erlangMprobability(double totalTraffic, double totalResources, double em){
|
---|
8465 | double prob = 0.0D;
|
---|
8466 | if(totalTraffic>0.0D){
|
---|
8467 |
|
---|
8468 | double numer = totalResources*Math.log(em) - Fmath.logFactorial(em);
|
---|
8469 | double denom = 1.0D;
|
---|
8470 | double lastTerm = 1.0D;
|
---|
8471 | for(int i=1; i<=totalResources; i++){
|
---|
8472 | lastTerm = lastTerm*totalTraffic/(double)i;
|
---|
8473 | denom += lastTerm;
|
---|
8474 | }
|
---|
8475 | denom = Math.log(denom);
|
---|
8476 | prob = numer - denom;
|
---|
8477 | prob = Math.exp(prob);
|
---|
8478 | }
|
---|
8479 | return prob;
|
---|
8480 | }
|
---|
8481 |
|
---|
8482 | public static double erlangMprobability(double totalTraffic, long totalResources, long em){
|
---|
8483 | return erlangMprobability(totalTraffic, (double)totalResources, (double)em);
|
---|
8484 | }
|
---|
8485 |
|
---|
8486 | public static double erlangMprobability(double totalTraffic, int totalResources, int em){
|
---|
8487 | return erlangMprobability(totalTraffic, (double)totalResources, (double)em);
|
---|
8488 | }
|
---|
8489 |
|
---|
8490 | // Erlang B equation
|
---|
8491 | // Integer or non-integer number of servers
|
---|
8492 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8493 | // totalTraffic: total traffic in Erlangs
|
---|
8494 | // totalResouces: total number of resources in the system
|
---|
8495 | public static double erlangBprobability(double totalTraffic, double totalResources){
|
---|
8496 | if(totalTraffic<0)throw new IllegalArgumentException("Total traffic, " + totalTraffic + ", must be greater than or equal to zero");
|
---|
8497 | if(totalResources<0)throw new IllegalArgumentException("Total resources, " + totalResources + ", must be greater than or equal to zero");
|
---|
8498 |
|
---|
8499 | double prob = 0.0D;
|
---|
8500 | if(totalResources==0.0D){
|
---|
8501 | prob = 1.0;
|
---|
8502 | }
|
---|
8503 | else{
|
---|
8504 | if(totalTraffic==0.0D){
|
---|
8505 | prob = 0.0;
|
---|
8506 | }
|
---|
8507 | else{
|
---|
8508 | if(Fmath.isInteger(totalResources)){
|
---|
8509 | double iCount = 1.0D;
|
---|
8510 | prob = 1.0D;
|
---|
8511 | double hold = 0.0D;
|
---|
8512 | while(iCount<=totalResources){
|
---|
8513 | hold = prob*totalTraffic;
|
---|
8514 | prob = hold/(iCount + hold);
|
---|
8515 | iCount += 1.0D;
|
---|
8516 | }
|
---|
8517 | }
|
---|
8518 | else{
|
---|
8519 | prob = Stat.erlangBprobabilityNIR(totalTraffic, totalResources);
|
---|
8520 | }
|
---|
8521 | }
|
---|
8522 | }
|
---|
8523 | return prob;
|
---|
8524 | }
|
---|
8525 |
|
---|
8526 | // Erlang B equation
|
---|
8527 | // Integer number of servers
|
---|
8528 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8529 | // totalTraffic: total traffic in Erlangs
|
---|
8530 | // totalResouces: total number of resources in the system
|
---|
8531 | public static double erlangBprobability(double totalTraffic, long totalResources){
|
---|
8532 | return erlangBprobability(totalTraffic, (double)totalResources);
|
---|
8533 | }
|
---|
8534 |
|
---|
8535 |
|
---|
8536 | // Erlang B equation
|
---|
8537 | // Integer number of servers
|
---|
8538 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8539 | // totalTraffic: total traffic in Erlangs
|
---|
8540 | // totalResouces: total number of resources in the system
|
---|
8541 | public static double erlangBprobability(double totalTraffic, int totalResources){
|
---|
8542 | return erlangBprobability(totalTraffic, (double)totalResources);
|
---|
8543 | }
|
---|
8544 |
|
---|
8545 | // Erlang B equation
|
---|
8546 | // Non-Integer number of servers
|
---|
8547 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8548 | // totalTraffic: total traffic in Erlangs
|
---|
8549 | // totalResouces: total number of resources in the system
|
---|
8550 | public static double erlangBprobabilityNIR(double totalTraffic, double totalResources){
|
---|
8551 |
|
---|
8552 | double prob = 0.0D; // blocking probability
|
---|
8553 |
|
---|
8554 | // numerator
|
---|
8555 | double lognumer = totalResources*Math.log(totalTraffic) - totalTraffic;
|
---|
8556 | // denominator (incomplete Gamma Function)
|
---|
8557 | double oneplustr = 1.0D + totalResources;
|
---|
8558 | double crigf = Stat.complementaryRegularisedGammaFunction(oneplustr, totalTraffic);
|
---|
8559 | if(crigf==0.0){
|
---|
8560 | prob = 1.0;
|
---|
8561 | }
|
---|
8562 | else{
|
---|
8563 | double logdenom = Math.log(crigf) + Stat.logGammaFunction(oneplustr);
|
---|
8564 | prob = Math.exp(lognumer - logdenom);
|
---|
8565 | }
|
---|
8566 | return prob;
|
---|
8567 | }
|
---|
8568 |
|
---|
8569 | // Non-Integer number of servers
|
---|
8570 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8571 | // totalTraffic: total traffic in Erlangs
|
---|
8572 | // totalResouces: total number of resources in the system
|
---|
8573 | // Retained for compatibility
|
---|
8574 | public static double erlangBprobabilityNonIntRes(double totalTraffic, double totalResources){
|
---|
8575 | return Stat.erlangBprobability(totalTraffic, totalResources);
|
---|
8576 | }
|
---|
8577 |
|
---|
8578 | // Erlang B equation
|
---|
8579 | // returns the maximum total traffic in Erlangs
|
---|
8580 | // blockingProbability: probablility that a customer will be rejected due to lack of resources
|
---|
8581 | // totalResouces: total number of resources in the system
|
---|
8582 | public static double erlangBload(double blockingProbability, double totalResources){
|
---|
8583 |
|
---|
8584 | // Create instance of the class holding the Erlang B equation
|
---|
8585 | ErlangBfunct eBfunc = new ErlangBfunct();
|
---|
8586 |
|
---|
8587 | // Set instance variables
|
---|
8588 | eBfunc.blockingProbability = blockingProbability;
|
---|
8589 | eBfunc.totalResources = totalResources;
|
---|
8590 |
|
---|
8591 | // lower bound
|
---|
8592 | double lowerBound = 0.0D;
|
---|
8593 | // upper bound // arbitrary - may be extended by bisects automatic extension
|
---|
8594 | double upperBound = 20.0;
|
---|
8595 | // required tolerance
|
---|
8596 | double tolerance = 1e-6;
|
---|
8597 |
|
---|
8598 | // Create instance of RealRoot
|
---|
8599 | RealRoot realR = new RealRoot();
|
---|
8600 |
|
---|
8601 | // Set tolerance
|
---|
8602 | realR.setTolerance(tolerance);
|
---|
8603 |
|
---|
8604 | // Set bounds limits
|
---|
8605 | realR.noLowerBoundExtension();
|
---|
8606 |
|
---|
8607 | // Supress error message if iteration limit reached
|
---|
8608 | realR.supressLimitReachedMessage();
|
---|
8609 |
|
---|
8610 | // call root searching method
|
---|
8611 | double root = realR.bisect(eBfunc, lowerBound, upperBound);
|
---|
8612 |
|
---|
8613 | return root;
|
---|
8614 | }
|
---|
8615 |
|
---|
8616 | public static double erlangBload(double blockingProbability, long totalResources){
|
---|
8617 | return erlangBload(blockingProbability, (double)totalResources);
|
---|
8618 | }
|
---|
8619 |
|
---|
8620 | public static double erlangBload(double blockingProbability, int totalResources){
|
---|
8621 | return erlangBload(blockingProbability, (double)totalResources);
|
---|
8622 | }
|
---|
8623 |
|
---|
8624 | // Erlang B equation
|
---|
8625 | // returns the resources bracketing a blocking probability for a given total traffic
|
---|
8626 | // blockingProbability: probablility that a customer will be rejected due to lack of resources
|
---|
8627 | // totalResouces: total number of resources in the system
|
---|
8628 | public static double[] erlangBresources(double blockingProbability, double totalTraffic){
|
---|
8629 |
|
---|
8630 | double[] ret = new double[8];
|
---|
8631 | long counter = 1;
|
---|
8632 | double lastProb = Double.NaN;
|
---|
8633 | double prob = Double.NaN;
|
---|
8634 | boolean test = true;
|
---|
8635 | while(test){
|
---|
8636 | prob = Stat.erlangBprobability(totalTraffic, counter);
|
---|
8637 | if(prob<=blockingProbability){
|
---|
8638 | ret[0] = (double)counter;
|
---|
8639 | ret[1] = prob;
|
---|
8640 | ret[2] = Stat.erlangBload(blockingProbability, counter);
|
---|
8641 | ret[3] = (double)(counter-1);
|
---|
8642 | ret[4] = lastProb;
|
---|
8643 | ret[5] = Stat.erlangBload( blockingProbability, counter-1);
|
---|
8644 | ret[6] = blockingProbability;
|
---|
8645 | ret[7] = totalTraffic;
|
---|
8646 | test = false;
|
---|
8647 | }
|
---|
8648 | else{
|
---|
8649 | lastProb = prob;
|
---|
8650 | counter++;
|
---|
8651 | if(counter==Integer.MAX_VALUE){
|
---|
8652 | System.out.println("Method erlangBresources: no solution found below " + Long.MAX_VALUE + "resources");
|
---|
8653 | for(int i=0; i<8; i++)ret[i] = Double.NaN;
|
---|
8654 | test = false;
|
---|
8655 | }
|
---|
8656 | }
|
---|
8657 | }
|
---|
8658 | return ret;
|
---|
8659 | }
|
---|
8660 |
|
---|
8661 | // Erlang C equation
|
---|
8662 | // returns the probablility that a customer will receive a non-zero delay in obtaining obtaining a resource
|
---|
8663 | // totalTraffic: total traffic in Erlangs
|
---|
8664 | // totalResouces: total number of resources in the system
|
---|
8665 | public static double erlangCprobability(double totalTraffic, double totalResources){
|
---|
8666 |
|
---|
8667 | double prob = 0.0D;
|
---|
8668 | if(totalTraffic>0.0D){
|
---|
8669 |
|
---|
8670 | double probB = Stat.erlangBprobability(totalTraffic, totalResources);
|
---|
8671 | prob = 1.0 + (1.0/probB - 1.0)*(totalResources - totalTraffic)/totalResources;
|
---|
8672 | prob = 1.0/prob;
|
---|
8673 |
|
---|
8674 |
|
---|
8675 | }
|
---|
8676 | return prob;
|
---|
8677 | }
|
---|
8678 |
|
---|
8679 | public static double erlangCprobability(double totalTraffic, long totalResources){
|
---|
8680 | return erlangCprobability(totalTraffic, (double)totalResources);
|
---|
8681 | }
|
---|
8682 |
|
---|
8683 | public static double erlangCprobability(double totalTraffic, int totalResources){
|
---|
8684 | return erlangCprobability(totalTraffic, (double)totalResources);
|
---|
8685 | }
|
---|
8686 |
|
---|
8687 | // Erlang C equation
|
---|
8688 | // returns the maximum total traffic in Erlangs
|
---|
8689 | // nonZeroDelayProbability: probablility that a customer will receive a non-zero delay in obtaining obtaining a resource
|
---|
8690 | // totalResouces: total number of resources in the system
|
---|
8691 | public static double erlangCload(double nonZeroDelayProbability, double totalResources){
|
---|
8692 |
|
---|
8693 | // Create instance of the class holding the Erlang C equation
|
---|
8694 | ErlangCfunct eCfunc = new ErlangCfunct();
|
---|
8695 |
|
---|
8696 | // Set instance variables
|
---|
8697 | eCfunc.nonZeroDelayProbability = nonZeroDelayProbability;
|
---|
8698 | eCfunc.totalResources = totalResources;
|
---|
8699 |
|
---|
8700 | // lower bound
|
---|
8701 | double lowerBound = 0.0D;
|
---|
8702 | // upper bound
|
---|
8703 | double upperBound = 10.0D;
|
---|
8704 | // required tolerance
|
---|
8705 | double tolerance = 1e-6;
|
---|
8706 |
|
---|
8707 | // Create instance of RealRoot
|
---|
8708 | RealRoot realR = new RealRoot();
|
---|
8709 |
|
---|
8710 | // Set tolerance
|
---|
8711 | realR.setTolerance(tolerance);
|
---|
8712 |
|
---|
8713 | // Supress error message if iteration limit reached
|
---|
8714 | realR.supressLimitReachedMessage();
|
---|
8715 |
|
---|
8716 | // Set bounds limits
|
---|
8717 | realR.noLowerBoundExtension();
|
---|
8718 |
|
---|
8719 | // call root searching method
|
---|
8720 | double root = realR.bisect(eCfunc, lowerBound, upperBound);
|
---|
8721 |
|
---|
8722 | return root;
|
---|
8723 | }
|
---|
8724 |
|
---|
8725 | public static double erlangCload(double nonZeroDelayProbability, long totalResources){
|
---|
8726 | return erlangCload(nonZeroDelayProbability, (double)totalResources);
|
---|
8727 | }
|
---|
8728 |
|
---|
8729 | public static double erlangCload(double nonZeroDelayProbability, int totalResources){
|
---|
8730 | return erlangCload(nonZeroDelayProbability, (double)totalResources);
|
---|
8731 | }
|
---|
8732 |
|
---|
8733 | // Erlang C equation
|
---|
8734 | // returns the resources bracketing a non-zer delay probability for a given total traffic
|
---|
8735 | // nonZeroDelayProbability: probablility that a customer will receive a non-zero delay in obtaining obtaining a resource
|
---|
8736 | // totalResouces: total number of resources in the system
|
---|
8737 | public static double[] erlangCresources(double nonZeroDelayProbability, double totalTraffic){
|
---|
8738 |
|
---|
8739 | double[] ret = new double[8];
|
---|
8740 | long counter = 1;
|
---|
8741 | double lastProb = Double.NaN;
|
---|
8742 | double prob = Double.NaN;
|
---|
8743 | boolean test = true;
|
---|
8744 | while(test){
|
---|
8745 | prob = Stat.erlangCprobability(totalTraffic, counter);
|
---|
8746 | if(prob<=nonZeroDelayProbability){
|
---|
8747 | ret[0] = (double)counter;
|
---|
8748 | ret[1] = prob;
|
---|
8749 | ret[2] = Stat.erlangCload(nonZeroDelayProbability, counter);
|
---|
8750 | ret[3] = (double)(counter-1);
|
---|
8751 | ret[4] = lastProb;
|
---|
8752 | ret[5] = Stat.erlangCload(nonZeroDelayProbability, counter-1);
|
---|
8753 | ret[6] = nonZeroDelayProbability;
|
---|
8754 | ret[7] = totalTraffic;
|
---|
8755 | test = false;
|
---|
8756 | }
|
---|
8757 | else{
|
---|
8758 | lastProb = prob;
|
---|
8759 | counter++;
|
---|
8760 | if(counter==Integer.MAX_VALUE){
|
---|
8761 | System.out.println("Method erlangCresources: no solution found below " + Long.MAX_VALUE + "resources");
|
---|
8762 | for(int i=0; i<8; i++)ret[i] = Double.NaN;
|
---|
8763 | test = false;
|
---|
8764 | }
|
---|
8765 | }
|
---|
8766 | }
|
---|
8767 | return ret;
|
---|
8768 | }
|
---|
8769 |
|
---|
8770 |
|
---|
8771 |
|
---|
8772 |
|
---|
8773 | // ENGSET EQUATION
|
---|
8774 |
|
---|
8775 | // returns the probablility that a customer will be rejected due to lack of resources
|
---|
8776 | // offeredTraffic: total offeredtraffic in Erlangs
|
---|
8777 | // totalResouces: total number of resources in the system
|
---|
8778 | // numberOfSources: number of sources
|
---|
8779 | public static double engsetProbability(double offeredTraffic, double totalResources, double numberOfSources){
|
---|
8780 | if(totalResources<1)throw new IllegalArgumentException("Total resources, " + totalResources + ", must be an integer greater than or equal to 1");
|
---|
8781 | if(!Fmath.isInteger(totalResources))throw new IllegalArgumentException("Total resources, " + totalResources + ", must be, arithmetically, an integer");
|
---|
8782 | if(numberOfSources<1)throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be an integer greater than or equal to 1");
|
---|
8783 | if(!Fmath.isInteger(numberOfSources))throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be, arithmetically, an integer");
|
---|
8784 | if(totalResources>numberOfSources-1)throw new IllegalArgumentException("total resources, " + totalResources + ", must be less than or equal to the number of sources minus one, " + (numberOfSources - 1));
|
---|
8785 | if(offeredTraffic>=numberOfSources)throw new IllegalArgumentException("Number of sources, " + numberOfSources + ", must be greater than the offered traffic, " + offeredTraffic);
|
---|
8786 |
|
---|
8787 | double prob = 0.0D;
|
---|
8788 | if(totalResources==0.0D){
|
---|
8789 | prob = 1.0D;
|
---|
8790 | }
|
---|
8791 | else{
|
---|
8792 | if(offeredTraffic==0.0D){
|
---|
8793 | prob = 0.0D;
|
---|
8794 | }
|
---|
8795 | else{
|
---|
8796 | // Set boundaries to the probability
|
---|
8797 | double lowerBound = 0.0D;
|
---|
8798 | double upperBound = 1.0D;
|
---|
8799 |
|
---|
8800 | // Create instance of Engset Probability Function
|
---|
8801 | EngsetProb engProb = new EngsetProb();
|
---|
8802 |
|
---|
8803 | // Set function variables
|
---|
8804 | engProb.offeredTraffic = offeredTraffic;
|
---|
8805 | engProb.totalResources = totalResources;
|
---|
8806 | engProb.numberOfSources = numberOfSources;
|
---|
8807 |
|
---|
8808 | // Perform a root search
|
---|
8809 | RealRoot eprt = new RealRoot();
|
---|
8810 |
|
---|
8811 | // Supress error message if iteration limit reached
|
---|
8812 | eprt.supressLimitReachedMessage();
|
---|
8813 |
|
---|
8814 | prob = eprt.bisect(engProb, lowerBound, upperBound);
|
---|
8815 | }
|
---|
8816 | }
|
---|
8817 | return prob;
|
---|
8818 | }
|
---|
8819 |
|
---|
8820 | public static double engsetProbability(double offeredTraffic, long totalResources, long numberOfSources){
|
---|
8821 | return engsetProbability(offeredTraffic, (double)totalResources, (double)numberOfSources);
|
---|
8822 | }
|
---|
8823 |
|
---|
8824 | public static double engsetProbability(double offeredTraffic, int totalResources, int numberOfSources){
|
---|
8825 | return engsetProbability(offeredTraffic, (double)totalResources, (double)numberOfSources);
|
---|
8826 | }
|
---|
8827 |
|
---|
8828 | // Engset equation
|
---|
8829 | // returns the maximum total traffic in Erlangs
|
---|
8830 | // blockingProbability: probablility that a customer will be rejected due to lack of resources
|
---|
8831 | // totalResouces: total number of resources in the system
|
---|
8832 | // numberOfSources: number of sources
|
---|
8833 | public static double engsetLoad(double blockingProbability, double totalResources, double numberOfSources){
|
---|
8834 | if(totalResources<1)throw new IllegalArgumentException("Total resources, " + totalResources + ", must be an integer greater than or equal to 1");
|
---|
8835 | if(!Fmath.isInteger(totalResources))throw new IllegalArgumentException("Total resources, " + totalResources + ", must be, arithmetically, an integer");
|
---|
8836 | if(numberOfSources<1)throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be an integer greater than or equal to 1");
|
---|
8837 | if(!Fmath.isInteger(numberOfSources))throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be, arithmetically, an integer");
|
---|
8838 | if(totalResources>numberOfSources-1)throw new IllegalArgumentException("total resources, " + totalResources + ", must be less than or equal to the number of sources minus one, " + (numberOfSources - 1));
|
---|
8839 |
|
---|
8840 | // Create instance of the class holding the Engset Load equation
|
---|
8841 | EngsetLoad eLfunc = new EngsetLoad();
|
---|
8842 |
|
---|
8843 | // Set instance variables
|
---|
8844 | eLfunc.blockingProbability = blockingProbability;
|
---|
8845 | eLfunc.totalResources = totalResources;
|
---|
8846 | eLfunc.numberOfSources = numberOfSources;
|
---|
8847 |
|
---|
8848 | // lower bound
|
---|
8849 | double lowerBound = 0.0D;
|
---|
8850 | // upper bound
|
---|
8851 | double upperBound = numberOfSources*0.999999999;
|
---|
8852 | // required tolerance
|
---|
8853 | double tolerance = 1e-6;
|
---|
8854 |
|
---|
8855 | // Create instance of RealRoot
|
---|
8856 | RealRoot realR = new RealRoot();
|
---|
8857 |
|
---|
8858 | // Set tolerance
|
---|
8859 | realR.setTolerance(tolerance);
|
---|
8860 |
|
---|
8861 | // Set bounds limits
|
---|
8862 | realR.noLowerBoundExtension();
|
---|
8863 | realR.noUpperBoundExtension();
|
---|
8864 |
|
---|
8865 | // Supress error message if iteration limit reached
|
---|
8866 | realR.supressLimitReachedMessage();
|
---|
8867 |
|
---|
8868 | // call root searching method
|
---|
8869 | double root = realR.bisect(eLfunc, lowerBound, upperBound);
|
---|
8870 |
|
---|
8871 | return root;
|
---|
8872 | }
|
---|
8873 |
|
---|
8874 | public static double engsetLoad(double blockingProbability, long totalResources, long numberOfSources){
|
---|
8875 | return engsetLoad(blockingProbability, (double) totalResources, (double) numberOfSources);
|
---|
8876 | }
|
---|
8877 |
|
---|
8878 | public static double engsetLoad(double blockingProbability, int totalResources, int numberOfSources){
|
---|
8879 | return engsetLoad(blockingProbability, (double) totalResources, (double) numberOfSources);
|
---|
8880 | }
|
---|
8881 |
|
---|
8882 | // Engset equation
|
---|
8883 | // returns the resources bracketing a blocking probability for a given total traffic and number of sources
|
---|
8884 | // blockingProbability: probablility that a customer will be rejected due to lack of resources
|
---|
8885 | // totalResouces: total number of resources in the system
|
---|
8886 | // numberOfSources: number of sources
|
---|
8887 | public static double[] engsetResources(double blockingProbability, double offeredTraffic, double numberOfSources){
|
---|
8888 | if(numberOfSources<1)throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be an integer greater than or equal to 1");
|
---|
8889 | if(!Fmath.isInteger(numberOfSources))throw new IllegalArgumentException("number of sources, " + numberOfSources + ", must be, arithmetically, an integer");
|
---|
8890 |
|
---|
8891 | double[] ret = new double[9];
|
---|
8892 | long counter = 1;
|
---|
8893 | double lastProb = Double.NaN;
|
---|
8894 | double prob = Double.NaN;
|
---|
8895 | boolean test = true;
|
---|
8896 | while(test){
|
---|
8897 | prob = Stat.engsetProbability(offeredTraffic, counter, numberOfSources);
|
---|
8898 | if(prob<=blockingProbability){
|
---|
8899 |
|
---|
8900 | ret[0] = (double)counter;
|
---|
8901 | ret[1] = prob;
|
---|
8902 | ret[2] = Stat.engsetLoad(blockingProbability, (double)counter, numberOfSources);
|
---|
8903 | ret[3] = (double)(counter-1);
|
---|
8904 | ret[4] = lastProb;
|
---|
8905 | ret[5] = Stat.engsetLoad( blockingProbability, (double)(counter-1), numberOfSources);
|
---|
8906 | ret[6] = blockingProbability;
|
---|
8907 | ret[7] = offeredTraffic;
|
---|
8908 | ret[8] = numberOfSources;
|
---|
8909 | test = false;
|
---|
8910 | }
|
---|
8911 | else{
|
---|
8912 | lastProb = prob;
|
---|
8913 | counter++;
|
---|
8914 | if(counter>(long)numberOfSources-1L){
|
---|
8915 | System.out.println("Method engsetResources: no solution found below the (sources-1), " + (numberOfSources-1));
|
---|
8916 | for(int i=0; i<8; i++)ret[i] = Double.NaN;
|
---|
8917 | test = false;
|
---|
8918 | }
|
---|
8919 | }
|
---|
8920 | }
|
---|
8921 | return ret;
|
---|
8922 | }
|
---|
8923 |
|
---|
8924 | public static double[] engsetResources(double blockingProbability, double totalTraffic, long numberOfSources){
|
---|
8925 | return Stat.engsetResources(blockingProbability, totalTraffic, (double) numberOfSources);
|
---|
8926 | }
|
---|
8927 |
|
---|
8928 | public static double[] engsetResources(double blockingProbability, double totalTraffic, int numberOfSources){
|
---|
8929 | return Stat.engsetResources(blockingProbability, totalTraffic, (double) numberOfSources);
|
---|
8930 | }
|
---|
8931 |
|
---|
8932 |
|
---|
8933 | // Engset equation
|
---|
8934 | // returns the number of sources bracketing a blocking probability for a given total traffic and given resources
|
---|
8935 | // blockingProbability: probablility that a customer will be rejected due to lack of resources
|
---|
8936 | // totalResouces: total number of resources in the system
|
---|
8937 | // numberOfSources: number of sources
|
---|
8938 | public static double[] engsetSources(double blockingProbability, double offeredTraffic, double resources){
|
---|
8939 | if(resources<1)throw new IllegalArgumentException("resources, " + resources + ", must be an integer greater than or equal to 1");
|
---|
8940 | if(!Fmath.isInteger(resources))throw new IllegalArgumentException("resources, " + resources + ", must be, arithmetically, an integer");
|
---|
8941 |
|
---|
8942 | double[] ret = new double[9];
|
---|
8943 | long counter = (long)resources+1L;
|
---|
8944 | double lastProb = Double.NaN;
|
---|
8945 | double prob = Double.NaN;
|
---|
8946 | boolean test = true;
|
---|
8947 | while(test){
|
---|
8948 | prob = Stat.engsetProbability(offeredTraffic, resources, counter);
|
---|
8949 | if(prob>=blockingProbability){
|
---|
8950 |
|
---|
8951 | ret[0] = (double)counter;
|
---|
8952 | ret[1] = prob;
|
---|
8953 | ret[2] = Stat.engsetLoad(blockingProbability, resources, (double)counter);
|
---|
8954 | ret[3] = (double)(counter-1L);
|
---|
8955 | ret[4] = lastProb;
|
---|
8956 | if((counter-1L)>=(long)(resources+1L)){
|
---|
8957 | ret[5] = Stat.engsetLoad(blockingProbability, resources, (double)(counter-1L));
|
---|
8958 | }
|
---|
8959 | else{
|
---|
8960 | ret[5] = Double.NaN;
|
---|
8961 | }
|
---|
8962 | ret[6] = blockingProbability;
|
---|
8963 | ret[7] = offeredTraffic;
|
---|
8964 | ret[8] = resources;
|
---|
8965 | test = false;
|
---|
8966 | }
|
---|
8967 | else{
|
---|
8968 | lastProb = prob;
|
---|
8969 | counter++;
|
---|
8970 | if(counter>=Long.MAX_VALUE){
|
---|
8971 | System.out.println("Method engsetResources: no solution found below " + Long.MAX_VALUE + "sources");
|
---|
8972 | for(int i=0; i<8; i++)ret[i] = Double.NaN;
|
---|
8973 | test = false;
|
---|
8974 | }
|
---|
8975 | }
|
---|
8976 | }
|
---|
8977 | return ret;
|
---|
8978 | }
|
---|
8979 |
|
---|
8980 | public static double[] engsetSources(double blockingProbability, double totalTraffic, long resources){
|
---|
8981 | return Stat.engsetSources(blockingProbability, totalTraffic, (double) resources);
|
---|
8982 | }
|
---|
8983 |
|
---|
8984 | public static double[] engsetSources(double blockingProbability, double totalTraffic, int resources){
|
---|
8985 | return Stat.engsetSources(blockingProbability, totalTraffic, (double) resources);
|
---|
8986 | }
|
---|
8987 |
|
---|
8988 |
|
---|
8989 |
|
---|
8990 |
|
---|
8991 | // BETA DISTRIBUTIONS AND BETA FUNCTIONS
|
---|
8992 |
|
---|
8993 | // beta distribution cdf
|
---|
8994 | public static double betaCDF(double alpha, double beta, double limit){
|
---|
8995 | return betaCDF(0.0D, 1.0D, alpha, beta, limit);
|
---|
8996 | }
|
---|
8997 |
|
---|
8998 | // beta distribution pdf
|
---|
8999 | public static double betaCDF(double min, double max, double alpha, double beta, double limit){
|
---|
9000 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9001 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9002 | if(limit<min)throw new IllegalArgumentException("limit, " + limit + ", must be greater than or equal to the minimum value, " + min);
|
---|
9003 | if(limit>max)throw new IllegalArgumentException("limit, " + limit + ", must be less than or equal to the maximum value, " + max);
|
---|
9004 | return Stat.regularisedBetaFunction(alpha, beta, (limit-min)/(max-min));
|
---|
9005 | }
|
---|
9006 |
|
---|
9007 |
|
---|
9008 | // beta distribution pdf
|
---|
9009 | public static double betaPDF(double alpha, double beta, double x){
|
---|
9010 | return betaPDF(0.0D, 1.0D, alpha, beta, x);
|
---|
9011 | }
|
---|
9012 |
|
---|
9013 | // beta distribution pdf
|
---|
9014 | public static double betaPDF(double min, double max, double alpha, double beta, double x){
|
---|
9015 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9016 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9017 | if(x<min)throw new IllegalArgumentException("x, " + x + ", must be greater than or equal to the minimum value, " + min);
|
---|
9018 | if(x>max)throw new IllegalArgumentException("x, " + x + ", must be less than or equal to the maximum value, " + max);
|
---|
9019 | double pdf = Math.pow(x - min, alpha - 1)*Math.pow(max - x, beta - 1)/Math.pow(max - min, alpha + beta - 1);
|
---|
9020 | return pdf/Stat.betaFunction(alpha, beta);
|
---|
9021 | }
|
---|
9022 |
|
---|
9023 | // Returns an array of Beta random deviates - clock seed
|
---|
9024 | public static double[] betaRand(double alpha, double beta, int n){
|
---|
9025 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9026 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9027 | PsRandom psr = new PsRandom();
|
---|
9028 | return psr.betaArray(alpha, beta, n);
|
---|
9029 | }
|
---|
9030 |
|
---|
9031 | // Returns an array of Beta random deviates - clock seed
|
---|
9032 | public static double[] betaRand(double min, double max, double alpha, double beta, int n){
|
---|
9033 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9034 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9035 | PsRandom psr = new PsRandom();
|
---|
9036 | return psr.betaArray(min, max, alpha, beta, n);
|
---|
9037 | }
|
---|
9038 |
|
---|
9039 |
|
---|
9040 | // Returns an array of Beta random deviates - user supplied seed
|
---|
9041 | public static double[] betaRand(double alpha, double beta, int n, long seed){
|
---|
9042 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9043 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9044 | PsRandom psr = new PsRandom(seed);
|
---|
9045 | return psr.betaArray(alpha, beta, n);
|
---|
9046 | }
|
---|
9047 |
|
---|
9048 | // Returns an array of Beta random deviates - user supplied seed
|
---|
9049 | public static double[] betaRand(double min, double max, double alpha, double beta, int n, long seed){
|
---|
9050 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9051 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9052 | PsRandom psr = new PsRandom(seed);
|
---|
9053 | return psr.betaArray(min, max, alpha, beta, n);
|
---|
9054 | }
|
---|
9055 |
|
---|
9056 | // beta distribution mean
|
---|
9057 | public static double betaMean(double alpha, double beta){
|
---|
9058 | return betaMean(0.0D, 1.0D, alpha, beta);
|
---|
9059 | }
|
---|
9060 |
|
---|
9061 | // beta distribution mean
|
---|
9062 | public static double betaMean(double min, double max, double alpha, double beta){
|
---|
9063 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9064 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9065 | return min + alpha*(max - min)/(alpha + beta);
|
---|
9066 | }
|
---|
9067 |
|
---|
9068 | // beta distribution mode
|
---|
9069 | public static double betaMode(double alpha, double beta){
|
---|
9070 | return betaMode(0.0D, 1.0D, alpha, beta);
|
---|
9071 | }
|
---|
9072 |
|
---|
9073 | // beta distribution mode
|
---|
9074 | public static double betaMode(double min, double max, double alpha, double beta){
|
---|
9075 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9076 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9077 |
|
---|
9078 | double mode = Double.NaN;
|
---|
9079 | if(alpha>1){
|
---|
9080 | if(beta>1){
|
---|
9081 | mode = min + (alpha + beta)*(max - min)/(alpha + beta - 2);
|
---|
9082 | }
|
---|
9083 | else{
|
---|
9084 | mode = max;
|
---|
9085 | }
|
---|
9086 | }
|
---|
9087 | else{
|
---|
9088 | if(alpha==1){
|
---|
9089 | if(beta>1){
|
---|
9090 | mode = min;
|
---|
9091 | }
|
---|
9092 | else{
|
---|
9093 | if(beta==1){
|
---|
9094 | mode = Double.NaN;
|
---|
9095 | }
|
---|
9096 | else{
|
---|
9097 | mode = max;
|
---|
9098 | }
|
---|
9099 | }
|
---|
9100 | }
|
---|
9101 | else{
|
---|
9102 | if(beta>=1){
|
---|
9103 | mode = min;
|
---|
9104 | }
|
---|
9105 | else{
|
---|
9106 | System.out.println("Class Stat; method betaMode; distribution is bimodal wirh modes at " + min + " and " + max);
|
---|
9107 | System.out.println("NaN returned");
|
---|
9108 | }
|
---|
9109 | }
|
---|
9110 | }
|
---|
9111 | return mode;
|
---|
9112 | }
|
---|
9113 |
|
---|
9114 | // beta distribution standard deviation
|
---|
9115 | public static double betaStandardDeviation(double alpha, double beta){
|
---|
9116 | return betaStandDev(alpha, beta);
|
---|
9117 | }
|
---|
9118 |
|
---|
9119 | // beta distribution standard deviation
|
---|
9120 | public static double betaStandDev(double alpha, double beta){
|
---|
9121 | return betaStandDev(0.0D, 1.0D, alpha, beta);
|
---|
9122 | }
|
---|
9123 |
|
---|
9124 | // beta distribution standard deviation
|
---|
9125 | public static double betaStandardDeviation(double min, double max, double alpha, double beta){
|
---|
9126 | return betaStandDev(min, max, alpha, beta);
|
---|
9127 | }
|
---|
9128 |
|
---|
9129 | // beta distribution standard deviation
|
---|
9130 | public static double betaStandDev(double min, double max, double alpha, double beta){
|
---|
9131 | if(alpha<=0.0D)throw new IllegalArgumentException("The shape parameter, alpha, " + alpha + "must be greater than zero");
|
---|
9132 | if(beta<=0.0D)throw new IllegalArgumentException("The shape parameter, beta, " + beta + "must be greater than zero");
|
---|
9133 | return ((max - min)/(alpha + beta))*Math.sqrt(alpha*beta/(alpha + beta + 1));
|
---|
9134 | }
|
---|
9135 |
|
---|
9136 | // Beta function
|
---|
9137 | public static double betaFunction(double z, double w){
|
---|
9138 | return Math.exp(logGamma(z) + logGamma(w) - logGamma(z + w));
|
---|
9139 | }
|
---|
9140 |
|
---|
9141 | // Beta function
|
---|
9142 | // retained for compatibility reasons
|
---|
9143 | public static double beta(double z, double w){
|
---|
9144 | return Math.exp(logGamma(z) + logGamma(w) - logGamma(z + w));
|
---|
9145 | }
|
---|
9146 |
|
---|
9147 | // Regularised Incomplete Beta function
|
---|
9148 | // Continued Fraction approximation (see Numerical recipies for details of method)
|
---|
9149 | public static double regularisedBetaFunction(double z, double w, double x){
|
---|
9150 | if(x<0.0D || x>1.0D)throw new IllegalArgumentException("Argument x, "+x+", must be lie between 0 and 1 (inclusive)");
|
---|
9151 | double ibeta = 0.0D;
|
---|
9152 | if(x==0.0D){
|
---|
9153 | ibeta=0.0D;
|
---|
9154 | }
|
---|
9155 | else{
|
---|
9156 | if(x==1.0D){
|
---|
9157 | ibeta=1.0D;
|
---|
9158 | }
|
---|
9159 | else{
|
---|
9160 | // Term before continued fraction
|
---|
9161 | ibeta = Math.exp(Stat.logGamma(z+w) - Stat.logGamma(z) - logGamma(w) + z*Math.log(x) + w*Math.log(1.0D-x));
|
---|
9162 | // Continued fraction
|
---|
9163 | if(x < (z+1.0D)/(z+w+2.0D)){
|
---|
9164 | ibeta = ibeta*Stat.contFract(z, w, x)/z;
|
---|
9165 | }
|
---|
9166 | else{
|
---|
9167 | // Use symmetry relationship
|
---|
9168 | ibeta = 1.0D - ibeta*Stat.contFract(w, z, 1.0D-x)/w;
|
---|
9169 | }
|
---|
9170 | }
|
---|
9171 | }
|
---|
9172 | return ibeta;
|
---|
9173 | }
|
---|
9174 |
|
---|
9175 |
|
---|
9176 | // Regularised Incomplete Beta function
|
---|
9177 | // Continued Fraction approximation (see Numerical recipies for details of method)
|
---|
9178 | public static double regularizedBetaFunction(double z, double w, double x){
|
---|
9179 | return regularisedBetaFunction(z, w, x);
|
---|
9180 | }
|
---|
9181 |
|
---|
9182 | // Regularised Incomplete Beta function
|
---|
9183 | // Continued Fraction approximation (see Numerical recipies for details of method)
|
---|
9184 | // retained for compatibility reasons
|
---|
9185 | public static double incompleteBeta(double z, double w, double x){
|
---|
9186 | return regularisedBetaFunction(z, w, x);
|
---|
9187 | }
|
---|
9188 |
|
---|
9189 | // Incomplete fraction summation used in the method regularisedBetaFunction
|
---|
9190 | // modified Lentz's method
|
---|
9191 | public static double contFract(double a, double b, double x){
|
---|
9192 |
|
---|
9193 | double aplusb = a + b;
|
---|
9194 | double aplus1 = a + 1.0D;
|
---|
9195 | double aminus1 = a - 1.0D;
|
---|
9196 | double c = 1.0D;
|
---|
9197 | double d = 1.0D - aplusb*x/aplus1;
|
---|
9198 | if(Math.abs(d)<Stat.FPMIN)d = FPMIN;
|
---|
9199 | d = 1.0D/d;
|
---|
9200 | double h = d;
|
---|
9201 | double aa = 0.0D;
|
---|
9202 | double del = 0.0D;
|
---|
9203 | int i=1, i2=0;
|
---|
9204 | boolean test=true;
|
---|
9205 | while(test){
|
---|
9206 | i2=2*i;
|
---|
9207 | aa = i*(b-i)*x/((aminus1+i2)*(a+i2));
|
---|
9208 | d = 1.0D + aa*d;
|
---|
9209 | if(Math.abs(d)<Stat.FPMIN)d = FPMIN;
|
---|
9210 | c = 1.0D + aa/c;
|
---|
9211 | if(Math.abs(c)<Stat.FPMIN)c = FPMIN;
|
---|
9212 | d = 1.0D/d;
|
---|
9213 | h *= d*c;
|
---|
9214 | aa = -(a+i)*(aplusb+i)*x/((a+i2)*(aplus1+i2));
|
---|
9215 | d = 1.0D + aa*d;
|
---|
9216 | if(Math.abs(d)<Stat.FPMIN)d = FPMIN;
|
---|
9217 | c = 1.0D + aa/c;
|
---|
9218 | if(Math.abs(c)<Stat.FPMIN)c = FPMIN;
|
---|
9219 | d = 1.0D/d;
|
---|
9220 | del = d*c;
|
---|
9221 | h *= del;
|
---|
9222 | i++;
|
---|
9223 | if(Math.abs(del-1.0D) < Stat.cfTol)test=false;
|
---|
9224 | if(i>Stat.cfMaxIter){
|
---|
9225 | test=false;
|
---|
9226 | System.out.println("Maximum number of iterations ("+Stat.cfMaxIter+") exceeded in Stat.contFract in Stat.incompleteBeta");
|
---|
9227 | }
|
---|
9228 | }
|
---|
9229 | return h;
|
---|
9230 |
|
---|
9231 | }
|
---|
9232 |
|
---|
9233 | // Reset value of cfMaxIter used in contFract method above
|
---|
9234 | public static void resetCFmaxIter(int cfMaxIter){
|
---|
9235 | Stat.cfMaxIter = cfMaxIter;
|
---|
9236 | }
|
---|
9237 |
|
---|
9238 | // Get value of cfMaxIter used in contFract method above
|
---|
9239 | public static int getCFmaxIter(){
|
---|
9240 | return cfMaxIter;
|
---|
9241 | }
|
---|
9242 |
|
---|
9243 | // Reset value of cfTol used in contFract method above
|
---|
9244 | public static void resetCFtolerance(double cfTol){
|
---|
9245 | Stat.cfTol = cfTol;
|
---|
9246 | }
|
---|
9247 |
|
---|
9248 | // Get value of cfTol used in contFract method above
|
---|
9249 | public static double getCFtolerance(){
|
---|
9250 | return cfTol;
|
---|
9251 | }
|
---|
9252 |
|
---|
9253 | // ERROR FUNCTIONS
|
---|
9254 |
|
---|
9255 | // Error Function
|
---|
9256 | public static double erf(double x){
|
---|
9257 | double erf = 0.0D;
|
---|
9258 | if(x!=0.0){
|
---|
9259 | if(x==1.0D/0.0D){
|
---|
9260 | erf = 1.0D;
|
---|
9261 | }
|
---|
9262 | else{
|
---|
9263 | if(x>=0){
|
---|
9264 | erf = Stat.incompleteGamma(0.5, x*x);
|
---|
9265 | }
|
---|
9266 | else{
|
---|
9267 | erf = -Stat.incompleteGamma(0.5, x*x);
|
---|
9268 | }
|
---|
9269 | }
|
---|
9270 | }
|
---|
9271 | return erf;
|
---|
9272 | }
|
---|
9273 |
|
---|
9274 | // Complementary Error Function
|
---|
9275 | public static double erfc(double x){
|
---|
9276 | double erfc = 1.0D;
|
---|
9277 | if(x!=0.0){
|
---|
9278 | if(x==1.0D/0.0D){
|
---|
9279 | erfc = 0.0D;
|
---|
9280 | }
|
---|
9281 | else{
|
---|
9282 | if(x>=0){
|
---|
9283 | erfc = 1.0D - Stat.incompleteGamma(0.5, x*x);
|
---|
9284 | }
|
---|
9285 | else{
|
---|
9286 | erfc = 1.0D + Stat.incompleteGamma(0.5, x*x);
|
---|
9287 | }
|
---|
9288 | }
|
---|
9289 | }
|
---|
9290 | return erfc;
|
---|
9291 | }
|
---|
9292 |
|
---|
9293 |
|
---|
9294 | // NORMAL (GAUSSIAN) DISTRIBUTION
|
---|
9295 |
|
---|
9296 | // Gaussian (normal) cumulative distribution function
|
---|
9297 | // probability that a variate will assume a value less than the upperlimit
|
---|
9298 | // mean = the mean, sd = standard deviation
|
---|
9299 | public static double normalCDF(double mean, double sd, double upperlimit){
|
---|
9300 | double prob = Double.NaN;
|
---|
9301 | if(upperlimit==Double.POSITIVE_INFINITY){
|
---|
9302 | prob = 1.0;
|
---|
9303 | }
|
---|
9304 | else{
|
---|
9305 | if(upperlimit==Double.NEGATIVE_INFINITY){
|
---|
9306 | prob = 0.0;
|
---|
9307 | }
|
---|
9308 | else{
|
---|
9309 | double arg = (upperlimit - mean)/(sd*Math.sqrt(2.0));
|
---|
9310 | prob = (1.0D + Stat.erf(arg))/2.0D;
|
---|
9311 | }
|
---|
9312 | }
|
---|
9313 | if(Fmath.isNaN(prob)){
|
---|
9314 | if(upperlimit>mean){
|
---|
9315 | prob = 1.0;
|
---|
9316 | }
|
---|
9317 | else{
|
---|
9318 | prob = 0.0;
|
---|
9319 | }
|
---|
9320 | }
|
---|
9321 | return prob;
|
---|
9322 | }
|
---|
9323 |
|
---|
9324 | // Gaussian (normal) cumulative distribution function
|
---|
9325 | // probability that a variate will assume a value less than the upperlimit
|
---|
9326 | // mean = the mean, sd = standard deviation
|
---|
9327 | public static double normalProb(double mean, double sd, double upperlimit){
|
---|
9328 | if(upperlimit==Double.POSITIVE_INFINITY){
|
---|
9329 | return 1.0;
|
---|
9330 | }
|
---|
9331 | else{
|
---|
9332 | if(upperlimit==Double.NEGATIVE_INFINITY){
|
---|
9333 | return 0.0;
|
---|
9334 | }
|
---|
9335 | else{
|
---|
9336 | double arg = (upperlimit - mean)/(sd*Math.sqrt(2.0));
|
---|
9337 | return (1.0D + Stat.erf(arg))/2.0D;
|
---|
9338 | }
|
---|
9339 | }
|
---|
9340 | }
|
---|
9341 |
|
---|
9342 | // Gaussian (normal) cumulative distribution function
|
---|
9343 | // probability that a variate will assume a value less than the upperlimit
|
---|
9344 | // mean = the mean, sd = standard deviation
|
---|
9345 | public static double gaussianCDF(double mean, double sd, double upperlimit){
|
---|
9346 | return normalCDF(mean, sd, upperlimit);
|
---|
9347 | }
|
---|
9348 |
|
---|
9349 | // Gaussian (normal) cumulative distribution function
|
---|
9350 | // probability that a variate will assume a value less than the upperlimit
|
---|
9351 | // mean = the mean, sd = standard deviation
|
---|
9352 | public static double gaussianProb(double mean, double sd, double upperlimit){
|
---|
9353 | return normalCDF(mean, sd, upperlimit);
|
---|
9354 | }
|
---|
9355 |
|
---|
9356 | // Gaussian (normal) cumulative distribution function
|
---|
9357 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9358 | // mean = the mean, sd = standard deviation
|
---|
9359 | public static double normalCDF(double mean, double sd, double lowerlimit, double upperlimit){
|
---|
9360 | return Stat.normalCDF(mean, sd, upperlimit) - Stat.normalCDF(mean, sd, lowerlimit);
|
---|
9361 | }
|
---|
9362 |
|
---|
9363 | // Gaussian (normal) cumulative distribution function
|
---|
9364 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9365 | // mean = the mean, sd = standard deviation
|
---|
9366 | public static double normalProb(double mean, double sd, double lowerlimit, double upperlimit){
|
---|
9367 | return Stat.normalCDF(mean, sd, upperlimit) - Stat.normalCDF(mean, sd, lowerlimit);
|
---|
9368 | }
|
---|
9369 |
|
---|
9370 | // Gaussian (normal) cumulative distribution function
|
---|
9371 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9372 | // mean = the mean, sd = standard deviation
|
---|
9373 | public static double gaussianCDF(double mean, double sd, double lowerlimit, double upperlimit){
|
---|
9374 | return Stat.normalCDF(mean, sd, upperlimit) - Stat.normalCDF(mean, sd, lowerlimit);
|
---|
9375 | }
|
---|
9376 |
|
---|
9377 | // Gaussian (normal) cumulative distribution function
|
---|
9378 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9379 | // mean = the mean, sd = standard deviation
|
---|
9380 | public static double gaussianProb(double mean, double sd, double lowerlimit, double upperlimit){
|
---|
9381 | return Stat.normalCDF(mean, sd, upperlimit) - Stat.normalCDF(mean, sd, lowerlimit);
|
---|
9382 | }
|
---|
9383 |
|
---|
9384 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9385 | public static double gaussianInverseCDF(double mean, double sd, double prob){
|
---|
9386 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
9387 |
|
---|
9388 | double icdf = 0.0D;
|
---|
9389 |
|
---|
9390 | if(prob==0.0){
|
---|
9391 | icdf = Double.NEGATIVE_INFINITY;
|
---|
9392 | }
|
---|
9393 | else{
|
---|
9394 | if(prob==1.0){
|
---|
9395 | icdf = Double.POSITIVE_INFINITY;
|
---|
9396 | }
|
---|
9397 | else{
|
---|
9398 |
|
---|
9399 | // Create instance of the class holding the gaussian cfd function
|
---|
9400 | GaussianFunct gauss = new GaussianFunct();
|
---|
9401 |
|
---|
9402 | // set function variables
|
---|
9403 | gauss.mean = mean;
|
---|
9404 | gauss.sd = sd;
|
---|
9405 |
|
---|
9406 | // required tolerance
|
---|
9407 | double tolerance = 1e-12;
|
---|
9408 |
|
---|
9409 | // lower bound
|
---|
9410 | double lowerBound = mean - 10.0*sd;
|
---|
9411 |
|
---|
9412 | // upper bound
|
---|
9413 | double upperBound = mean + 10.0*sd;
|
---|
9414 |
|
---|
9415 | // Create instance of RealRoot
|
---|
9416 | RealRoot realR = new RealRoot();
|
---|
9417 |
|
---|
9418 | // Set extension limits
|
---|
9419 | // none
|
---|
9420 |
|
---|
9421 | // Set tolerance
|
---|
9422 | realR.setTolerance(tolerance);
|
---|
9423 |
|
---|
9424 | // Supress error messages and arrange for NaN to be returned as root if root not found
|
---|
9425 | realR.resetNaNexceptionToTrue();
|
---|
9426 | realR.supressLimitReachedMessage();
|
---|
9427 | realR.supressNaNmessage();
|
---|
9428 |
|
---|
9429 | // set function cfd variable
|
---|
9430 | gauss.cfd = prob;
|
---|
9431 |
|
---|
9432 | // call root searching method
|
---|
9433 | icdf = realR.bisect(gauss, lowerBound, upperBound);
|
---|
9434 | }
|
---|
9435 | }
|
---|
9436 |
|
---|
9437 | return icdf;
|
---|
9438 | }
|
---|
9439 |
|
---|
9440 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9441 | public static double inverseGaussianCDF(double mean, double sd, double prob){
|
---|
9442 | return gaussianInverseCDF(mean, sd, prob);
|
---|
9443 | }
|
---|
9444 |
|
---|
9445 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9446 | public static double normalInverseCDF(double mean, double sd, double prob){
|
---|
9447 | return gaussianInverseCDF(mean, sd, prob);
|
---|
9448 | }
|
---|
9449 |
|
---|
9450 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9451 | public static double inverseNormalCDF(double mean, double sd, double prob){
|
---|
9452 | return gaussianInverseCDF(mean, sd, prob);
|
---|
9453 | }
|
---|
9454 |
|
---|
9455 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9456 | // Standardized
|
---|
9457 | public static double gaussianInverseCDF(double prob){
|
---|
9458 | return gaussianInverseCDF(0.0D, 1.0D, prob);
|
---|
9459 | }
|
---|
9460 |
|
---|
9461 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9462 | // Standardized
|
---|
9463 | public static double inverseGaussianCDF(double prob){
|
---|
9464 | return gaussianInverseCDF(0.0D, 1.0D, prob);
|
---|
9465 | }
|
---|
9466 |
|
---|
9467 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9468 | // Standardized
|
---|
9469 | public static double normalInverseCDF(double prob){
|
---|
9470 | return gaussianInverseCDF(0.0D, 1.0D, prob);
|
---|
9471 | }
|
---|
9472 |
|
---|
9473 | // Gaussian Inverse Cumulative Distribution Function
|
---|
9474 | // Standardized
|
---|
9475 | public static double inverseNormalCDF(double prob){
|
---|
9476 | return gaussianInverseCDF(0.0D, 1.0D, prob);
|
---|
9477 | }
|
---|
9478 |
|
---|
9479 |
|
---|
9480 | // Gaussian (normal) order statistic medians (n points)
|
---|
9481 | public static double[] gaussianOrderStatisticMedians(double mean, double sigma, int n){
|
---|
9482 | double nn = (double)n;
|
---|
9483 | double[] gosm = new double[n];
|
---|
9484 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
9485 | for(int i=0; i<n; i++){
|
---|
9486 | gosm[i] =Stat.inverseGaussianCDF(mean, sigma, uosm[i]);
|
---|
9487 | }
|
---|
9488 | gosm = Stat.scale(gosm, mean, sigma);
|
---|
9489 | return gosm;
|
---|
9490 | }
|
---|
9491 |
|
---|
9492 | public static double[] normalOrderStatisticMedians(double mean, double sigma, int n){
|
---|
9493 | return Stat.gaussianOrderStatisticMedians(mean, sigma, n);
|
---|
9494 | }
|
---|
9495 |
|
---|
9496 | // Gaussian (normal) order statistic medians for a mean of zero and a standard deviation 0f unity (n points)
|
---|
9497 | public static double[] gaussianOrderStatisticMedians(int n){
|
---|
9498 | return Stat.gaussianOrderStatisticMedians(0.0, 1.0, n);
|
---|
9499 | }
|
---|
9500 |
|
---|
9501 | public static double[] normalOrderStatisticMedians(int n){
|
---|
9502 | return Stat.gaussianOrderStatisticMedians(0.0, 1.0, n);
|
---|
9503 | }
|
---|
9504 |
|
---|
9505 | // Gaussian (normal) probability density function
|
---|
9506 | // mean = the mean, sd = standard deviation
|
---|
9507 | public static double normalPDF(double mean, double sd, double x){
|
---|
9508 | return Math.exp(-Fmath.square((x - mean)/sd)/2.0)/(sd*Math.sqrt(2.0D*Math.PI));
|
---|
9509 | }
|
---|
9510 |
|
---|
9511 | // Gaussian (normal) probability density function
|
---|
9512 | // mean = the mean, sd = standard deviation
|
---|
9513 | public static double normal(double mean, double sd, double x){
|
---|
9514 | return Math.exp(-Fmath.square((x - mean)/sd)/2.0)/(sd*Math.sqrt(2.0D*Math.PI));
|
---|
9515 | }
|
---|
9516 |
|
---|
9517 | // Gaussian (normal) probability density function
|
---|
9518 | // mean = the mean, sd = standard deviation
|
---|
9519 | public static double gaussianPDF(double mean, double sd, double x){
|
---|
9520 | return Math.exp(-Fmath.square((x - mean)/sd)/2.0)/(sd*Math.sqrt(2.0D*Math.PI));
|
---|
9521 | }
|
---|
9522 | // Gaussian (normal) probability density function
|
---|
9523 | // mean = the mean, sd = standard deviation
|
---|
9524 | public static double gaussian(double mean, double sd, double x){
|
---|
9525 | return Math.exp(-Fmath.square((x - mean)/sd)/2.0)/(sd*Math.sqrt(2.0D*Math.PI));
|
---|
9526 | }
|
---|
9527 |
|
---|
9528 | // Returns an array of Gaussian (normal) random deviates - clock seed
|
---|
9529 | // mean = the mean, sd = standard deviation, length of array
|
---|
9530 | public static double[] normalRand(double mean, double sd, int n){
|
---|
9531 | double[] ran = new double[n];
|
---|
9532 | Random rr = new Random();
|
---|
9533 | for(int i=0; i<n; i++){
|
---|
9534 | ran[i]=rr.nextGaussian();
|
---|
9535 | }
|
---|
9536 | ran = Stat.standardize(ran);
|
---|
9537 | for(int i=0; i<n; i++){
|
---|
9538 | ran[i] = ran[i]*sd+mean;
|
---|
9539 | }
|
---|
9540 | return ran;
|
---|
9541 | }
|
---|
9542 |
|
---|
9543 | // Returns an array of Gaussian (normal) random deviates - clock seed
|
---|
9544 | // mean = the mean, sd = standard deviation, length of array
|
---|
9545 | public static double[] gaussianRand(double mean, double sd, int n){
|
---|
9546 | return normalRand(mean, sd, n);
|
---|
9547 | }
|
---|
9548 |
|
---|
9549 | // Returns an array of Gaussian (normal) random deviates - user provided seed
|
---|
9550 | // mean = the mean, sd = standard deviation, length of array
|
---|
9551 | public static double[] normalRand(double mean, double sd, int n, long seed){
|
---|
9552 | double[] ran = new double[n];
|
---|
9553 | Random rr = new Random(seed);
|
---|
9554 | for(int i=0; i<n; i++){
|
---|
9555 | ran[i]=rr.nextGaussian();
|
---|
9556 | }
|
---|
9557 | ran = Stat.standardize(ran);
|
---|
9558 | for(int i=0; i<n; i++){
|
---|
9559 | ran[i] = ran[i]*sd+mean;
|
---|
9560 | }
|
---|
9561 | return ran;
|
---|
9562 | }
|
---|
9563 |
|
---|
9564 | // Returns an array of Gaussian (normal) random deviates - user provided seed
|
---|
9565 | // mean = the mean, sd = standard deviation, length of array
|
---|
9566 | public static double[] gaussianRand(double mean, double sd, int n, long seed){
|
---|
9567 | return normalRand(mean, sd, n, seed);
|
---|
9568 | }
|
---|
9569 |
|
---|
9570 |
|
---|
9571 |
|
---|
9572 | // LOG-NORMAL DISTRIBUTIONS (TWO AND THEE PARAMETER DISTRIBUTIONS)
|
---|
9573 |
|
---|
9574 | // TWO PARAMETER LOG-NORMAL DISTRIBUTION
|
---|
9575 |
|
---|
9576 | // Two parameter log-normal cumulative distribution function
|
---|
9577 | // probability that a variate will assume a value less than the upperlimit
|
---|
9578 | public static double logNormalCDF(double mu, double sigma, double upperLimit){
|
---|
9579 | if(sigma<0)throw new IllegalArgumentException("The parameter sigma, " + sigma + ", must be greater than or equal to zero");
|
---|
9580 | if(upperLimit<=0){
|
---|
9581 | return 0.0D;
|
---|
9582 | }
|
---|
9583 | else{
|
---|
9584 | return 0.5D*(1.0D + Stat.erf((Math.log(upperLimit)-mu)/(sigma*Math.sqrt(2))));
|
---|
9585 | }
|
---|
9586 | }
|
---|
9587 |
|
---|
9588 | public static double logNormalTwoParCDF(double mu, double sigma, double upperLimit){
|
---|
9589 | return logNormalCDF(mu, sigma, upperLimit);
|
---|
9590 | }
|
---|
9591 |
|
---|
9592 |
|
---|
9593 | // Two parameter log-normal cumulative distribution function
|
---|
9594 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9595 | public static double logNormalCDF(double mu, double sigma, double lowerLimit, double upperLimit){
|
---|
9596 | if(sigma<0)throw new IllegalArgumentException("The parameter sigma, " + sigma + ", must be greater than or equal to zero");
|
---|
9597 | if(upperLimit<lowerLimit)throw new IllegalArgumentException("The upper limit, " + upperLimit + ", must be greater than the " + lowerLimit);
|
---|
9598 |
|
---|
9599 | double arg1 = 0.0D;
|
---|
9600 | double arg2 = 0.0D;
|
---|
9601 | double cdf = 0.0D;
|
---|
9602 |
|
---|
9603 | if(lowerLimit!=upperLimit){
|
---|
9604 | if(upperLimit>0.0D)arg1 = 0.5D*(1.0D + Stat.erf((Math.log(upperLimit)-mu)/(sigma*Math.sqrt(2))));
|
---|
9605 | if(lowerLimit>0.0D)arg2 = 0.5D*(1.0D + Stat.erf((Math.log(lowerLimit)-mu)/(sigma*Math.sqrt(2))));
|
---|
9606 | cdf = arg1 - arg2;
|
---|
9607 | }
|
---|
9608 |
|
---|
9609 | return cdf;
|
---|
9610 | }
|
---|
9611 |
|
---|
9612 | public static double logNormalTwoParCDF(double mu, double sigma, double lowerLimit, double upperLimit){
|
---|
9613 | return logNormalCDF(mu, sigma, lowerLimit, upperLimit);
|
---|
9614 | }
|
---|
9615 |
|
---|
9616 | // Log-Normal Inverse Cumulative Distribution Function
|
---|
9617 | // Two parameter
|
---|
9618 | public static double logNormalInverseCDF(double mu, double sigma, double prob){
|
---|
9619 | double alpha = 0.0;
|
---|
9620 | double beta = sigma;
|
---|
9621 | double gamma = Math.exp(mu);
|
---|
9622 |
|
---|
9623 | return logNormalInverseCDF(alpha, beta, gamma, prob);
|
---|
9624 | }
|
---|
9625 |
|
---|
9626 | // Log-Normal Inverse Cumulative Distribution Function
|
---|
9627 | // Two parameter
|
---|
9628 | public static double logNormaltwoParInverseCDF(double mu, double sigma, double prob){
|
---|
9629 | double alpha = 0.0;
|
---|
9630 | double beta = sigma;
|
---|
9631 | double gamma = Math.exp(mu);
|
---|
9632 |
|
---|
9633 | return logNormalInverseCDF(alpha, beta, gamma, prob);
|
---|
9634 | }
|
---|
9635 |
|
---|
9636 |
|
---|
9637 | // Two parameter log-normal probability density function
|
---|
9638 | public static double logNormalPDF(double mu, double sigma, double x){
|
---|
9639 | if(sigma<0)throw new IllegalArgumentException("The parameter sigma, " + sigma + ", must be greater than or equal to zero");
|
---|
9640 | if(x<0){
|
---|
9641 | return 0.0D;
|
---|
9642 | }
|
---|
9643 | else{
|
---|
9644 | return Math.exp(-0.5D*Fmath.square((Math.log(x)- mu)/sigma))/(x*sigma*Math.sqrt(2.0D*Math.PI));
|
---|
9645 | }
|
---|
9646 | }
|
---|
9647 |
|
---|
9648 | public static double logNormalTwoParPDF(double mu, double sigma, double x){
|
---|
9649 | return logNormalPDF(mu, sigma, x);
|
---|
9650 | }
|
---|
9651 |
|
---|
9652 |
|
---|
9653 | // Two parameter log-normal mean
|
---|
9654 | public static double logNormalMean(double mu, double sigma){
|
---|
9655 | return Math.exp(mu + sigma*sigma/2.0D);
|
---|
9656 | }
|
---|
9657 |
|
---|
9658 | public static double logNormalTwoParMean(double mu, double sigma){
|
---|
9659 | return Math.exp(mu + sigma*sigma/2.0D);
|
---|
9660 | }
|
---|
9661 |
|
---|
9662 | // Two parameter log-normal standard deviation
|
---|
9663 | public static double logNormalStandardDeviation(double mu, double sigma){
|
---|
9664 | return logNormalStandDev(mu, sigma);
|
---|
9665 | }
|
---|
9666 |
|
---|
9667 | // Two parameter log-normal standard deviation
|
---|
9668 | public static double logNormalStandDev(double mu, double sigma){
|
---|
9669 | double sigma2 = sigma*sigma;
|
---|
9670 | return Math.sqrt((Math.exp(sigma2) - 1.0D)*Math.exp(2.0D*mu + sigma2));
|
---|
9671 | }
|
---|
9672 |
|
---|
9673 | public static double logNormalTwoParStandardDeviation(double mu, double sigma){
|
---|
9674 | return logNormalTwoParStandDev(mu, sigma);
|
---|
9675 | }
|
---|
9676 |
|
---|
9677 | public static double logNormalTwoParStandDev(double mu, double sigma){
|
---|
9678 | double sigma2 = sigma*sigma;
|
---|
9679 | return Math.sqrt((Math.exp(sigma2) - 1.0D)*Math.exp(2.0D*mu + sigma2));
|
---|
9680 | }
|
---|
9681 |
|
---|
9682 | // Two parameter log-normal mode
|
---|
9683 | public static double logNormalMode(double mu, double sigma){
|
---|
9684 | return Math.exp(mu - sigma*sigma);
|
---|
9685 | }
|
---|
9686 |
|
---|
9687 | public static double logNormalTwoParMode(double mu, double sigma){
|
---|
9688 | return Math.exp(mu - sigma*sigma);
|
---|
9689 | }
|
---|
9690 |
|
---|
9691 | // Two parameter log-normal median
|
---|
9692 | public static double logNormalMedian(double mu){
|
---|
9693 | return Math.exp(mu);
|
---|
9694 | }
|
---|
9695 |
|
---|
9696 | public static double logNormalTwoParMedian(double mu){
|
---|
9697 | return Math.exp(mu);
|
---|
9698 | }
|
---|
9699 |
|
---|
9700 | // Returns an array of two parameter log-normal random deviates - clock seed
|
---|
9701 | public static double[] logNormalRand(double mu, double sigma, int n){
|
---|
9702 | if(n<=0)throw new IllegalArgumentException("The number of random deviates required, " + n + ", must be greater than zero");
|
---|
9703 | if(sigma<0)throw new IllegalArgumentException("The parameter sigma, " + sigma + ", must be greater than or equal to zero");
|
---|
9704 | PsRandom psr = new PsRandom();
|
---|
9705 | return psr.logNormalArray(mu, sigma, n);
|
---|
9706 | }
|
---|
9707 |
|
---|
9708 | public static double[] logNormalTwoParRand(double mu, double sigma, int n){
|
---|
9709 | return logNormalRand(mu, sigma, n);
|
---|
9710 | }
|
---|
9711 |
|
---|
9712 | // LogNormal order statistic medians (n points)
|
---|
9713 | // Two parametrs
|
---|
9714 | public static double[] logNormalOrderStatisticMedians(double mu, double sigma, int n){
|
---|
9715 | double alpha = 0.0;
|
---|
9716 | double beta = sigma;
|
---|
9717 | double gamma = Math.exp(mu);
|
---|
9718 |
|
---|
9719 | return logNormalOrderStatisticMedians(alpha, beta, gamma, n);
|
---|
9720 | }
|
---|
9721 |
|
---|
9722 | // LogNormal order statistic medians (n points)
|
---|
9723 | // Two parametrs
|
---|
9724 | public static double[] logNormalTwoParOrderStatisticMedians(double mu, double sigma, int n){
|
---|
9725 | return Stat.logNormalOrderStatisticMedians(mu, sigma, n);
|
---|
9726 | }
|
---|
9727 |
|
---|
9728 |
|
---|
9729 | // Returns an array of two parameter log-normal random deviates - user supplied seed
|
---|
9730 | public static double[] logNormalRand(double mu, double sigma, int n, long seed){
|
---|
9731 | if(n<=0)throw new IllegalArgumentException("The number of random deviates required, " + n + ", must be greater than zero");
|
---|
9732 | if(sigma<0)throw new IllegalArgumentException("The parameter sigma, " + sigma + ", must be greater than or equal to zero");
|
---|
9733 | PsRandom psr = new PsRandom(seed);
|
---|
9734 | return psr.logNormalArray(mu, sigma, n);
|
---|
9735 | }
|
---|
9736 |
|
---|
9737 |
|
---|
9738 | public static double[] logNormalTwoParRand(double mu, double sigma, int n, long seed){
|
---|
9739 | return logNormalRand(mu, sigma, n, seed);
|
---|
9740 | }
|
---|
9741 |
|
---|
9742 | // THREE PARAMETER LOG-NORMAL DISTRIBUTION
|
---|
9743 |
|
---|
9744 | // Three parameter log-normal cumulative distribution function
|
---|
9745 | // probability that a variate will assume a value less than the upperlimit
|
---|
9746 | public static double logNormalThreeParCDF(double alpha, double beta, double gamma, double upperLimit){
|
---|
9747 | if(beta<0)throw new IllegalArgumentException("The parameter beta, " + beta + ", must be greater than or equal to zero");
|
---|
9748 | if(upperLimit<=alpha){
|
---|
9749 | return 0.0D;
|
---|
9750 | }
|
---|
9751 | else{
|
---|
9752 | return 0.5D*(1.0D + Stat.erf(Math.log((upperLimit-alpha)/gamma)/(beta*Math.sqrt(2))));
|
---|
9753 | }
|
---|
9754 | }
|
---|
9755 |
|
---|
9756 |
|
---|
9757 | // Three parameter log-normal cumulative distribution function
|
---|
9758 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9759 | public static double logNormalThreeParCDF(double alpha, double beta, double gamma, double lowerLimit, double upperLimit){
|
---|
9760 | if(beta<0)throw new IllegalArgumentException("The parameter beta, " + beta + ", must be greater than or equal to zero");
|
---|
9761 | if(upperLimit<lowerLimit)throw new IllegalArgumentException("The upper limit, " + upperLimit + ", must be greater than the " + lowerLimit);
|
---|
9762 |
|
---|
9763 | double arg1 = 0.0D;
|
---|
9764 | double arg2 = 0.0D;
|
---|
9765 | double cdf = 0.0D;
|
---|
9766 |
|
---|
9767 | if(lowerLimit!=upperLimit){
|
---|
9768 | if(upperLimit>alpha)arg1 = 0.5D*(1.0D + Stat.erf(Math.log((upperLimit-alpha)/gamma)/(beta*Math.sqrt(2))));
|
---|
9769 | if(lowerLimit>alpha)arg2 = 0.5D*(1.0D + Stat.erf(Math.log((lowerLimit-alpha)/gamma)/(beta*Math.sqrt(2))));
|
---|
9770 | cdf = arg1 - arg2;
|
---|
9771 | }
|
---|
9772 |
|
---|
9773 | return cdf;
|
---|
9774 | }
|
---|
9775 |
|
---|
9776 |
|
---|
9777 | // Log-Normal Inverse Cumulative Distribution Function
|
---|
9778 | // Three parameter
|
---|
9779 | public static double logNormalInverseCDF(double alpha, double beta, double gamma, double prob){
|
---|
9780 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
9781 |
|
---|
9782 | double icdf = 0.0D;
|
---|
9783 |
|
---|
9784 | if(prob==0.0){
|
---|
9785 | icdf = alpha;
|
---|
9786 | }
|
---|
9787 | else{
|
---|
9788 | if(prob==1.0){
|
---|
9789 | icdf = Double.POSITIVE_INFINITY;
|
---|
9790 | }
|
---|
9791 | else{
|
---|
9792 |
|
---|
9793 | // Create instance of the class holding the Log-Normal cfd function
|
---|
9794 | LogNormalThreeParFunct lognorm = new LogNormalThreeParFunct();
|
---|
9795 |
|
---|
9796 | // set function variables
|
---|
9797 | lognorm.alpha = alpha;
|
---|
9798 | lognorm.beta = beta;
|
---|
9799 | lognorm.gamma = gamma;
|
---|
9800 |
|
---|
9801 | // required tolerance
|
---|
9802 | double tolerance = 1e-12;
|
---|
9803 |
|
---|
9804 | // lower bound
|
---|
9805 | double lowerBound = alpha;
|
---|
9806 |
|
---|
9807 | // upper bound
|
---|
9808 | double upperBound = Stat.logNormalThreeParMean(alpha, beta, gamma) + 5.0*Stat.logNormalThreeParStandardDeviation(alpha, beta, gamma);
|
---|
9809 |
|
---|
9810 | // Create instance of RealRoot
|
---|
9811 | RealRoot realR = new RealRoot();
|
---|
9812 |
|
---|
9813 | // Set extension limits
|
---|
9814 | realR.noLowerBoundExtension();
|
---|
9815 |
|
---|
9816 | // Set tolerance
|
---|
9817 | realR.setTolerance(tolerance);
|
---|
9818 |
|
---|
9819 | // Supress error messages and arrange for NaN to be returned as root if root not found
|
---|
9820 | realR.resetNaNexceptionToTrue();
|
---|
9821 | realR.supressLimitReachedMessage();
|
---|
9822 | realR.supressNaNmessage();
|
---|
9823 |
|
---|
9824 | // set function cfd variable
|
---|
9825 | lognorm.cfd = prob;
|
---|
9826 |
|
---|
9827 | // call root searching method
|
---|
9828 | icdf = realR.bisect(lognorm, lowerBound, upperBound);
|
---|
9829 | }
|
---|
9830 | }
|
---|
9831 |
|
---|
9832 | return icdf;
|
---|
9833 | }
|
---|
9834 |
|
---|
9835 | // Log-Normal Inverse Cumulative Distribution Function
|
---|
9836 | // Three parameter
|
---|
9837 | public static double logNormalThreeParInverseCDF(double alpha, double beta, double gamma, double prob){
|
---|
9838 | return logNormalInverseCDF(alpha, beta, gamma, prob);
|
---|
9839 | }
|
---|
9840 |
|
---|
9841 |
|
---|
9842 | // Three parameter log-normal probability density function
|
---|
9843 | public static double logNormalThreeParPDF(double alpha, double beta, double gamma, double x){
|
---|
9844 | if(beta<0)throw new IllegalArgumentException("The parameter beta, " + beta + ", must be greater than or equal to zero");
|
---|
9845 | if(x<=alpha){
|
---|
9846 | return 0.0D;
|
---|
9847 | }
|
---|
9848 | else{
|
---|
9849 | return Math.exp(-0.5D*Fmath.square(Math.log((x - alpha)/gamma)/beta))/((x - gamma)*beta*Math.sqrt(2.0D*Math.PI));
|
---|
9850 | }
|
---|
9851 | }
|
---|
9852 |
|
---|
9853 |
|
---|
9854 | // Returns an array of three parameter log-normal random deviates - clock seed
|
---|
9855 | public static double[] logNormalThreeParRand(double alpha, double beta, double gamma, int n){
|
---|
9856 | if(n<=0)throw new IllegalArgumentException("The number of random deviates required, " + n + ", must be greater than zero");
|
---|
9857 | if(beta<0)throw new IllegalArgumentException("The parameter beta, " + beta + ", must be greater than or equal to zero");
|
---|
9858 | PsRandom psr = new PsRandom();
|
---|
9859 | return psr.logNormalThreeParArray(alpha, beta, gamma, n);
|
---|
9860 | }
|
---|
9861 |
|
---|
9862 | // Returns an array of three parameter log-normal random deviates - user supplied seed
|
---|
9863 | public static double[] logNormalThreeParRand(double alpha, double beta, double gamma, int n, long seed){
|
---|
9864 | if(n<=0)throw new IllegalArgumentException("The number of random deviates required, " + n + ", must be greater than zero");
|
---|
9865 | if(beta<0)throw new IllegalArgumentException("The parameter beta, " + beta + ", must be greater than or equal to zero");
|
---|
9866 | PsRandom psr = new PsRandom(seed);
|
---|
9867 | return psr.logNormalThreeParArray(alpha, beta, gamma, n);
|
---|
9868 | }
|
---|
9869 |
|
---|
9870 |
|
---|
9871 | // LogNormal order statistic medians (n points)
|
---|
9872 | // Three parametrs
|
---|
9873 | public static double[] logNormalOrderStatisticMedians(double alpha, double beta, double gamma, int n){
|
---|
9874 | double nn = (double)n;
|
---|
9875 | double[] lnosm = new double[n];
|
---|
9876 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
9877 | for(int i=0; i<n; i++){
|
---|
9878 | lnosm[i] =Stat.logNormalThreeParInverseCDF(alpha, beta, gamma, uosm[i]);
|
---|
9879 | }
|
---|
9880 | lnosm = Stat.scale(lnosm, Stat.logNormalThreeParMean(alpha, beta, gamma), Stat.logNormalThreeParStandardDeviation(alpha, beta, gamma));
|
---|
9881 | return lnosm;
|
---|
9882 | }
|
---|
9883 |
|
---|
9884 | // LogNormal order statistic medians (n points)
|
---|
9885 | // Three parametrs
|
---|
9886 | public static double[] logNormalThreeParOrderStatisticMedians(double alpha, double beta, double gamma, int n){
|
---|
9887 | return Stat.logNormalOrderStatisticMedians(alpha, beta, gamma, n);
|
---|
9888 | }
|
---|
9889 |
|
---|
9890 | // Three parameter log-normal mean
|
---|
9891 | public static double logNormalThreeParMean(double alpha, double beta, double gamma){
|
---|
9892 | return gamma*Math.exp(beta*beta/2.0D) + alpha;
|
---|
9893 | }
|
---|
9894 |
|
---|
9895 | // Three parameter log-normal standard deviation
|
---|
9896 | public static double logNormalThreeParStandardDeviation(double alpha, double beta, double gamma){
|
---|
9897 | return logNormalThreeParStandDev(alpha, beta, gamma);
|
---|
9898 | }
|
---|
9899 |
|
---|
9900 | // Three parameter log-normal standard deviation
|
---|
9901 | public static double logNormalThreeParStandDev(double alpha, double beta, double gamma){
|
---|
9902 | double beta2 = beta*beta;
|
---|
9903 | return Math.sqrt((Math.exp(beta2) - 1.0D)*Math.exp(2.0D*Math.log(gamma) + beta2));
|
---|
9904 | }
|
---|
9905 |
|
---|
9906 | // Three parameter log-normal mode
|
---|
9907 | public static double logNormalThreeParMode(double alpha, double beta, double gamma){
|
---|
9908 | return gamma*Math.exp(- beta*beta) + alpha;
|
---|
9909 | }
|
---|
9910 |
|
---|
9911 | // Three parameter log-normal median
|
---|
9912 | public static double logNormalThreeParMedian(double alpha, double gamma){
|
---|
9913 | return gamma + alpha;
|
---|
9914 | }
|
---|
9915 |
|
---|
9916 |
|
---|
9917 | // LOGISTIC DISTRIBUTION
|
---|
9918 | // TWO PARAMETERS (See below for three parameter distribution)
|
---|
9919 |
|
---|
9920 | // Logistic cumulative distribution function
|
---|
9921 | // probability that a variate will assume a value less than the upperlimit
|
---|
9922 | // mu = location parameter, beta = scale parameter
|
---|
9923 | public static double logisticCDF(double mu, double beta, double upperlimit){
|
---|
9924 | return 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9925 | }
|
---|
9926 |
|
---|
9927 | // Logistic cumulative distribution function
|
---|
9928 | // probability that a variate will assume a value less than the upperlimit
|
---|
9929 | // mu = location parameter, beta = scale parameter
|
---|
9930 | public static double logisticTwoParCDF(double mu, double beta, double upperlimit){
|
---|
9931 | return 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9932 | }
|
---|
9933 |
|
---|
9934 |
|
---|
9935 | // Logistic cumulative distribution function
|
---|
9936 | // probability that a variate will assume a value less than the upperlimit
|
---|
9937 | // mu = location parameter, beta = scale parameter
|
---|
9938 | public static double logisticProb(double mu, double beta, double upperlimit){
|
---|
9939 | return 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9940 | }
|
---|
9941 |
|
---|
9942 |
|
---|
9943 | // Logistic cumulative distribution function
|
---|
9944 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9945 | // mu = location parameter, beta = scale parameter
|
---|
9946 | public static double logisticCDF(double mu, double beta, double lowerlimit, double upperlimit){
|
---|
9947 | double arg1 = 0.5D*(1.0D + Math.tanh((lowerlimit - mu)/(2.0D*beta)));
|
---|
9948 | double arg2 = 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9949 | return arg2 - arg1;
|
---|
9950 | }
|
---|
9951 |
|
---|
9952 | // Logistic cumulative distribution function
|
---|
9953 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9954 | // mu = location parameter, beta = scale parameter
|
---|
9955 | public static double logisticTwoParCDF(double mu, double beta, double lowerlimit, double upperlimit){
|
---|
9956 | double arg1 = 0.5D*(1.0D + Math.tanh((lowerlimit - mu)/(2.0D*beta)));
|
---|
9957 | double arg2 = 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9958 | return arg2 - arg1;
|
---|
9959 | }
|
---|
9960 |
|
---|
9961 | // Logistic cumulative distribution function
|
---|
9962 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
9963 | // mu = location parameter, beta = scale parameter
|
---|
9964 | public static double logisticProb(double mu, double beta, double lowerlimit, double upperlimit){
|
---|
9965 | double arg1 = 0.5D*(1.0D + Math.tanh((lowerlimit - mu)/(2.0D*beta)));
|
---|
9966 | double arg2 = 0.5D*(1.0D + Math.tanh((upperlimit - mu)/(2.0D*beta)));
|
---|
9967 | return arg2 - arg1;
|
---|
9968 | }
|
---|
9969 |
|
---|
9970 |
|
---|
9971 | // Logistic Inverse Cumulative Density Function
|
---|
9972 | public static double logisticTwoParInverseCDF(double mu, double beta, double prob){
|
---|
9973 | return logisticInverseCDF(mu, beta, prob);
|
---|
9974 | }
|
---|
9975 |
|
---|
9976 | // Logistic Inverse Cumulative Density Function
|
---|
9977 | public static double logisticInverseCDF(double mu, double beta, double prob){
|
---|
9978 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
9979 | double icdf = 0.0D;
|
---|
9980 |
|
---|
9981 | if(prob==0.0){
|
---|
9982 | icdf = Double.NEGATIVE_INFINITY;
|
---|
9983 | }
|
---|
9984 | else{
|
---|
9985 | if(prob==1.0){
|
---|
9986 | icdf = Double.POSITIVE_INFINITY;
|
---|
9987 | }
|
---|
9988 | else{
|
---|
9989 | icdf = mu - beta*Math.log(1.0/prob - 1.0);
|
---|
9990 | }
|
---|
9991 | }
|
---|
9992 |
|
---|
9993 | return icdf;
|
---|
9994 | }
|
---|
9995 |
|
---|
9996 | // Logistic probability density function density function
|
---|
9997 | // mu = location parameter, beta = scale parameter
|
---|
9998 | public static double logisticPDF(double mu, double beta, double x){
|
---|
9999 | return Fmath.square(Fmath.sech((x - mu)/(2.0D*beta)))/(4.0D*beta);
|
---|
10000 | }
|
---|
10001 |
|
---|
10002 | // Logistic probability density function density function
|
---|
10003 | // mu = location parameter, beta = scale parameter
|
---|
10004 | public static double logisticTwoParPDF(double mu, double beta, double x){
|
---|
10005 | return Fmath.square(Fmath.sech((x - mu)/(2.0D*beta)))/(4.0D*beta);
|
---|
10006 | }
|
---|
10007 | // Logistic probability density function
|
---|
10008 | // mu = location parameter, beta = scale parameter
|
---|
10009 | public static double logistic(double mu, double beta, double x){
|
---|
10010 | return Fmath.square(Fmath.sech((x - mu)/(2.0D*beta)))/(4.0D*beta);
|
---|
10011 | }
|
---|
10012 |
|
---|
10013 | // Returns an array of logistic distribution random deviates - clock seed
|
---|
10014 | // mu = location parameter, beta = scale parameter
|
---|
10015 | public static double[] logisticTwoParRand(double mu, double beta, int n){
|
---|
10016 | return logisticRand(mu, beta, n);
|
---|
10017 | }
|
---|
10018 |
|
---|
10019 | // Returns an array of logistic distribution random deviates - clock seed
|
---|
10020 | // mu = location parameter, beta = scale parameter
|
---|
10021 | public static double[] logisticRand(double mu, double beta, int n){
|
---|
10022 | double[] ran = new double[n];
|
---|
10023 | Random rr = new Random();
|
---|
10024 | for(int i=0; i<n; i++){
|
---|
10025 | ran[i] = 2.0D*beta*Fmath.atanh(2.0D*rr.nextDouble() - 1.0D) + mu;
|
---|
10026 | }
|
---|
10027 | return ran;
|
---|
10028 | }
|
---|
10029 |
|
---|
10030 | // Returns an array of Logistic random deviates - user provided seed
|
---|
10031 | // mu = location parameter, beta = scale parameter
|
---|
10032 | public static double[] logisticTwoParRand(double mu, double beta, int n, long seed){
|
---|
10033 | return logisticRand(mu, beta, n, seed);
|
---|
10034 | }
|
---|
10035 |
|
---|
10036 |
|
---|
10037 | // Returns an array of Logistic random deviates - user provided seed
|
---|
10038 | // mu = location parameter, beta = scale parameter
|
---|
10039 | public static double[] logisticRand(double mu, double beta, int n, long seed){
|
---|
10040 | double[] ran = new double[n];
|
---|
10041 | Random rr = new Random(seed);
|
---|
10042 | for(int i=0; i<n; i++){
|
---|
10043 | ran[i] = 2.0D*beta*Fmath.atanh(2.0D*rr.nextDouble() - 1.0D) + mu;
|
---|
10044 | }
|
---|
10045 | return ran;
|
---|
10046 | }
|
---|
10047 |
|
---|
10048 | // Logistic order statistic medians (n points)
|
---|
10049 | public static double[] logisticOrderStatisticMedians(double mu, double beta, int n){
|
---|
10050 | double nn = (double)n;
|
---|
10051 | double[] losm = new double[n];
|
---|
10052 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
10053 | for(int i=0; i<n; i++){
|
---|
10054 | losm[i] = Stat.logisticInverseCDF(mu, beta, uosm[i]);
|
---|
10055 | }
|
---|
10056 | return losm;
|
---|
10057 | }
|
---|
10058 |
|
---|
10059 | // Logistic order statistic medians (n points)
|
---|
10060 | public static double[] logisticTwoParOrderStatisticMedians(double mu, double beta, int n){
|
---|
10061 | double nn = (double)n;
|
---|
10062 | double[] losm = new double[n];
|
---|
10063 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
10064 | for(int i=0; i<n; i++){
|
---|
10065 | losm[i] = Stat.logisticInverseCDF(mu, beta, uosm[i]);
|
---|
10066 | }
|
---|
10067 | return losm;
|
---|
10068 | }
|
---|
10069 |
|
---|
10070 | // Logistic distribution mean
|
---|
10071 | public static double logisticMean(double mu){
|
---|
10072 | return mu;
|
---|
10073 | }
|
---|
10074 |
|
---|
10075 | // Logistic distribution mean
|
---|
10076 | public static double logisticTwoParMean(double mu){
|
---|
10077 | return mu;
|
---|
10078 | }
|
---|
10079 |
|
---|
10080 | // Logistic distribution standard deviation
|
---|
10081 | public static double logisticStandardDeviation(double beta){
|
---|
10082 | return logisticStandDev(beta);
|
---|
10083 | }
|
---|
10084 |
|
---|
10085 | // Logistic distribution standard deviation
|
---|
10086 | public static double logisticStandDev(double beta){
|
---|
10087 | return Math.sqrt(Fmath.square(Math.PI*beta)/3.0D);
|
---|
10088 | }
|
---|
10089 |
|
---|
10090 | // Logistic distribution standard deviation
|
---|
10091 | public static double logisticTwoParStandardDeviation(double beta){
|
---|
10092 | return Math.sqrt(Fmath.square(Math.PI*beta)/3.0D);
|
---|
10093 | }
|
---|
10094 |
|
---|
10095 | // Logistic distribution mode
|
---|
10096 | public static double logisticMode(double mu){
|
---|
10097 | return mu;
|
---|
10098 | }
|
---|
10099 |
|
---|
10100 | // Logistic distribution mode
|
---|
10101 | public static double logisticTwoParMode(double mu){
|
---|
10102 | return mu;
|
---|
10103 | }
|
---|
10104 |
|
---|
10105 | // Logistic distribution median
|
---|
10106 | public static double logisticMedian(double mu){
|
---|
10107 | return mu;
|
---|
10108 | }
|
---|
10109 |
|
---|
10110 | // Logistic distribution median
|
---|
10111 | public static double logisticTwoParMedian(double mu){
|
---|
10112 | return mu;
|
---|
10113 | }
|
---|
10114 |
|
---|
10115 |
|
---|
10116 | // LORENTZIAN DISTRIBUTION (CAUCHY DISTRIBUTION)
|
---|
10117 |
|
---|
10118 | // Lorentzian cumulative distribution function
|
---|
10119 | // probability that a variate will assume a value less than the upperlimit
|
---|
10120 | public static double lorentzianProb(double mu, double gamma, double upperlimit){
|
---|
10121 | double arg = (upperlimit - mu)/(gamma/2.0D);
|
---|
10122 | return (1.0D/Math.PI)*(Math.atan(arg)+Math.PI/2.0);
|
---|
10123 | }
|
---|
10124 | // Lorentzian cumulative distribution function
|
---|
10125 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
10126 | public static double lorentzianCDF(double mu, double gamma, double lowerlimit, double upperlimit){
|
---|
10127 | double arg1 = (upperlimit - mu)/(gamma/2.0D);
|
---|
10128 | double arg2 = (lowerlimit - mu)/(gamma/2.0D);
|
---|
10129 | return (1.0D/Math.PI)*(Math.atan(arg1)-Math.atan(arg2));
|
---|
10130 | }
|
---|
10131 |
|
---|
10132 | // Lorentzian cumulative distribution function
|
---|
10133 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
10134 | public static double lorentzianProb(double mu, double gamma, double lowerlimit, double upperlimit){
|
---|
10135 | double arg1 = (upperlimit - mu)/(gamma/2.0D);
|
---|
10136 | double arg2 = (lowerlimit - mu)/(gamma/2.0D);
|
---|
10137 | return (1.0D/Math.PI)*(Math.atan(arg1)-Math.atan(arg2));
|
---|
10138 | }
|
---|
10139 |
|
---|
10140 | // Lorentzian Inverse Cumulative Density Function
|
---|
10141 | public static double lorentzianInverseCDF(double mu, double gamma, double prob){
|
---|
10142 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
10143 | double icdf = 0.0D;
|
---|
10144 |
|
---|
10145 | if(prob==0.0){
|
---|
10146 | icdf = Double.NEGATIVE_INFINITY;
|
---|
10147 | }
|
---|
10148 | else{
|
---|
10149 | if(prob==1.0){
|
---|
10150 | icdf = Double.POSITIVE_INFINITY;
|
---|
10151 | }
|
---|
10152 | else{
|
---|
10153 | icdf = mu + gamma*Math.tan(Math.PI*(prob - 0.5))/2.0;
|
---|
10154 | }
|
---|
10155 | }
|
---|
10156 |
|
---|
10157 | return icdf;
|
---|
10158 | }
|
---|
10159 |
|
---|
10160 | // Lorentzian probability density function
|
---|
10161 | public static double lorentzianPDF(double mu, double gamma, double x){
|
---|
10162 | double arg =gamma/2.0D;
|
---|
10163 | return (1.0D/Math.PI)*arg/(Fmath.square(mu-x)+arg*arg);
|
---|
10164 | }
|
---|
10165 |
|
---|
10166 | // Lorentzian probability density function
|
---|
10167 | public static double lorentzian(double mu, double gamma, double x){
|
---|
10168 | double arg =gamma/2.0D;
|
---|
10169 | return (1.0D/Math.PI)*arg/(Fmath.square(mu-x)+arg*arg);
|
---|
10170 | }
|
---|
10171 |
|
---|
10172 |
|
---|
10173 | // Returns an array of Lorentzian random deviates - clock seed
|
---|
10174 | // mu = the mean, gamma = half-height width, length of array
|
---|
10175 | public static double[] lorentzianRand(double mu, double gamma, int n){
|
---|
10176 | double[] ran = new double[n];
|
---|
10177 | Random rr = new Random();
|
---|
10178 | for(int i=0; i<n; i++){
|
---|
10179 | ran[i]=Math.tan((rr.nextDouble()-0.5)*Math.PI);
|
---|
10180 | ran[i] = ran[i]*gamma/2.0 + mu;
|
---|
10181 | }
|
---|
10182 | return ran;
|
---|
10183 | }
|
---|
10184 |
|
---|
10185 | // Returns an array of Lorentzian random deviates - user provided seed
|
---|
10186 | // mu = the mean, gamma = half-height width, length of array
|
---|
10187 | public static double[] lorentzianRand(double mu, double gamma, int n, long seed){
|
---|
10188 | double[] ran = new double[n];
|
---|
10189 | Random rr = new Random(seed);
|
---|
10190 | for(int i=0; i<n; i++){
|
---|
10191 | ran[i]=Math.tan((rr.nextDouble()-0.5)*Math.PI);
|
---|
10192 | ran[i] = ran[i]*gamma/2.0 + mu;
|
---|
10193 | }
|
---|
10194 | return ran;
|
---|
10195 | }
|
---|
10196 |
|
---|
10197 | // Lorentzian order statistic medians (n points)
|
---|
10198 | public static double[] lorentzianOrderStatisticMedians(double mu, double gamma, int n){
|
---|
10199 | double nn = (double)n;
|
---|
10200 | double[] losm = new double[n];
|
---|
10201 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
10202 | for(int i=0; i<n; i++){
|
---|
10203 | losm[i] = Stat.lorentzianInverseCDF(mu, gamma, uosm[i]);
|
---|
10204 | }
|
---|
10205 | return losm;
|
---|
10206 | }
|
---|
10207 |
|
---|
10208 | // POISSON DISTRIBUTION
|
---|
10209 |
|
---|
10210 | // Poisson Cumulative Distribution Function
|
---|
10211 | // probability that a number of Poisson random events will occur between 0 and k (inclusive)
|
---|
10212 | // k is an integer greater than equal to 1
|
---|
10213 | // mean = mean of the Poisson distribution
|
---|
10214 | public static double poissonCDF(int k, double mean){
|
---|
10215 | if(k<1)throw new IllegalArgumentException("k must be an integer greater than or equal to 1");
|
---|
10216 | return Stat.incompleteGammaComplementary((double) k, mean);
|
---|
10217 | }
|
---|
10218 |
|
---|
10219 | // Poisson Cumulative Distribution Function
|
---|
10220 | // probability that a number of Poisson random events will occur between 0 and k (inclusive)
|
---|
10221 | // k is an integer greater than equal to 1
|
---|
10222 | // mean = mean of the Poisson distribution
|
---|
10223 | public static double poissonProb(int k, double mean){
|
---|
10224 | if(k<1)throw new IllegalArgumentException("k must be an integer greater than or equal to 1");
|
---|
10225 | return Stat.incompleteGammaComplementary((double) k, mean);
|
---|
10226 | }
|
---|
10227 |
|
---|
10228 | // Poisson Probability Density Function
|
---|
10229 | // k is an integer greater than or equal to zero
|
---|
10230 | // mean = mean of the Poisson distribution
|
---|
10231 | public static double poissonPDF(int k, double mean){
|
---|
10232 | if(k<0)throw new IllegalArgumentException("k must be an integer greater than or equal to 0");
|
---|
10233 | return Math.pow(mean, k)*Math.exp(-mean)/Stat.factorial((double)k);
|
---|
10234 | }
|
---|
10235 |
|
---|
10236 | // Poisson Probability Density Function
|
---|
10237 | // k is an integer greater than or equal to zero
|
---|
10238 | // mean = mean of the Poisson distribution
|
---|
10239 | public static double poisson(int k, double mean){
|
---|
10240 | if(k<0)throw new IllegalArgumentException("k must be an integer greater than or equal to 0");
|
---|
10241 | return Math.pow(mean, k)*Math.exp(-mean)/Stat.factorial((double)k);
|
---|
10242 | }
|
---|
10243 |
|
---|
10244 | // Returns an array of Poisson random deviates - clock seed
|
---|
10245 | // mean = the mean, n = length of array
|
---|
10246 | // follows the ideas of Numerical Recipes
|
---|
10247 | public static double[] poissonRand(double mean, int n){
|
---|
10248 |
|
---|
10249 | Random rr = new Random();
|
---|
10250 | double[] ran = poissonRandCalc(rr, mean, n);
|
---|
10251 | return ran;
|
---|
10252 | }
|
---|
10253 |
|
---|
10254 | // Returns an array of Poisson random deviates - user provided seed
|
---|
10255 | // mean = the mean, n = length of array
|
---|
10256 | // follows the ideas of Numerical Recipes
|
---|
10257 | public static double[] poissonRand(double mean, int n, long seed){
|
---|
10258 |
|
---|
10259 | Random rr = new Random(seed);
|
---|
10260 | double[] ran = poissonRandCalc(rr, mean, n);
|
---|
10261 | return ran;
|
---|
10262 | }
|
---|
10263 |
|
---|
10264 | // Calculates and returns an array of Poisson random deviates
|
---|
10265 | private static double[] poissonRandCalc(Random rr, double mean, int n){
|
---|
10266 | double[] ran = new double[n];
|
---|
10267 | double oldm = -1.0D;
|
---|
10268 | double expt = 0.0D;
|
---|
10269 | double em = 0.0D;
|
---|
10270 | double term = 0.0D;
|
---|
10271 | double sq = 0.0D;
|
---|
10272 | double lnMean = 0.0D;
|
---|
10273 | double yDev = 0.0D;
|
---|
10274 |
|
---|
10275 | if(mean < 12.0D){
|
---|
10276 | for(int i=0; i<n; i++){
|
---|
10277 | if(mean != oldm){
|
---|
10278 | oldm = mean;
|
---|
10279 | expt = Math.exp(-mean);
|
---|
10280 | }
|
---|
10281 | em = -1.0D;
|
---|
10282 | term = 1.0D;
|
---|
10283 | do{
|
---|
10284 | ++em;
|
---|
10285 | term *= rr.nextDouble();
|
---|
10286 | }while(term>expt);
|
---|
10287 | ran[i] = em;
|
---|
10288 | }
|
---|
10289 | }
|
---|
10290 | else{
|
---|
10291 | for(int i=0; i<n; i++){
|
---|
10292 | if(mean != oldm){
|
---|
10293 | oldm = mean;
|
---|
10294 | sq = Math.sqrt(2.0D*mean);
|
---|
10295 | lnMean = Math.log(mean);
|
---|
10296 | expt = lnMean - Stat.logGamma(mean+1.0D);
|
---|
10297 | }
|
---|
10298 | do{
|
---|
10299 | do{
|
---|
10300 | yDev = Math.tan(Math.PI*rr.nextDouble());
|
---|
10301 | em = sq*yDev+mean;
|
---|
10302 | }while(em<0.0D);
|
---|
10303 | em = Math.floor(em);
|
---|
10304 | term = 0.9D*(1.0D+yDev*yDev)*Math.exp(em*lnMean - Stat.logGamma(em+1.0D)-expt);
|
---|
10305 | }while(rr.nextDouble()>term);
|
---|
10306 | ran[i] = em;
|
---|
10307 | }
|
---|
10308 | }
|
---|
10309 | return ran;
|
---|
10310 | }
|
---|
10311 |
|
---|
10312 |
|
---|
10313 | // CHI SQUARE DISTRIBUTION AND CHI SQUARE FUNCTIONS
|
---|
10314 |
|
---|
10315 | // Chi-Square Cumulative Distribution Function
|
---|
10316 | // probability that an observed chi-square value for a correct model should be less than chiSquare
|
---|
10317 | // nu = the degrees of freedom
|
---|
10318 | public static double chiSquareCDF(double chiSquare, int nu){
|
---|
10319 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10320 | return Stat.incompleteGamma((double)nu/2.0D, chiSquare/2.0D);
|
---|
10321 | }
|
---|
10322 |
|
---|
10323 | // retained for compatability
|
---|
10324 | public static double chiSquareProb(double chiSquare, int nu){
|
---|
10325 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10326 | return Stat.incompleteGamma((double)nu/2.0D, chiSquare/2.0D);
|
---|
10327 | }
|
---|
10328 |
|
---|
10329 | // Chi-Square Probability Density Function
|
---|
10330 | // nu = the degrees of freedom
|
---|
10331 | public static double chiSquarePDF(double chiSquare, int nu){
|
---|
10332 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10333 | double dnu = (double) nu;
|
---|
10334 | return Math.pow(0.5D, dnu/2.0D)*Math.pow(chiSquare, dnu/2.0D - 1.0D)*Math.exp(-chiSquare/2.0D)/Stat.gammaFunction(dnu/2.0D);
|
---|
10335 | }
|
---|
10336 |
|
---|
10337 | // Returns an array of Chi-Square random deviates - clock seed
|
---|
10338 | public static double[] chiSquareRand(int nu, int n){
|
---|
10339 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10340 | PsRandom psr = new PsRandom();
|
---|
10341 | return psr.chiSquareArray(nu, n);
|
---|
10342 | }
|
---|
10343 |
|
---|
10344 |
|
---|
10345 | // Returns an array of Chi-Square random deviates - user supplied seed
|
---|
10346 | public static double[] chiSquareRand(int nu, int n, long seed){
|
---|
10347 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10348 | PsRandom psr = new PsRandom(seed);
|
---|
10349 | return psr.chiSquareArray(nu, n);
|
---|
10350 | }
|
---|
10351 |
|
---|
10352 | // Chi-Square Distribution Mean
|
---|
10353 | // nu = the degrees of freedom
|
---|
10354 | public static double chiSquareMean(int nu){
|
---|
10355 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10356 | return (double)nu;
|
---|
10357 | }
|
---|
10358 |
|
---|
10359 | // Chi-Square Distribution Mean
|
---|
10360 | // nu = the degrees of freedom
|
---|
10361 | public static double chiSquareMode(int nu){
|
---|
10362 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10363 | double mode = 0.0D;
|
---|
10364 | if(nu>=2)mode = (double)nu - 2.0D;
|
---|
10365 | return mode;
|
---|
10366 | }
|
---|
10367 |
|
---|
10368 | // Chi-Square Distribution Standard Deviation
|
---|
10369 | // nu = the degrees of freedom
|
---|
10370 | public static double chiSquareStandardDeviation(int nu){
|
---|
10371 | return chiSquareStandDev(nu);
|
---|
10372 | }
|
---|
10373 |
|
---|
10374 |
|
---|
10375 | // Chi-Square Distribution Standard Deviation
|
---|
10376 | // nu = the degrees of freedom
|
---|
10377 | public static double chiSquareStandDev(int nu){
|
---|
10378 | if(nu<=0)throw new IllegalArgumentException("The degrees of freedom [nu], " + nu + ", must be greater than zero");
|
---|
10379 | double dnu = (double) nu;
|
---|
10380 | return Math.sqrt(2.0D*dnu);
|
---|
10381 | }
|
---|
10382 |
|
---|
10383 | // Chi-Square Statistic
|
---|
10384 | public static double chiSquare(double[] observed, double[] expected, double[] variance){
|
---|
10385 | int nObs = observed.length;
|
---|
10386 | int nExp = expected.length;
|
---|
10387 | int nVar = variance.length;
|
---|
10388 | if(nObs!=nExp)throw new IllegalArgumentException("observed array length does not equal the expected array length");
|
---|
10389 | if(nObs!=nVar)throw new IllegalArgumentException("observed array length does not equal the variance array length");
|
---|
10390 | double chi = 0.0D;
|
---|
10391 | for(int i=0; i<nObs; i++){
|
---|
10392 | chi += Fmath.square(observed[i]-expected[i])/variance[i];
|
---|
10393 | }
|
---|
10394 | return chi;
|
---|
10395 | }
|
---|
10396 |
|
---|
10397 | // Chi-Square Statistic for Poisson distribution for frequency data
|
---|
10398 | // and Poisson distribution for each bin
|
---|
10399 | // double arguments
|
---|
10400 | public static double chiSquareFreq(double[] observedFreq, double[] expectedFreq){
|
---|
10401 | int nObs = observedFreq.length;
|
---|
10402 | int nExp = expectedFreq.length;
|
---|
10403 | if(nObs!=nExp)throw new IllegalArgumentException("observed array length does not equal the expected array length");
|
---|
10404 | double chi = 0.0D;
|
---|
10405 | for(int i=0; i<nObs; i++){
|
---|
10406 | chi += Fmath.square(observedFreq[i]-expectedFreq[i])/expectedFreq[i];
|
---|
10407 | }
|
---|
10408 | return chi;
|
---|
10409 | }
|
---|
10410 |
|
---|
10411 | // Chi-Square Statistic for Poisson distribution for frequency data
|
---|
10412 | // and Poisson distribution for each bin
|
---|
10413 | // int arguments
|
---|
10414 | public static double chiSquareFreq(int[] observedFreq, int[] expectedFreq){
|
---|
10415 | int nObs = observedFreq.length;
|
---|
10416 | int nExp = expectedFreq.length;
|
---|
10417 | if(nObs!=nExp)throw new IllegalArgumentException("observed array length does not equal the expected array length");
|
---|
10418 | double[] observ = new double[nObs];
|
---|
10419 | double[] expect = new double[nObs];
|
---|
10420 | for(int i=0; i<nObs; i++){
|
---|
10421 | observ[i] = observedFreq[i];
|
---|
10422 | expect[i] = expectedFreq[i];
|
---|
10423 | }
|
---|
10424 |
|
---|
10425 | return chiSquareFreq(observ, expect);
|
---|
10426 | }
|
---|
10427 |
|
---|
10428 |
|
---|
10429 | // BINOMIAL DISTRIBUTION AND BINOMIAL COEFFICIENTS
|
---|
10430 |
|
---|
10431 | // Returns the binomial cumulative distribution function
|
---|
10432 | public static double binomialCDF(double p, int n, int k){
|
---|
10433 | if(p<0.0D || p>1.0D)throw new IllegalArgumentException("\np must lie between 0 and 1");
|
---|
10434 | if(k<0 || n<0)throw new IllegalArgumentException("\nn and k must be greater than or equal to zero");
|
---|
10435 | if(k>n)throw new IllegalArgumentException("\nk is greater than n");
|
---|
10436 | return Stat.regularisedBetaFunction(k, n-k+1, p);
|
---|
10437 | }
|
---|
10438 | // Returns the binomial cumulative distribution function
|
---|
10439 | public static double binomialProb(double p, int n, int k){
|
---|
10440 | if(p<0.0D || p>1.0D)throw new IllegalArgumentException("\np must lie between 0 and 1");
|
---|
10441 | if(k<0 || n<0)throw new IllegalArgumentException("\nn and k must be greater than or equal to zero");
|
---|
10442 | if(k>n)throw new IllegalArgumentException("\nk is greater than n");
|
---|
10443 | return Stat.regularisedBetaFunction(k, n-k+1, p);
|
---|
10444 | }
|
---|
10445 |
|
---|
10446 | // Returns a binomial mass probabilty function
|
---|
10447 | public static double binomialPDF(double p, int n, int k){
|
---|
10448 | if(k<0 || n<0)throw new IllegalArgumentException("\nn and k must be greater than or equal to zero");
|
---|
10449 | if(k>n)throw new IllegalArgumentException("\nk is greater than n");
|
---|
10450 | return Math.floor(0.5D + Math.exp(Stat.logFactorial(n) - Stat.logFactorial(k) - Stat.logFactorial(n-k)))*Math.pow(p, k)*Math.pow(1.0D - p, n - k);
|
---|
10451 | }
|
---|
10452 |
|
---|
10453 | // Returns a binomial mass probabilty function
|
---|
10454 | public static double binomial(double p, int n, int k){
|
---|
10455 | if(k<0 || n<0)throw new IllegalArgumentException("\nn and k must be greater than or equal to zero");
|
---|
10456 | if(k>n)throw new IllegalArgumentException("\nk is greater than n");
|
---|
10457 | return Math.floor(0.5D + Math.exp(Stat.logFactorial(n) - Stat.logFactorial(k) - Stat.logFactorial(n-k)))*Math.pow(p, k)*Math.pow(1.0D - p, n - k);
|
---|
10458 | }
|
---|
10459 |
|
---|
10460 | // Returns a binomial Coefficient as a double
|
---|
10461 | public static double binomialCoeff(int n, int k){
|
---|
10462 | if(k<0 || n<0)throw new IllegalArgumentException("\nn and k must be greater than or equal to zero");
|
---|
10463 | if(k>n)throw new IllegalArgumentException("\nk is greater than n");
|
---|
10464 | return Math.floor(0.5D + Math.exp(Stat.logFactorial(n) - Stat.logFactorial(k) - Stat.logFactorial(n-k)));
|
---|
10465 | }
|
---|
10466 |
|
---|
10467 | // Returns an array of n Binomial pseudorandom deviates from a binomial - clock seed
|
---|
10468 | // distribution of nTrial trials each of probablity, prob,
|
---|
10469 | // after bndlev Numerical Recipes in C - W.H. Press et al. (Cambridge)
|
---|
10470 | // 2nd edition 1992 p295.
|
---|
10471 | public double[] binomialRand(double prob, int nTrials, int n){
|
---|
10472 |
|
---|
10473 | if(nTrials<n)throw new IllegalArgumentException("Number of deviates requested, " + n + ", must be less than the number of trials, " + nTrials);
|
---|
10474 | if(prob<0.0D || prob>1.0D)throw new IllegalArgumentException("The probablity provided, " + prob + ", must lie between 0 and 1)");
|
---|
10475 |
|
---|
10476 | double[] ran = new double[n]; // array of deviates to be returned
|
---|
10477 | Random rr = new Random(); // instance of Random
|
---|
10478 |
|
---|
10479 | double binomialDeviate = 0.0D; // the binomial deviate to be returned
|
---|
10480 | double deviateMean = 0.0D; // mean of deviate to be produced
|
---|
10481 | double testDeviate = 0.0D; // test deviate
|
---|
10482 | double workingProb = 0.0; // working value of the probability
|
---|
10483 | double logProb = 0.0; // working value of the probability
|
---|
10484 | double probOld = -1.0D; // previous value of the working probability
|
---|
10485 | double probC = -1.0D; // complementary value of the working probability
|
---|
10486 | double logProbC = -1.0D; // log of the complementary value of the working probability
|
---|
10487 | int nOld= -1; // previous value of trials counter
|
---|
10488 | double enTrials = 0.0D; // (double) trials counter
|
---|
10489 | double oldGamma = 0.0D; // a previous log Gamma function value
|
---|
10490 | double tanW = 0.0D; // a working tangent
|
---|
10491 | double hold0 = 0.0D; // a working holding variable
|
---|
10492 | int jj; // counter
|
---|
10493 |
|
---|
10494 | double probOriginalValue = prob;
|
---|
10495 | for(int i=0; i<n; i++){
|
---|
10496 | prob = probOriginalValue;
|
---|
10497 | workingProb=(prob <= 0.5D ? prob : 1.0-prob); // distribution invariant on swapping prob for 1 - prob
|
---|
10498 | deviateMean = nTrials*workingProb;
|
---|
10499 |
|
---|
10500 | if(nTrials < 25) {
|
---|
10501 | // if number of trials greater than 25 use direct method
|
---|
10502 | binomialDeviate=0.0D;
|
---|
10503 | for(jj=1;jj<=nTrials;jj++)if (rr.nextDouble() < workingProb) ++binomialDeviate;
|
---|
10504 | }
|
---|
10505 | else if(deviateMean < 1.0D) {
|
---|
10506 | // if fewer than 1 out of 25 events - Poisson approximation is accurate
|
---|
10507 | double expOfMean=Math.exp(-deviateMean);
|
---|
10508 | testDeviate=1.0D;
|
---|
10509 | for (jj=0;jj<=nTrials;jj++) {
|
---|
10510 | testDeviate *= rr.nextDouble();
|
---|
10511 | if (testDeviate < expOfMean) break;
|
---|
10512 | }
|
---|
10513 | binomialDeviate=(jj <= nTrials ? jj : nTrials);
|
---|
10514 |
|
---|
10515 | }
|
---|
10516 | else{
|
---|
10517 | // use rejection method
|
---|
10518 | if(nTrials != nOld) {
|
---|
10519 | // if nTrials has changed compute useful quantities
|
---|
10520 | enTrials = (double)nTrials;
|
---|
10521 | oldGamma = Stat.logGamma(enTrials + 1.0D);
|
---|
10522 | nOld = nTrials;
|
---|
10523 | }
|
---|
10524 | if(workingProb != probOld) {
|
---|
10525 | // if workingProb has changed compute useful quantities
|
---|
10526 | probC = 1.0 - workingProb;
|
---|
10527 | logProb = Math.log(workingProb);
|
---|
10528 | logProbC = Math.log(probC);
|
---|
10529 | probOld = workingProb;
|
---|
10530 | }
|
---|
10531 |
|
---|
10532 | double sq = Math.sqrt(2.0*deviateMean*probC);
|
---|
10533 | do{
|
---|
10534 | do{
|
---|
10535 | double angle = Math.PI*rr.nextDouble();
|
---|
10536 | tanW = Math.tan(angle);
|
---|
10537 | hold0 = sq*tanW + deviateMean;
|
---|
10538 | }while(hold0 < 0.0D || hold0 >= (enTrials + 1.0D)); //rejection test
|
---|
10539 | hold0 = Math.floor(hold0); // integer value distribution
|
---|
10540 | testDeviate = 1.2D*sq*(1.0D + tanW*tanW)*Math.exp(oldGamma - Stat.logGamma(hold0 + 1.0D) - Stat.logGamma(enTrials - hold0 + 1.0D) + hold0*logProb + (enTrials - hold0)*logProbC);
|
---|
10541 | }while(rr.nextDouble() > testDeviate); // rejection test
|
---|
10542 | binomialDeviate=hold0;
|
---|
10543 | }
|
---|
10544 |
|
---|
10545 | if(workingProb != prob) binomialDeviate = nTrials - binomialDeviate; // symmetry transformation
|
---|
10546 |
|
---|
10547 | ran[i] = binomialDeviate;
|
---|
10548 | }
|
---|
10549 |
|
---|
10550 | return ran;
|
---|
10551 | }
|
---|
10552 |
|
---|
10553 | // Returns an array of n Binomial pseudorandom deviates from a binomial - user supplied seed
|
---|
10554 | // distribution of nTrial trials each of probablity, prob,
|
---|
10555 | // after bndlev Numerical Recipes in C - W.H. Press et al. (Cambridge)
|
---|
10556 | // 2nd edition 1992 p295.
|
---|
10557 | public double[] binomialRand(double prob, int nTrials, int n, long seed){
|
---|
10558 |
|
---|
10559 | if(nTrials<n)throw new IllegalArgumentException("Number of deviates requested, " + n + ", must be less than the number of trials, " + nTrials);
|
---|
10560 | if(prob<0.0D || prob>1.0D)throw new IllegalArgumentException("The probablity provided, " + prob + ", must lie between 0 and 1)");
|
---|
10561 |
|
---|
10562 | double[] ran = new double[n]; // array of deviates to be returned
|
---|
10563 | Random rr = new Random(seed); // instance of Random
|
---|
10564 |
|
---|
10565 | double binomialDeviate = 0.0D; // the binomial deviate to be returned
|
---|
10566 | double deviateMean = 0.0D; // mean of deviate to be produced
|
---|
10567 | double testDeviate = 0.0D; // test deviate
|
---|
10568 | double workingProb = 0.0; // working value of the probability
|
---|
10569 | double logProb = 0.0; // working value of the probability
|
---|
10570 | double probOld = -1.0D; // previous value of the working probability
|
---|
10571 | double probC = -1.0D; // complementary value of the working probability
|
---|
10572 | double logProbC = -1.0D; // log of the complementary value of the working probability
|
---|
10573 | int nOld= -1; // previous value of trials counter
|
---|
10574 | double enTrials = 0.0D; // (double) trials counter
|
---|
10575 | double oldGamma = 0.0D; // a previous log Gamma function value
|
---|
10576 | double tanW = 0.0D; // a working tangent
|
---|
10577 | double hold0 = 0.0D; // a working holding variable
|
---|
10578 | int jj; // counter
|
---|
10579 |
|
---|
10580 | double probOriginalValue = prob;
|
---|
10581 | for(int i=0; i<n; i++){
|
---|
10582 | prob = probOriginalValue;
|
---|
10583 | workingProb=(prob <= 0.5D ? prob : 1.0-prob); // distribution invariant on swapping prob for 1 - prob
|
---|
10584 | deviateMean = nTrials*workingProb;
|
---|
10585 |
|
---|
10586 | if(nTrials < 25) {
|
---|
10587 | // if number of trials greater than 25 use direct method
|
---|
10588 | binomialDeviate=0.0D;
|
---|
10589 | for(jj=1;jj<=nTrials;jj++)if (rr.nextDouble() < workingProb) ++binomialDeviate;
|
---|
10590 | }
|
---|
10591 | else if(deviateMean < 1.0D) {
|
---|
10592 | // if fewer than 1 out of 25 events - Poisson approximation is accurate
|
---|
10593 | double expOfMean=Math.exp(-deviateMean);
|
---|
10594 | testDeviate=1.0D;
|
---|
10595 | for (jj=0;jj<=nTrials;jj++) {
|
---|
10596 | testDeviate *= rr.nextDouble();
|
---|
10597 | if (testDeviate < expOfMean) break;
|
---|
10598 | }
|
---|
10599 | binomialDeviate=(jj <= nTrials ? jj : nTrials);
|
---|
10600 |
|
---|
10601 | }
|
---|
10602 | else{
|
---|
10603 | // use rejection method
|
---|
10604 | if(nTrials != nOld) {
|
---|
10605 | // if nTrials has changed compute useful quantities
|
---|
10606 | enTrials = (double)nTrials;
|
---|
10607 | oldGamma = Stat.logGamma(enTrials + 1.0D);
|
---|
10608 | nOld = nTrials;
|
---|
10609 | }
|
---|
10610 | if(workingProb != probOld) {
|
---|
10611 | // if workingProb has changed compute useful quantities
|
---|
10612 | probC = 1.0 - workingProb;
|
---|
10613 | logProb = Math.log(workingProb);
|
---|
10614 | logProbC = Math.log(probC);
|
---|
10615 | probOld = workingProb;
|
---|
10616 | }
|
---|
10617 |
|
---|
10618 | double sq = Math.sqrt(2.0*deviateMean*probC);
|
---|
10619 | do{
|
---|
10620 | do{
|
---|
10621 | double angle = Math.PI*rr.nextDouble();
|
---|
10622 | tanW = Math.tan(angle);
|
---|
10623 | hold0 = sq*tanW + deviateMean;
|
---|
10624 | }while(hold0 < 0.0D || hold0 >= (enTrials + 1.0D)); //rejection test
|
---|
10625 | hold0 = Math.floor(hold0); // integer value distribution
|
---|
10626 | testDeviate = 1.2D*sq*(1.0D + tanW*tanW)*Math.exp(oldGamma - Stat.logGamma(hold0 + 1.0D) - Stat.logGamma(enTrials - hold0 + 1.0D) + hold0*logProb + (enTrials - hold0)*logProbC);
|
---|
10627 | }while(rr.nextDouble() > testDeviate); // rejection test
|
---|
10628 | binomialDeviate=hold0;
|
---|
10629 | }
|
---|
10630 |
|
---|
10631 | if(workingProb != prob) binomialDeviate = nTrials - binomialDeviate; // symmetry transformation
|
---|
10632 |
|
---|
10633 | ran[i] = binomialDeviate;
|
---|
10634 | }
|
---|
10635 |
|
---|
10636 | return ran;
|
---|
10637 | }
|
---|
10638 |
|
---|
10639 |
|
---|
10640 | // F-DISTRIBUTION AND F-TEST
|
---|
10641 |
|
---|
10642 | // Returns the F-distribution probabilty for degrees of freedom df1, df2
|
---|
10643 | // F ratio provided
|
---|
10644 | public static double fCompCDF(double fValue, int df1, int df2){
|
---|
10645 | if(df1<=0)throw new IllegalArgumentException("the degrees of freedom, nu1, " + df1 + ", must be greater than zero");
|
---|
10646 | if(df2<=0)throw new IllegalArgumentException("the degrees of freedom, nu2, " + df2 + ", must be greater than zero");
|
---|
10647 | if(fValue<0)throw new IllegalArgumentException("the F-ratio, " + fValue + ", must be greater than or equal to zero");
|
---|
10648 | double ddf1 = (double)df1;
|
---|
10649 | double ddf2 = (double)df2;
|
---|
10650 | double x = ddf2/(ddf2+ddf1*fValue);
|
---|
10651 | return Stat.regularisedBetaFunction(df2/2.0D, df1/2.0D, x);
|
---|
10652 | }
|
---|
10653 |
|
---|
10654 | // retained fot compatibility
|
---|
10655 | public static double fTestProb(double fValue, int df1, int df2){
|
---|
10656 | if(df1<=0)throw new IllegalArgumentException("the degrees of freedom, nu1, " + df1 + ", must be greater than zero");
|
---|
10657 | if(df2<=0)throw new IllegalArgumentException("the degrees of freedom, nu2, " + df2 + ", must be greater than zero");
|
---|
10658 | if(fValue<0)throw new IllegalArgumentException("the F-ratio, " + fValue + ", must be greater than or equal to zero");
|
---|
10659 | double ddf1 = (double)df1;
|
---|
10660 | double ddf2 = (double)df2;
|
---|
10661 | double x = ddf2/(ddf2+ddf1*fValue);
|
---|
10662 | return Stat.regularisedBetaFunction(df2/2.0D, df1/2.0D, x);
|
---|
10663 | }
|
---|
10664 |
|
---|
10665 | // Returns the F-distribution probabilty for degrees of freedom df1, df2
|
---|
10666 | // numerator and denominator variances provided
|
---|
10667 | public static double fCompCDF(double var1, int df1, double var2, int df2){
|
---|
10668 | if(df1<=0)throw new IllegalArgumentException("the degrees of freedom, nu1, " + df1 + ", must be greater than zero");
|
---|
10669 | if(df2<=0)throw new IllegalArgumentException("the degrees of freedom, nu2, " + df2 + ", must be greater than zero");
|
---|
10670 | if(var1<0)throw new IllegalArgumentException("the variance, var1" + var1 + ", must be greater than or equal to zero");
|
---|
10671 | if(var1<=0)throw new IllegalArgumentException("the variance, var2" + var2 + ", must be greater than zero");
|
---|
10672 | double fValue = var1/var2;
|
---|
10673 | double ddf1 = (double)df1;
|
---|
10674 | double ddf2 = (double)df2;
|
---|
10675 | double x = ddf2/(ddf2+ddf1*fValue);
|
---|
10676 | return Stat.regularisedBetaFunction(df2/2.0D, df1/2.0D, x);
|
---|
10677 | }
|
---|
10678 |
|
---|
10679 | // retained fot compatibility
|
---|
10680 | public static double fTestProb(double var1, int df1, double var2, int df2){
|
---|
10681 | if(df1<=0)throw new IllegalArgumentException("the degrees of freedom, nu1, " + df1 + ", must be greater than zero");
|
---|
10682 | if(df2<=0)throw new IllegalArgumentException("the degrees of freedom, nu2, " + df2 + ", must be greater than zero");
|
---|
10683 | if(var1<0)throw new IllegalArgumentException("the variance, var1" + var1 + ", must be greater than or equal to zero");
|
---|
10684 | if(var1<=0)throw new IllegalArgumentException("the variance, var2" + var2 + ", must be greater than zero");
|
---|
10685 | double fValue = var1/var2;
|
---|
10686 | double ddf1 = (double)df1;
|
---|
10687 | double ddf2 = (double)df2;
|
---|
10688 | double x = ddf2/(ddf2+ddf1*fValue);
|
---|
10689 | return Stat.regularisedBetaFunction(df2/2.0D, df1/2.0D, x);
|
---|
10690 | }
|
---|
10691 |
|
---|
10692 |
|
---|
10693 | // F-distribution Inverse Cumulative Distribution Function
|
---|
10694 | public static double fDistributionInverseCDF(int nu1, int nu2, double prob){
|
---|
10695 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
10696 |
|
---|
10697 | double icdf = 0.0D;
|
---|
10698 |
|
---|
10699 | if(prob==0.0){
|
---|
10700 | icdf = 0.0;
|
---|
10701 | }
|
---|
10702 | else{
|
---|
10703 | if(prob==1.0){
|
---|
10704 | icdf = Double.POSITIVE_INFINITY;
|
---|
10705 | }
|
---|
10706 | else{
|
---|
10707 |
|
---|
10708 | // Create instance of the class holding the F-distribution cfd function
|
---|
10709 | FdistribtionFunct fdistn = new FdistribtionFunct();
|
---|
10710 |
|
---|
10711 | // set function variables
|
---|
10712 | fdistn.nu1 = nu1;
|
---|
10713 | fdistn.nu2 = nu2;
|
---|
10714 |
|
---|
10715 | // required tolerance
|
---|
10716 | double tolerance = 1e-12;
|
---|
10717 |
|
---|
10718 | // lower bound
|
---|
10719 | double lowerBound = 0.0;
|
---|
10720 |
|
---|
10721 | // upper bound
|
---|
10722 | double upperBound = 2.0;
|
---|
10723 |
|
---|
10724 | // Create instance of RealRoot
|
---|
10725 | RealRoot realR = new RealRoot();
|
---|
10726 |
|
---|
10727 | // Set extension limits
|
---|
10728 | realR.noLowerBoundExtension();
|
---|
10729 |
|
---|
10730 | // Set tolerance
|
---|
10731 | realR.setTolerance(tolerance);
|
---|
10732 |
|
---|
10733 | // Supress error messages and arrange for NaN to be returned as root if root not found
|
---|
10734 | realR.resetNaNexceptionToTrue();
|
---|
10735 | realR.supressLimitReachedMessage();
|
---|
10736 | realR.supressNaNmessage();
|
---|
10737 |
|
---|
10738 | // set function cfd variable
|
---|
10739 | fdistn.cfd = prob;
|
---|
10740 |
|
---|
10741 | // call root searching method
|
---|
10742 | icdf = realR.bisect(fdistn, lowerBound, upperBound);
|
---|
10743 | }
|
---|
10744 | }
|
---|
10745 | return icdf;
|
---|
10746 | }
|
---|
10747 |
|
---|
10748 |
|
---|
10749 | // F-distribution order statistic medians (n points)
|
---|
10750 | public static double[] fDistributionOrderStatisticMedians(int nu1, int nu2, int n){
|
---|
10751 | double nn = (double)n;
|
---|
10752 | double[] gosm = new double[n];
|
---|
10753 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
10754 | for(int i=0; i<n; i++){
|
---|
10755 | gosm[i] =Stat.fDistributionInverseCDF(nu1, nu2, uosm[i]);
|
---|
10756 | }
|
---|
10757 | Stat st = new Stat(gosm);
|
---|
10758 | double mean = st.mean();
|
---|
10759 | double sigma = st.standardDeviation();
|
---|
10760 | gosm = Stat.scale(gosm, mean, sigma);
|
---|
10761 | return gosm;
|
---|
10762 | }
|
---|
10763 |
|
---|
10764 |
|
---|
10765 | // Returns the F-test value corresponding to a F-distribution probabilty, fProb,
|
---|
10766 | // for degrees of freedom df1, df2
|
---|
10767 | public static double fTestValueGivenFprob(double fProb, int df1, int df2){
|
---|
10768 |
|
---|
10769 | // Create an array F-test value array
|
---|
10770 | int fTestsNum = 100; // length of array
|
---|
10771 | double[] fTestValues = new double[fTestsNum];
|
---|
10772 | fTestValues[0]=0.0001D; // lowest array value
|
---|
10773 | fTestValues[fTestsNum-1]=10000.0D; // highest array value
|
---|
10774 | // calculate array increment - log scale
|
---|
10775 | double diff = (Fmath.log10(fTestValues[fTestsNum-1])-Fmath.log10(fTestValues[0]))/(fTestsNum-1);
|
---|
10776 | // Fill array
|
---|
10777 | for(int i=1; i<fTestsNum-1; i++){
|
---|
10778 | fTestValues[i] = Math.pow(10.0D,(Fmath.log10(fTestValues[i-1])+diff));
|
---|
10779 | }
|
---|
10780 |
|
---|
10781 | // calculate F test probability array corresponding to F-test value array
|
---|
10782 | double[] fTestProb = new double[fTestsNum];
|
---|
10783 | for(int i=0; i<fTestsNum; i++){
|
---|
10784 | fTestProb[i] = Stat.fTestProb(fTestValues[i], df1, df2);
|
---|
10785 | }
|
---|
10786 |
|
---|
10787 | // calculate F-test value for provided probability
|
---|
10788 | // using bisection procedure
|
---|
10789 | double fTest0 = 0.0D;
|
---|
10790 | double fTest1 = 0.0D;
|
---|
10791 | double fTest2 = 0.0D;
|
---|
10792 |
|
---|
10793 | // find bracket for the F-test probabilities and calculate F-Test value from above arrays
|
---|
10794 | boolean test0 = true;
|
---|
10795 | boolean test1 = true;
|
---|
10796 | int i=0;
|
---|
10797 | int endTest=0;
|
---|
10798 | while(test0){
|
---|
10799 | if(fProb==fTestProb[i]){
|
---|
10800 | fTest0=fTestValues[i];
|
---|
10801 | test0=false;
|
---|
10802 | test1=false;
|
---|
10803 | }
|
---|
10804 | else{
|
---|
10805 | if(fProb>fTestProb[i]){
|
---|
10806 | test0=false;
|
---|
10807 | if(i>0){
|
---|
10808 | fTest1=fTestValues[i-1];
|
---|
10809 | fTest2=fTestValues[i];
|
---|
10810 | endTest=-1;
|
---|
10811 | }
|
---|
10812 | else{
|
---|
10813 | fTest1=fTestValues[i]/10.0D;
|
---|
10814 | fTest2=fTestValues[i];
|
---|
10815 | }
|
---|
10816 | }
|
---|
10817 | else{
|
---|
10818 | i++;
|
---|
10819 | if(i>fTestsNum-1){
|
---|
10820 | test0=false;
|
---|
10821 | fTest1=fTestValues[i-1];
|
---|
10822 | fTest2=10.0D*fTestValues[i-1];
|
---|
10823 | endTest=1;
|
---|
10824 | }
|
---|
10825 | }
|
---|
10826 | }
|
---|
10827 | }
|
---|
10828 |
|
---|
10829 | // call bisection method
|
---|
10830 | if(test1)fTest0=fTestBisect(fProb, fTest1, fTest2, df1, df2, endTest);
|
---|
10831 |
|
---|
10832 | return fTest0;
|
---|
10833 | }
|
---|
10834 |
|
---|
10835 | // Bisection procedure for calculating and F-test value corresponding
|
---|
10836 | // to a given F-test probability
|
---|
10837 | private static double fTestBisect(double fProb, double fTestLow, double fTestHigh, int df1, int df2, int endTest){
|
---|
10838 |
|
---|
10839 | double funcLow = fProb - Stat.fTestProb(fTestLow, df1, df2);
|
---|
10840 | double funcHigh = fProb - Stat.fTestProb(fTestHigh, df1, df2);
|
---|
10841 | double fTestMid = 0.0D;
|
---|
10842 | double funcMid = 0.0;
|
---|
10843 | int nExtensions = 0;
|
---|
10844 | int nIter = 1000; // iterations allowed
|
---|
10845 | double check = fProb*1e-6; // tolerance for bisection
|
---|
10846 | boolean test0 = true; // test for extending bracket
|
---|
10847 | boolean test1 = true; // test for bisection procedure
|
---|
10848 | while(test0){
|
---|
10849 | if(funcLow*funcHigh>0.0D){
|
---|
10850 | if(endTest<0){
|
---|
10851 | nExtensions++;
|
---|
10852 | if(nExtensions>100){
|
---|
10853 | System.out.println("Class: Stats\nMethod: fTestBisect\nProbability higher than range covered\nF-test value is less than "+fTestLow);
|
---|
10854 | System.out.println("This value was returned");
|
---|
10855 | fTestMid=fTestLow;
|
---|
10856 | test0=false;
|
---|
10857 | test1=false;
|
---|
10858 | }
|
---|
10859 | fTestLow /= 10.0D;
|
---|
10860 | funcLow = fProb - Stat.fTestProb(fTestLow, df1, df2);
|
---|
10861 | }
|
---|
10862 | else{
|
---|
10863 | nExtensions++;
|
---|
10864 | if(nExtensions>100){
|
---|
10865 | System.out.println("Class: Stats\nMethod: fTestBisect\nProbability lower than range covered\nF-test value is greater than "+fTestHigh);
|
---|
10866 | System.out.println("This value was returned");
|
---|
10867 | fTestMid=fTestHigh;
|
---|
10868 | test0=false;
|
---|
10869 | test1=false;
|
---|
10870 | }
|
---|
10871 | fTestHigh *= 10.0D;
|
---|
10872 | funcHigh = fProb - Stat.fTestProb(fTestHigh, df1, df2);
|
---|
10873 | }
|
---|
10874 | }
|
---|
10875 | else{
|
---|
10876 | test0=false;
|
---|
10877 | }
|
---|
10878 |
|
---|
10879 | int i=0;
|
---|
10880 | while(test1){
|
---|
10881 | fTestMid = (fTestLow+fTestHigh)/2.0D;
|
---|
10882 | funcMid = fProb - Stat.fTestProb(fTestMid, df1, df2);
|
---|
10883 | if(Math.abs(funcMid)<check){
|
---|
10884 | test1=false;
|
---|
10885 | }
|
---|
10886 | else{
|
---|
10887 | i++;
|
---|
10888 | if(i>nIter){
|
---|
10889 | System.out.println("Class: Stats\nMethod: fTestBisect\nmaximum number of iterations exceeded\ncurrent value of F-test value returned");
|
---|
10890 | test1=false;
|
---|
10891 | }
|
---|
10892 | if(funcMid*funcHigh>0){
|
---|
10893 | funcHigh=funcMid;
|
---|
10894 | fTestHigh=fTestMid;
|
---|
10895 | }
|
---|
10896 | else{
|
---|
10897 | funcLow=funcMid;
|
---|
10898 | fTestLow=fTestMid;
|
---|
10899 | }
|
---|
10900 | }
|
---|
10901 | }
|
---|
10902 | }
|
---|
10903 | return fTestMid;
|
---|
10904 | }
|
---|
10905 |
|
---|
10906 | // F-distribution pdf
|
---|
10907 | public double fPDF(double fValue, int nu1, int nu2){
|
---|
10908 | double numer = Math.pow(nu1*fValue, nu1)*Math.pow(nu2, nu2);
|
---|
10909 | double dnu1 = (double)nu1;
|
---|
10910 | double dnu2 = (double)nu2;
|
---|
10911 | numer /= Math.pow(dnu1*fValue+dnu2, dnu1+dnu2);
|
---|
10912 | numer = Math.sqrt(numer);
|
---|
10913 | double denom = fValue*Stat.betaFunction(dnu1/2.0D, dnu2/2.0D);
|
---|
10914 | return numer/denom;
|
---|
10915 | }
|
---|
10916 |
|
---|
10917 | public double fPDF(double var1, int nu1, double var2, int nu2){
|
---|
10918 | return fPDF(var1/var2, nu1, nu2);
|
---|
10919 | }
|
---|
10920 |
|
---|
10921 | // Returns an array of F-distribution random deviates - clock seed
|
---|
10922 | public static double[] fRand(int nu1, int nu2, int n){
|
---|
10923 | if(nu1<=0)throw new IllegalArgumentException("The degrees of freedom [nu1], " + nu1 + ", must be greater than zero");
|
---|
10924 | if(nu2<=0)throw new IllegalArgumentException("The degrees of freedom [nu2], " + nu2 + ", must be greater than zero");
|
---|
10925 | PsRandom psr = new PsRandom();
|
---|
10926 | return psr.fArray(nu1, nu2, n);
|
---|
10927 | }
|
---|
10928 |
|
---|
10929 | // Returns an array of F-distribution random deviates - user supplied seed
|
---|
10930 | public static double[] fRand(int nu1, int nu2, int n, long seed){
|
---|
10931 | if(nu1<=0)throw new IllegalArgumentException("The degrees of freedom [nu1], " + nu1 + ", must be greater than zero");
|
---|
10932 | if(nu2<=0)throw new IllegalArgumentException("The degrees of freedom [nu2], " + nu2 + ", must be greater than zero");
|
---|
10933 | PsRandom psr = new PsRandom(seed);
|
---|
10934 | return psr.fArray(nu1, nu2, n);
|
---|
10935 | }
|
---|
10936 |
|
---|
10937 | // STUDENT'S T DISTRIBUTION
|
---|
10938 |
|
---|
10939 | // Returns the Student's t probability density function
|
---|
10940 | public static double studentst(double tValue, int df){
|
---|
10941 | return studentT(tValue, df);
|
---|
10942 | }
|
---|
10943 |
|
---|
10944 | // Returns the Student's t probability density function
|
---|
10945 | public static double studentT(double tValue, int df){
|
---|
10946 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
10947 |
|
---|
10948 | double ddf = (double)df;
|
---|
10949 | double dfterm = (ddf + 1.0D)/2.0D;
|
---|
10950 | return ((Stat.gamma(dfterm)/Stat.gamma(ddf/2))/Math.sqrt(ddf*Math.PI))*Math.pow(1.0D + tValue*tValue/ddf, -dfterm);
|
---|
10951 | }
|
---|
10952 |
|
---|
10953 | // Returns the Student's t probability density function
|
---|
10954 | public static double studentstPDF(double tValue, int df){
|
---|
10955 | return studentTpdf(tValue, df);
|
---|
10956 | }
|
---|
10957 |
|
---|
10958 | // Returns the Student's t probability density function
|
---|
10959 | public static double studentTpdf(double tValue, int df){
|
---|
10960 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
10961 |
|
---|
10962 | double ddf = (double)df;
|
---|
10963 | double dfterm = (ddf + 1.0D)/2.0D;
|
---|
10964 | return ((Stat.gamma(dfterm)/Stat.gamma(ddf/2))/Math.sqrt(ddf*Math.PI))*Math.pow(1.0D + tValue*tValue/ddf, -dfterm);
|
---|
10965 | }
|
---|
10966 |
|
---|
10967 | // Returns the Student's t probability density function
|
---|
10968 | public static double studentTPDF(double tValue, int df){
|
---|
10969 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
10970 |
|
---|
10971 | double ddf = (double)df;
|
---|
10972 | double dfterm = (ddf + 1.0D)/2.0D;
|
---|
10973 | return ((Stat.gamma(dfterm)/Stat.gamma(ddf/2))/Math.sqrt(ddf*Math.PI))*Math.pow(1.0D + tValue*tValue/ddf, -dfterm);
|
---|
10974 | }
|
---|
10975 |
|
---|
10976 |
|
---|
10977 | // Returns the Student's t cumulative distribution function probability
|
---|
10978 | public static double studentstCDF(double tValue, int df){
|
---|
10979 | return studentTcdf(tValue, df);
|
---|
10980 | }
|
---|
10981 |
|
---|
10982 |
|
---|
10983 | // Returns the Student's t cumulative distribution function probability
|
---|
10984 | public static double studentTProb(double tValue, int df){
|
---|
10985 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
10986 | if(tValue==Double.POSITIVE_INFINITY){
|
---|
10987 | return 1.0;
|
---|
10988 | }
|
---|
10989 | else{
|
---|
10990 | if(tValue==Double.NEGATIVE_INFINITY){
|
---|
10991 | return 0.0;
|
---|
10992 | }
|
---|
10993 | else{
|
---|
10994 | double ddf = (double)df;
|
---|
10995 | double x = ddf/(ddf+tValue*tValue);
|
---|
10996 | return 0.5D*(1.0D + (Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, 1) - Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, x))*Fmath.sign(tValue));
|
---|
10997 | }
|
---|
10998 | }
|
---|
10999 | }
|
---|
11000 |
|
---|
11001 | // Returns the Student's t cumulative distribution function probability
|
---|
11002 | public static double studentTcdf(double tValue, int df){
|
---|
11003 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
11004 |
|
---|
11005 | if(tValue==Double.POSITIVE_INFINITY){
|
---|
11006 | return 1.0;
|
---|
11007 | }
|
---|
11008 | else{
|
---|
11009 | if(tValue==Double.NEGATIVE_INFINITY){
|
---|
11010 | return 0.0;
|
---|
11011 | }
|
---|
11012 | else{
|
---|
11013 | double ddf = (double)df;
|
---|
11014 | double x = ddf/(ddf+tValue*tValue);
|
---|
11015 | return 0.5D*(1.0D + (Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, 1) - Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, x))*Fmath.sign(tValue));
|
---|
11016 | }
|
---|
11017 | }
|
---|
11018 | }
|
---|
11019 |
|
---|
11020 | // Returns the Student's t cumulative distribution function probability
|
---|
11021 | public static double studentTCDF(double tValue, int df){
|
---|
11022 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
11023 |
|
---|
11024 | if(tValue==Double.POSITIVE_INFINITY){
|
---|
11025 | return 1.0;
|
---|
11026 | }
|
---|
11027 | else{
|
---|
11028 | if(tValue==Double.NEGATIVE_INFINITY){
|
---|
11029 | return 0.0;
|
---|
11030 | }
|
---|
11031 | else{
|
---|
11032 | double ddf = (double)df;
|
---|
11033 | double x = ddf/(ddf+tValue*tValue);
|
---|
11034 | return 0.5D*(1.0D + (Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, 1) - Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, x))*Fmath.sign(tValue));
|
---|
11035 | }
|
---|
11036 | }
|
---|
11037 | }
|
---|
11038 |
|
---|
11039 | // Returns the Student's t cumulative distribution function probability
|
---|
11040 | public static double studentTcdf(double tValueLower, double tValueUpper, int df){
|
---|
11041 | if(tValueLower!=tValueLower)throw new IllegalArgumentException("argument tLowerValue is not a number (NaN)");
|
---|
11042 | if(tValueUpper!=tValueUpper)throw new IllegalArgumentException("argument tUpperValue is not a number (NaN)");
|
---|
11043 | if(tValueUpper==Double.POSITIVE_INFINITY){
|
---|
11044 | if(tValueLower==Double.NEGATIVE_INFINITY){
|
---|
11045 | return 1.0;
|
---|
11046 | }
|
---|
11047 | else{
|
---|
11048 | if(tValueLower==Double.POSITIVE_INFINITY){
|
---|
11049 | return 0.0;
|
---|
11050 | }
|
---|
11051 | else{
|
---|
11052 | return (1.0 - Stat.studentTcdf(tValueLower, df));
|
---|
11053 | }
|
---|
11054 | }
|
---|
11055 | }
|
---|
11056 | else{
|
---|
11057 | if(tValueLower==Double.NEGATIVE_INFINITY){
|
---|
11058 | if(tValueUpper==Double.NEGATIVE_INFINITY){
|
---|
11059 | return 0.0;
|
---|
11060 | }
|
---|
11061 | else{
|
---|
11062 | return Stat.studentTcdf(tValueUpper, df);
|
---|
11063 | }
|
---|
11064 | }
|
---|
11065 | else{
|
---|
11066 | return Stat.studentTcdf(tValueUpper, df) - Stat.studentTcdf(tValueLower, df);
|
---|
11067 | }
|
---|
11068 | }
|
---|
11069 | }
|
---|
11070 |
|
---|
11071 | // Returns the P-value for a given Student's t value and degrees of freedom
|
---|
11072 | public static double pValue(double tValue, int df){
|
---|
11073 | if(tValue!=tValue)throw new IllegalArgumentException("argument tValue is not a number (NaN)");
|
---|
11074 |
|
---|
11075 | double abst = Math.abs(tValue);
|
---|
11076 | return 1.0 - Stat.studentTcdf(-abst, abst, df);
|
---|
11077 | }
|
---|
11078 |
|
---|
11079 | // Returns the Student's t mean, df = degrees of freedom
|
---|
11080 | public static double studentstMean(int df){
|
---|
11081 | return studentTmean(df);
|
---|
11082 | }
|
---|
11083 |
|
---|
11084 | // Returns the Student's t mean, df = degrees of freedom
|
---|
11085 | public static double studentTmean(int df){
|
---|
11086 | double mean = Double.NaN; // mean undefined for df = 1
|
---|
11087 | if(df>1)mean = 0.0D;
|
---|
11088 | return mean;
|
---|
11089 | }
|
---|
11090 |
|
---|
11091 | // Returns the Student's t median
|
---|
11092 | public static double studentstMedian(){
|
---|
11093 | return 0.0;
|
---|
11094 | }
|
---|
11095 |
|
---|
11096 | // Returns the Student's t median
|
---|
11097 | public static double studentTmedian(){
|
---|
11098 | return 0.0;
|
---|
11099 | }
|
---|
11100 |
|
---|
11101 | // Returns the Student's t mode
|
---|
11102 | public static double studentstMode(){
|
---|
11103 | return 0.0;
|
---|
11104 | }
|
---|
11105 |
|
---|
11106 | // Returns the Student's t mode
|
---|
11107 | public static double studentTmode(){
|
---|
11108 | return 0.0;
|
---|
11109 | }
|
---|
11110 |
|
---|
11111 | // Returns the Student's t standard deviation, df = degrees of freedom
|
---|
11112 | public static double studentstStandardDeviation(int df){
|
---|
11113 | return studentTstandDev(df);
|
---|
11114 | }
|
---|
11115 |
|
---|
11116 | // Returns the Student's t standard deviation, df = degrees of freedom
|
---|
11117 | public static double studentTstandDev(int df){
|
---|
11118 | double standDev = Double.POSITIVE_INFINITY;
|
---|
11119 | if(df>2)standDev = Math.sqrt(df/(1 - df));
|
---|
11120 | return standDev;
|
---|
11121 | }
|
---|
11122 |
|
---|
11123 | // Returns the A(t|n) distribution probabilty
|
---|
11124 | public static double probAtn(double tValue, int df){
|
---|
11125 | double ddf = (double)df;
|
---|
11126 | double x = ddf/(ddf+tValue*tValue);
|
---|
11127 | return 1.0D - Stat.regularisedBetaFunction(ddf/2.0D, 0.5D, x);
|
---|
11128 | }
|
---|
11129 |
|
---|
11130 | // Returns an array of Student's t random deviates - clock seed
|
---|
11131 | // nu = the degrees of freedom
|
---|
11132 | public static double[] studentstRand(int nu, int n){
|
---|
11133 | return studentTRand(nu, n);
|
---|
11134 | }
|
---|
11135 |
|
---|
11136 | // Returns an array of Student's t random deviates - clock seed
|
---|
11137 | // nu = the degrees of freedom
|
---|
11138 | public static double[] studentTRand(int nu, int n){
|
---|
11139 | PsRandom psr = new PsRandom();
|
---|
11140 | return psr.studentTarray(nu, n);
|
---|
11141 | }
|
---|
11142 |
|
---|
11143 | // Returns an array of Student's t random deviates - clock seed
|
---|
11144 | // nu = the degrees of freedom
|
---|
11145 | public static double[] studentTrand(int nu, int n){
|
---|
11146 | PsRandom psr = new PsRandom();
|
---|
11147 | return psr.studentTarray(nu, n);
|
---|
11148 | }
|
---|
11149 |
|
---|
11150 | // Returns an array of a Student's t random deviates - user supplied seed
|
---|
11151 | // nu = the degrees of freedom
|
---|
11152 | public static double[] studentstRand(int nu, int n, long seed){
|
---|
11153 | return studentTrand(nu, n, seed);
|
---|
11154 | }
|
---|
11155 |
|
---|
11156 | // Returns an array of a Student's t random deviates - user supplied seed
|
---|
11157 | // nu = the degrees of freedom
|
---|
11158 | public static double[] studentTrand(int nu, int n, long seed){
|
---|
11159 | PsRandom psr = new PsRandom(seed);
|
---|
11160 | return psr.studentTarray(nu, n);
|
---|
11161 | }
|
---|
11162 |
|
---|
11163 | // Returns an array of a Student's t random deviates - user supplied seed
|
---|
11164 | // nu = the degrees of freedom
|
---|
11165 | public static double[] studentTRand(int nu, int n, long seed){
|
---|
11166 | PsRandom psr = new PsRandom(seed);
|
---|
11167 | return psr.studentTarray(nu, n);
|
---|
11168 | }
|
---|
11169 |
|
---|
11170 |
|
---|
11171 | // GUMBEL (TYPE I EXTREME VALUE) DISTRIBUTION
|
---|
11172 |
|
---|
11173 | // Minimum Gumbel cumulative distribution function
|
---|
11174 | // probability that a variate will assume a value less than the upperlimit
|
---|
11175 | public static double gumbelMinProbCDF(double mu, double sigma, double upperlimit){
|
---|
11176 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11177 | double arg = -(upperlimit - mu)/sigma;
|
---|
11178 | return Math.exp(-Math.exp(arg));
|
---|
11179 | }
|
---|
11180 |
|
---|
11181 | // Minimum Gumbel cumulative distribution function
|
---|
11182 | // probability that a variate will assume a value less than the upperlimit
|
---|
11183 | public static double gumbelMinProb(double mu, double sigma, double upperlimit){
|
---|
11184 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11185 | double arg = -(upperlimit - mu)/sigma;
|
---|
11186 | return Math.exp(-Math.exp(arg));
|
---|
11187 | }
|
---|
11188 |
|
---|
11189 | // Maximum Gumbel cumulative distribution function
|
---|
11190 | // probability that a variate will assume a value less than the upperlimit
|
---|
11191 | public static double gumbelMaxCDF(double mu, double sigma, double upperlimit){
|
---|
11192 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11193 | double arg = -(upperlimit - mu)/sigma;
|
---|
11194 | return 1.0D-Math.exp(-Math.exp(arg));
|
---|
11195 | }
|
---|
11196 |
|
---|
11197 | // Maximum Gumbel cumulative distribution function
|
---|
11198 | // probability that a variate will assume a value less than the upperlimit
|
---|
11199 | public static double gumbelMaxProb(double mu, double sigma, double upperlimit){
|
---|
11200 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11201 | double arg = -(upperlimit - mu)/sigma;
|
---|
11202 | return 1.0D-Math.exp(-Math.exp(arg));
|
---|
11203 | }
|
---|
11204 |
|
---|
11205 |
|
---|
11206 | // Gumbel (maximum order statistic) Inverse Cumulative Density Function
|
---|
11207 | public static double gumbelMaxInverseCDF(double mu, double sigma, double prob){
|
---|
11208 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11209 | double icdf = 0.0D;
|
---|
11210 |
|
---|
11211 | if(prob==0.0){
|
---|
11212 | icdf = Double.NEGATIVE_INFINITY;
|
---|
11213 | }
|
---|
11214 | else{
|
---|
11215 | if(prob==1.0){
|
---|
11216 | icdf = Double.POSITIVE_INFINITY;
|
---|
11217 | }
|
---|
11218 | else{
|
---|
11219 | icdf = mu - sigma*Math.log(Math.log(1.0/prob));
|
---|
11220 | }
|
---|
11221 | }
|
---|
11222 |
|
---|
11223 | return icdf;
|
---|
11224 | }
|
---|
11225 |
|
---|
11226 | // Minimum Gumbel cumulative distribution function
|
---|
11227 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11228 | public static double gumbelMinCDF(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11229 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11230 | double arg1 = -(lowerlimit - mu)/sigma;
|
---|
11231 | double arg2 = -(upperlimit - mu)/sigma;
|
---|
11232 | double term1 = Math.exp(-Math.exp(arg1));
|
---|
11233 | double term2 = Math.exp(-Math.exp(arg2));
|
---|
11234 | return term2-term1;
|
---|
11235 | }
|
---|
11236 |
|
---|
11237 | // Minimum Gumbel cumulative distribution function
|
---|
11238 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11239 | public static double gumbelMinProb(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11240 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11241 | double arg1 = -(lowerlimit - mu)/sigma;
|
---|
11242 | double arg2 = -(upperlimit - mu)/sigma;
|
---|
11243 | double term1 = Math.exp(-Math.exp(arg1));
|
---|
11244 | double term2 = Math.exp(-Math.exp(arg2));
|
---|
11245 | return term2-term1;
|
---|
11246 | }
|
---|
11247 |
|
---|
11248 | // Maximum Gumbel cumulative distribution function
|
---|
11249 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11250 | public static double gumbelMaxCDF(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11251 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11252 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11253 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11254 | double term1 = -Math.exp(-Math.exp(arg1));
|
---|
11255 | double term2 = -Math.exp(-Math.exp(arg2));
|
---|
11256 | return term2-term1;
|
---|
11257 | }
|
---|
11258 |
|
---|
11259 | // Maximum Gumbel cumulative distribution function
|
---|
11260 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11261 | public static double gumbelMaxProb(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11262 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11263 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11264 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11265 | double term1 = -Math.exp(-Math.exp(arg1));
|
---|
11266 | double term2 = -Math.exp(-Math.exp(arg2));
|
---|
11267 | return term2-term1;
|
---|
11268 | }
|
---|
11269 |
|
---|
11270 | // Gumbel (minimum order statistic) Inverse Cumulative Density Function
|
---|
11271 | public static double gumbelMinInverseCDF(double mu, double sigma, double prob){
|
---|
11272 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11273 | double icdf = 0.0D;
|
---|
11274 |
|
---|
11275 | if(prob==0.0){
|
---|
11276 | icdf = Double.NEGATIVE_INFINITY;
|
---|
11277 | }
|
---|
11278 | else{
|
---|
11279 | if(prob==1.0){
|
---|
11280 | icdf = Double.POSITIVE_INFINITY;
|
---|
11281 | }
|
---|
11282 | else{
|
---|
11283 | icdf = mu + sigma*Math.log(Math.log(1.0/(1.0 - prob)));
|
---|
11284 | }
|
---|
11285 | }
|
---|
11286 |
|
---|
11287 | return icdf;
|
---|
11288 | }
|
---|
11289 |
|
---|
11290 | // Minimum Gumbel probability density function
|
---|
11291 | public static double gumbelMinPDF(double mu,double sigma, double x){
|
---|
11292 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11293 | double arg =(x-mu)/sigma;
|
---|
11294 | return (1.0D/sigma)*Math.exp(arg)*Math.exp(-Math.exp(arg));
|
---|
11295 | }
|
---|
11296 |
|
---|
11297 | // Minimum Gumbel probability density function
|
---|
11298 | public static double gumbelMin(double mu,double sigma, double x){
|
---|
11299 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11300 | double arg =(x-mu)/sigma;
|
---|
11301 | return (1.0D/sigma)*Math.exp(arg)*Math.exp(-Math.exp(arg));
|
---|
11302 | }
|
---|
11303 |
|
---|
11304 | // Maximum Gumbel probability density function
|
---|
11305 | public static double gumbelMaxPDF(double mu,double sigma, double x){
|
---|
11306 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11307 | double arg =-(x-mu)/sigma;
|
---|
11308 | return (1.0D/sigma)*Math.exp(arg)*Math.exp(-Math.exp(arg));
|
---|
11309 | }
|
---|
11310 |
|
---|
11311 | // Maximum Gumbel probability density function
|
---|
11312 | public static double gumbelMax(double mu,double sigma, double x){
|
---|
11313 | if(sigma<0.0D)throw new IllegalArgumentException("sigma must be positive");
|
---|
11314 | double arg =-(x-mu)/sigma;
|
---|
11315 | return (1.0D/sigma)*Math.exp(arg)*Math.exp(-Math.exp(arg));
|
---|
11316 | }
|
---|
11317 |
|
---|
11318 | // Returns an array of minimal Gumbel (Type I EVD) random deviates - clock seed
|
---|
11319 | // mu = location parameter, sigma = scale parameter, n = length of array
|
---|
11320 | public static double[] gumbelMinRand(double mu, double sigma, int n){
|
---|
11321 | double[] ran = new double[n];
|
---|
11322 | Random rr = new Random();
|
---|
11323 | for(int i=0; i<n; i++){
|
---|
11324 | ran[i] = Math.log(Math.log(1.0D/(1.0D-rr.nextDouble())))*sigma+mu;
|
---|
11325 | }
|
---|
11326 | return ran;
|
---|
11327 | }
|
---|
11328 |
|
---|
11329 | // Returns an array of minimal Gumbel (Type I EVD) random deviates - user supplied seed
|
---|
11330 | // mu = location parameter, sigma = scale parameter, n = length of array
|
---|
11331 | public static double[] gumbelMinRand(double mu, double sigma, int n, long seed){
|
---|
11332 | double[] ran = new double[n];
|
---|
11333 | Random rr = new Random(seed);
|
---|
11334 | for(int i=0; i<n; i++){
|
---|
11335 | ran[i] = Math.log(Math.log(1.0D/(1.0D-rr.nextDouble())))*sigma+mu;
|
---|
11336 | }
|
---|
11337 | return ran;
|
---|
11338 | }
|
---|
11339 |
|
---|
11340 | // Returns an array of maximal Gumbel (Type I EVD) random deviates - clock seed
|
---|
11341 | // mu = location parameter, sigma = scale parameter, n = length of array
|
---|
11342 | public static double[] gumbelMaxRand(double mu, double sigma, int n){
|
---|
11343 | double[] ran = new double[n];
|
---|
11344 | Random rr = new Random();
|
---|
11345 | for(int i=0; i<n; i++){
|
---|
11346 | ran[i] = mu-Math.log(Math.log(1.0D/(1.0D-rr.nextDouble())))*sigma;
|
---|
11347 | }
|
---|
11348 | return ran;
|
---|
11349 | }
|
---|
11350 |
|
---|
11351 | // Returns an array of maximal Gumbel (Type I EVD) random deviates - user supplied seed
|
---|
11352 | // mu = location parameter, sigma = scale parameter, n = length of array
|
---|
11353 | public static double[] gumbelMaxRand(double mu, double sigma, int n, long seed){
|
---|
11354 | double[] ran = new double[n];
|
---|
11355 | Random rr = new Random(seed);
|
---|
11356 | for(int i=0; i<n; i++){
|
---|
11357 | ran[i] = mu-Math.log(Math.log(1.0D/(1.0D-rr.nextDouble())))*sigma;
|
---|
11358 | }
|
---|
11359 | return ran;
|
---|
11360 | }
|
---|
11361 |
|
---|
11362 | // Gumbel (minimum order statistic) order statistic medians (n points)
|
---|
11363 | public static double[] gumbelMinOrderStatisticMedians(double mu, double sigma, int n){
|
---|
11364 | double nn = (double)n;
|
---|
11365 | double[] gmosm = new double[n];
|
---|
11366 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
11367 | for(int i=0; i<n; i++){
|
---|
11368 | gmosm[i] = Stat.gumbelMinInverseCDF(mu, sigma, uosm[i]);
|
---|
11369 | }
|
---|
11370 | return gmosm;
|
---|
11371 | }
|
---|
11372 |
|
---|
11373 | // Gumbel (maximum order statistic) order statistic medians (n points)
|
---|
11374 | public static double[] gumbelMaxOrderStatisticMedians(double mu, double sigma, int n){
|
---|
11375 | double nn = (double)n;
|
---|
11376 | double[] gmosm = new double[n];
|
---|
11377 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
11378 | for(int i=0; i<n; i++){
|
---|
11379 | gmosm[i] = Stat.gumbelMaxInverseCDF(mu, sigma, uosm[i]);
|
---|
11380 | }
|
---|
11381 | return gmosm;
|
---|
11382 | }
|
---|
11383 |
|
---|
11384 | // Minimum Gumbel mean
|
---|
11385 | public static double gumbelMinMean(double mu,double sigma){
|
---|
11386 | return mu - sigma*Fmath.EULER_CONSTANT_GAMMA;
|
---|
11387 | }
|
---|
11388 |
|
---|
11389 | // Maximum Gumbel mean
|
---|
11390 | public static double gumbelMaxMean(double mu,double sigma){
|
---|
11391 | return mu + sigma*Fmath.EULER_CONSTANT_GAMMA;
|
---|
11392 | }
|
---|
11393 |
|
---|
11394 | // Minimum Gumbel standard deviation
|
---|
11395 | public static double gumbelMinStandardDeviation(double sigma){
|
---|
11396 | return sigma*Math.PI/Math.sqrt(6.0D);
|
---|
11397 | }
|
---|
11398 |
|
---|
11399 | // Minimum Gumbel standard deviation
|
---|
11400 | public static double gumbelMinStandDev(double sigma){
|
---|
11401 | return sigma*Math.PI/Math.sqrt(6.0D);
|
---|
11402 | }
|
---|
11403 |
|
---|
11404 | // Maximum Gumbel standard deviation
|
---|
11405 | public static double gumbelMaxStandardDeviation(double sigma){
|
---|
11406 | return sigma*Math.PI/Math.sqrt(6.0D);
|
---|
11407 | }
|
---|
11408 |
|
---|
11409 | // Maximum Gumbel standard deviation
|
---|
11410 | public static double gumbelMaxStandDev(double sigma){
|
---|
11411 | return sigma*Math.PI/Math.sqrt(6.0D);
|
---|
11412 | }
|
---|
11413 |
|
---|
11414 | // Minimum Gumbel mode
|
---|
11415 | public static double gumbelMinMode(double mu,double sigma){
|
---|
11416 | return mu;
|
---|
11417 | }
|
---|
11418 |
|
---|
11419 | // Maximum Gumbel mode
|
---|
11420 | public static double gumbelMaxMode(double mu,double sigma){
|
---|
11421 | return mu;
|
---|
11422 | }
|
---|
11423 |
|
---|
11424 | // Minimum Gumbel median
|
---|
11425 | public static double gumbelMinMedian(double mu,double sigma){
|
---|
11426 | return mu + sigma*Math.log(Math.log(2.0D));
|
---|
11427 | }
|
---|
11428 |
|
---|
11429 | // Maximum Gumbel median
|
---|
11430 | public static double gumbelMaxMedian(double mu,double sigma){
|
---|
11431 | return mu - sigma*Math.log(Math.log(2.0D));
|
---|
11432 | }
|
---|
11433 |
|
---|
11434 |
|
---|
11435 | // FRECHET (TYPE II EXTREME VALUE) DISTRIBUTION
|
---|
11436 |
|
---|
11437 | // Frechet cumulative distribution function
|
---|
11438 | // probability that a variate will assume a value less than the upperlimit
|
---|
11439 | public static double frechetProb(double mu, double sigma, double gamma, double upperlimit){
|
---|
11440 | double arg = (upperlimit - mu)/sigma;
|
---|
11441 | double y = 0.0D;
|
---|
11442 | if(arg>0.0D)y = Math.exp(-Math.pow(arg, -gamma));
|
---|
11443 | return y;
|
---|
11444 | }
|
---|
11445 |
|
---|
11446 |
|
---|
11447 | // Frechet cumulative distribution function
|
---|
11448 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11449 | public static double frechetCDF(double mu, double sigma, double gamma, double lowerlimit, double upperlimit){
|
---|
11450 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11451 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11452 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11453 | if(arg1>=0.0D)term1 = Math.exp(-Math.pow(arg1, -gamma));
|
---|
11454 | if(arg2>=0.0D)term2 = Math.exp(-Math.pow(arg2, -gamma));
|
---|
11455 | return term2-term1;
|
---|
11456 | }
|
---|
11457 |
|
---|
11458 | // Frechet cumulative distribution function
|
---|
11459 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11460 | public static double frechetProb(double mu, double sigma, double gamma, double lowerlimit, double upperlimit){
|
---|
11461 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11462 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11463 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11464 | if(arg1>=0.0D)term1 = Math.exp(-Math.pow(arg1, -gamma));
|
---|
11465 | if(arg2>=0.0D)term2 = Math.exp(-Math.pow(arg2, -gamma));
|
---|
11466 | return term2-term1;
|
---|
11467 | }
|
---|
11468 |
|
---|
11469 | // Frechet Inverse Cumulative Density Function
|
---|
11470 | // Three parameter
|
---|
11471 | public static double frechetInverseCDF(double mu, double sigma, double gamma, double prob){
|
---|
11472 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11473 | double icdf = 0.0D;
|
---|
11474 |
|
---|
11475 | if(prob==0.0){
|
---|
11476 | icdf = Double.NEGATIVE_INFINITY;
|
---|
11477 | }
|
---|
11478 | else{
|
---|
11479 | if(prob==1.0){
|
---|
11480 | icdf = Double.POSITIVE_INFINITY;
|
---|
11481 | }
|
---|
11482 | else{
|
---|
11483 | icdf = mu + sigma*Math.pow(Math.log(1.0/prob), -1.0/gamma);
|
---|
11484 | }
|
---|
11485 | }
|
---|
11486 |
|
---|
11487 | return icdf;
|
---|
11488 | }
|
---|
11489 |
|
---|
11490 | // Frechet Inverse Cumulative Density Function
|
---|
11491 | // Two parameter
|
---|
11492 | public static double frechetInverseCDF(double sigma, double gamma, double prob){
|
---|
11493 | return frechetInverseCDF(0.0D, sigma, gamma, prob);
|
---|
11494 | }
|
---|
11495 |
|
---|
11496 | // Frechet Inverse Cumulative Density Function
|
---|
11497 | // Standard
|
---|
11498 | public static double frechetInverseCDF(double gamma, double prob){
|
---|
11499 | return frechetInverseCDF(0.0D, 1.0D, gamma, prob);
|
---|
11500 | }
|
---|
11501 |
|
---|
11502 |
|
---|
11503 | // Frechet probability density function
|
---|
11504 | public static double frechetPDF(double mu,double sigma, double gamma, double x){
|
---|
11505 | double arg =(x-mu)/sigma;
|
---|
11506 | double y = 0.0D;
|
---|
11507 | if(arg>=0.0D){
|
---|
11508 | y = (gamma/sigma)*Math.pow(arg, -gamma-1.0D)*Math.exp(-Math.pow(arg, -gamma));
|
---|
11509 | }
|
---|
11510 | return y;
|
---|
11511 | }
|
---|
11512 |
|
---|
11513 | // Frechet probability density function
|
---|
11514 | public static double frechet(double mu,double sigma, double gamma, double x){
|
---|
11515 | double arg =(x-mu)/sigma;
|
---|
11516 | double y = 0.0D;
|
---|
11517 | if(arg>=0.0D){
|
---|
11518 | y = (gamma/sigma)*Math.pow(arg, -gamma-1.0D)*Math.exp(-Math.pow(arg, -gamma));
|
---|
11519 | }
|
---|
11520 | return y;
|
---|
11521 | }
|
---|
11522 |
|
---|
11523 | // Frechet order statistic medians (n points)
|
---|
11524 | // Three parameters
|
---|
11525 | public static double[] frechetOrderStatisticMedians(double mu, double sigma, double gamma, int n){
|
---|
11526 | double nn = (double)n;
|
---|
11527 | double[] fosm = new double[n];
|
---|
11528 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
11529 | for(int i=0; i<n; i++){
|
---|
11530 | fosm[i] = Stat.frechetInverseCDF(mu, sigma, gamma, uosm[i]);
|
---|
11531 | }
|
---|
11532 | return fosm;
|
---|
11533 | }
|
---|
11534 |
|
---|
11535 | // Frechet order statistic medians (n points)
|
---|
11536 | // Two parameters
|
---|
11537 | public static double[] frechetOrderStatisticMedians(double sigma, double gamma, int n){
|
---|
11538 | return frechetOrderStatisticMedians(0.0D, sigma, gamma, n);
|
---|
11539 | }
|
---|
11540 |
|
---|
11541 | // Frechet order statistic medians (n points)
|
---|
11542 | // Standard
|
---|
11543 | public static double[] frechetOrderStatisticMedians(double gamma, int n){
|
---|
11544 | return frechetOrderStatisticMedians(0.0D, 1.0D, gamma, n);
|
---|
11545 | }
|
---|
11546 |
|
---|
11547 | // Frechet mean
|
---|
11548 | public static double frechetMean(double mu,double sigma, double gamma){
|
---|
11549 | double y = Double.NaN;
|
---|
11550 | if(gamma>1.0D){
|
---|
11551 | y = mu + sigma*Stat.gamma(1.0D-1.0D/gamma);
|
---|
11552 | }
|
---|
11553 | return y;
|
---|
11554 | }
|
---|
11555 |
|
---|
11556 | // Frechet standard deviation
|
---|
11557 | public static double frechetStandardDeviation(double sigma, double gamma){
|
---|
11558 | return frechetStandDev(sigma, gamma);
|
---|
11559 | }
|
---|
11560 |
|
---|
11561 |
|
---|
11562 | // Frechet standard deviation
|
---|
11563 | public static double frechetStandDev(double sigma, double gamma){
|
---|
11564 | double y = Double.NaN;
|
---|
11565 | if(gamma>2.0D){
|
---|
11566 | y = Stat.gamma(1.0D-2.0D/gamma)-Fmath.square(Stat.gamma(1.0D-1.0D/gamma));
|
---|
11567 | y = sigma*Math.sqrt(y);
|
---|
11568 | }
|
---|
11569 | return y;
|
---|
11570 | }
|
---|
11571 |
|
---|
11572 | // Frechet mode
|
---|
11573 | public static double frechetMode(double mu,double sigma, double gamma){
|
---|
11574 | return mu + sigma*Math.pow(gamma/(1.0D+gamma), 1.0D/gamma);
|
---|
11575 | }
|
---|
11576 |
|
---|
11577 | // Returns an array of Frechet (Type II EVD) random deviates - clock seed
|
---|
11578 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11579 | public static double[] frechetRand(double mu, double sigma, double gamma, int n){
|
---|
11580 | double[] ran = new double[n];
|
---|
11581 | Random rr = new Random();
|
---|
11582 | for(int i=0; i<n; i++){
|
---|
11583 | ran[i] = Math.pow((1.0D/(Math.log(1.0D/rr.nextDouble()))),1.0D/gamma)*sigma + mu;
|
---|
11584 | }
|
---|
11585 | return ran;
|
---|
11586 | }
|
---|
11587 |
|
---|
11588 | // Returns an array of Frechet (Type II EVD) random deviates - user supplied seed
|
---|
11589 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11590 | public static double[] frechetRand(double mu, double sigma, double gamma, int n, long seed){
|
---|
11591 | double[] ran = new double[n];
|
---|
11592 | Random rr = new Random(seed);
|
---|
11593 | for(int i=0; i<n; i++){
|
---|
11594 | ran[i] = Math.pow((1.0D/(Math.log(1.0D/rr.nextDouble()))),1.0D/gamma)*sigma + mu;
|
---|
11595 | }
|
---|
11596 | return ran;
|
---|
11597 | }
|
---|
11598 |
|
---|
11599 |
|
---|
11600 | // WEIBULL (TYPE III EXTREME VALUE) DISTRIBUTION
|
---|
11601 |
|
---|
11602 | // Weibull cumulative distribution function
|
---|
11603 | // probability that a variate will assume a value less than the upperlimit
|
---|
11604 | public static double weibullCDF(double mu, double sigma, double gamma, double upperlimit){
|
---|
11605 | double arg = (upperlimit - mu)/sigma;
|
---|
11606 | double y = 0.0D;
|
---|
11607 | if(arg>0.0D)y = 1.0D - Math.exp(-Math.pow(arg, gamma));
|
---|
11608 | return y;
|
---|
11609 | }
|
---|
11610 |
|
---|
11611 | // Weibull cumulative distribution function
|
---|
11612 | // probability that a variate will assume a value less than the upperlimit
|
---|
11613 | public static double weibullProb(double mu, double sigma, double gamma, double upperlimit){
|
---|
11614 | double arg = (upperlimit - mu)/sigma;
|
---|
11615 | double y = 0.0D;
|
---|
11616 | if(arg>0.0D)y = 1.0D - Math.exp(-Math.pow(arg, gamma));
|
---|
11617 | return y;
|
---|
11618 | }
|
---|
11619 |
|
---|
11620 |
|
---|
11621 | // Weibull cumulative distribution function
|
---|
11622 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11623 | public static double weibullCDF(double mu, double sigma, double gamma, double lowerlimit, double upperlimit){
|
---|
11624 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11625 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11626 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11627 | if(arg1>=0.0D)term1 = -Math.exp(-Math.pow(arg1, gamma));
|
---|
11628 | if(arg2>=0.0D)term2 = -Math.exp(-Math.pow(arg2, gamma));
|
---|
11629 | return term2-term1;
|
---|
11630 | }
|
---|
11631 |
|
---|
11632 | // Weibull cumulative distribution function
|
---|
11633 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11634 | public static double weibullProb(double mu, double sigma, double gamma, double lowerlimit, double upperlimit){
|
---|
11635 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11636 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11637 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11638 | if(arg1>=0.0D)term1 = -Math.exp(-Math.pow(arg1, gamma));
|
---|
11639 | if(arg2>=0.0D)term2 = -Math.exp(-Math.pow(arg2, gamma));
|
---|
11640 | return term2-term1;
|
---|
11641 | }
|
---|
11642 |
|
---|
11643 |
|
---|
11644 | // Weibull Inverse Cumulative Density Function
|
---|
11645 | // Three parameter
|
---|
11646 | public static double weibullInverseCDF(double mu, double sigma, double gamma, double prob){
|
---|
11647 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11648 | double icdf = 0.0D;
|
---|
11649 |
|
---|
11650 | if(prob==0.0){
|
---|
11651 | icdf = mu;
|
---|
11652 | }
|
---|
11653 | else{
|
---|
11654 | if(prob==1.0){
|
---|
11655 | icdf = Double.POSITIVE_INFINITY;
|
---|
11656 | }
|
---|
11657 | else{
|
---|
11658 | icdf = mu + sigma*(Math.pow(-Math.log(1.0 - prob), 1.0/gamma));
|
---|
11659 | }
|
---|
11660 | }
|
---|
11661 |
|
---|
11662 | return icdf;
|
---|
11663 | }
|
---|
11664 |
|
---|
11665 | // Weibull Inverse Cumulative Disrtibution Function
|
---|
11666 | public static double inverseWeibullCDF(double mu, double sigma, double gamma, double prob){
|
---|
11667 | return weibullInverseCDF(mu, sigma, gamma, prob);
|
---|
11668 | }
|
---|
11669 |
|
---|
11670 | // Weibull Inverse Cumulative Density Function
|
---|
11671 | // Two parameter
|
---|
11672 | public static double weibullInverseCDF(double sigma, double gamma, double prob){
|
---|
11673 | return weibullInverseCDF(0.0D, sigma, gamma, prob);
|
---|
11674 | }
|
---|
11675 |
|
---|
11676 | public static double inverseWeibullCDF(double sigma, double gamma, double prob){
|
---|
11677 | return weibullInverseCDF(0.0, sigma, gamma, prob);
|
---|
11678 | }
|
---|
11679 |
|
---|
11680 |
|
---|
11681 | // Weibull Inverse Cumulative Density Function
|
---|
11682 | // Standard
|
---|
11683 | public static double weibullInverseCDF(double gamma, double prob){
|
---|
11684 | return weibullInverseCDF(0.0D, 1.0D, gamma, prob);
|
---|
11685 | }
|
---|
11686 |
|
---|
11687 | public static double inverseWeibullCDF(double gamma, double prob){
|
---|
11688 | return weibullInverseCDF(0.0D, 1.0D, gamma, prob);
|
---|
11689 | }
|
---|
11690 |
|
---|
11691 | // Weibull probability density function
|
---|
11692 | public static double weibullPDF(double mu,double sigma, double gamma, double x){
|
---|
11693 | double arg =(x-mu)/sigma;
|
---|
11694 | double y = 0.0D;
|
---|
11695 | if(arg>=0.0D){
|
---|
11696 | y = (gamma/sigma)*Math.pow(arg, gamma-1.0D)*Math.exp(-Math.pow(arg, gamma));
|
---|
11697 | }
|
---|
11698 | return y;
|
---|
11699 | }
|
---|
11700 |
|
---|
11701 | // Weibull probability density function
|
---|
11702 | public static double weibull(double mu,double sigma, double gamma, double x){
|
---|
11703 | double arg =(x-mu)/sigma;
|
---|
11704 | double y = 0.0D;
|
---|
11705 | if(arg>=0.0D){
|
---|
11706 | y = (gamma/sigma)*Math.pow(arg, gamma-1.0D)*Math.exp(-Math.pow(arg, gamma));
|
---|
11707 | }
|
---|
11708 | return y;
|
---|
11709 | }
|
---|
11710 |
|
---|
11711 | // Weibull mean
|
---|
11712 | public static double weibullMean(double mu,double sigma, double gamma){
|
---|
11713 | return mu + sigma*Stat.gamma(1.0D/gamma+1.0D);
|
---|
11714 | }
|
---|
11715 |
|
---|
11716 | // Weibull standard deviation
|
---|
11717 | public static double weibullStandardDeviation(double sigma, double gamma){
|
---|
11718 | return weibullStandDev(sigma, gamma);
|
---|
11719 | }
|
---|
11720 |
|
---|
11721 |
|
---|
11722 | // Weibull standard deviation
|
---|
11723 | public static double weibullStandDev(double sigma, double gamma){
|
---|
11724 | double y = Stat.gamma(2.0D/gamma+1.0D)-Fmath.square(Stat.gamma(1.0D/gamma+1.0D));
|
---|
11725 | return sigma*Math.sqrt(y);
|
---|
11726 | }
|
---|
11727 |
|
---|
11728 | // Weibull mode
|
---|
11729 | public static double weibullMode(double mu,double sigma, double gamma){
|
---|
11730 | double y=mu;
|
---|
11731 | if(gamma>1.0D){
|
---|
11732 | y = mu + sigma*Math.pow((gamma-1.0D)/gamma, 1.0D/gamma);
|
---|
11733 | }
|
---|
11734 | return y;
|
---|
11735 | }
|
---|
11736 |
|
---|
11737 | // Weibull median
|
---|
11738 | public static double weibullMedian(double mu,double sigma, double gamma){
|
---|
11739 | return mu + sigma*Math.pow(Math.log(2.0D),1.0D/gamma);
|
---|
11740 | }
|
---|
11741 |
|
---|
11742 | // Returns an array of Weibull (Type III EVD) random deviates - clock seed
|
---|
11743 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11744 | public static double[] weibullRand(double mu, double sigma, double gamma, int n){
|
---|
11745 | double[] ran = new double[n];
|
---|
11746 | Random rr = new Random();
|
---|
11747 | for(int i=0; i<n; i++){
|
---|
11748 | ran[i] = Math.pow(-Math.log(1.0D-rr.nextDouble()),1.0D/gamma)*sigma + mu;
|
---|
11749 | }
|
---|
11750 | return ran;
|
---|
11751 | }
|
---|
11752 |
|
---|
11753 | // Returns an array of Weibull (Type III EVD) random deviates - user supplied seed
|
---|
11754 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11755 | public static double[] weibullRand(double mu, double sigma, double gamma, int n, long seed){
|
---|
11756 | double[] ran = new double[n];
|
---|
11757 | Random rr = new Random(seed);
|
---|
11758 | for(int i=0; i<n; i++){
|
---|
11759 | ran[i] = Math.pow(-Math.log(1.0D-rr.nextDouble()),1.0D/gamma)*sigma + mu;
|
---|
11760 | }
|
---|
11761 | return ran;
|
---|
11762 | }
|
---|
11763 |
|
---|
11764 | // Weibull order statistic medians (n points)
|
---|
11765 | // Three parameter
|
---|
11766 | public static double[] weibullOrderStatisticMedians(double mu, double sigma, double gamma, int n){
|
---|
11767 | double nn = (double)n;
|
---|
11768 | double[] wosm = new double[n];
|
---|
11769 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
11770 | for(int i=0; i<n; i++){
|
---|
11771 | wosm[i] = Stat.inverseWeibullCDF(mu, sigma, gamma, uosm[i]);
|
---|
11772 | }
|
---|
11773 | return wosm;
|
---|
11774 | }
|
---|
11775 |
|
---|
11776 | // Weibull order statistic medians for a mu of zero (n points)
|
---|
11777 | // Two parameter
|
---|
11778 | public static double[] weibullOrderStatisticMedians(double sigma, double gamma, int n){
|
---|
11779 | return Stat.weibullOrderStatisticMedians(0.0, sigma, gamma, n);
|
---|
11780 | }
|
---|
11781 |
|
---|
11782 | // Weibull order statistic medians for a mu of zero and a sigma of unity (n points)
|
---|
11783 | // Standard
|
---|
11784 | public static double[] weibullOrderStatisticMedians(double gamma, int n){
|
---|
11785 | return Stat.weibullOrderStatisticMedians(0.0, 1.0, gamma, n);
|
---|
11786 | }
|
---|
11787 |
|
---|
11788 |
|
---|
11789 | // EXPONENTIAL DISTRIBUTION
|
---|
11790 |
|
---|
11791 | // Exponential cumulative distribution function
|
---|
11792 | // probability that a variate will assume a value less than the upperlimit
|
---|
11793 | public static double exponentialCDF(double mu, double sigma, double upperlimit){
|
---|
11794 | double arg = (upperlimit - mu)/sigma;
|
---|
11795 | double y = 0.0D;
|
---|
11796 | if(arg>0.0D)y = 1.0D - Math.exp(-arg);
|
---|
11797 | return y;
|
---|
11798 | }
|
---|
11799 |
|
---|
11800 | // Exponential cumulative distribution function
|
---|
11801 | // probability that a variate will assume a value less than the upperlimit
|
---|
11802 | public static double exponentialProb(double mu, double sigma, double upperlimit){
|
---|
11803 | double arg = (upperlimit - mu)/sigma;
|
---|
11804 | double y = 0.0D;
|
---|
11805 | if(arg>0.0D)y = 1.0D - Math.exp(-arg);
|
---|
11806 | return y;
|
---|
11807 | }
|
---|
11808 |
|
---|
11809 | // Exponential cumulative distribution function
|
---|
11810 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11811 | public static double exponentialCDF(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11812 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11813 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11814 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11815 | if(arg1>=0.0D)term1 = -Math.exp(-arg1);
|
---|
11816 | if(arg2>=0.0D)term2 = -Math.exp(-arg2);
|
---|
11817 | return term2-term1;
|
---|
11818 | }
|
---|
11819 |
|
---|
11820 | // Exponential cumulative distribution function
|
---|
11821 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11822 | public static double exponentialProb(double mu, double sigma, double lowerlimit, double upperlimit){
|
---|
11823 | double arg1 = (lowerlimit - mu)/sigma;
|
---|
11824 | double arg2 = (upperlimit - mu)/sigma;
|
---|
11825 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11826 | if(arg1>=0.0D)term1 = -Math.exp(-arg1);
|
---|
11827 | if(arg2>=0.0D)term2 = -Math.exp(-arg2);
|
---|
11828 | return term2-term1;
|
---|
11829 | }
|
---|
11830 |
|
---|
11831 | // Exponential Inverse Cumulative Density Function
|
---|
11832 | public static double exponentialInverseCDF(double mu, double sigma, double prob){
|
---|
11833 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11834 | double icdf = 0.0D;
|
---|
11835 |
|
---|
11836 | if(prob==0.0){
|
---|
11837 | icdf = mu;
|
---|
11838 | }
|
---|
11839 | else{
|
---|
11840 | if(prob==1.0){
|
---|
11841 | icdf = Double.POSITIVE_INFINITY;
|
---|
11842 | }
|
---|
11843 | else{
|
---|
11844 | icdf = mu - sigma*(Math.log(1.0 - prob));
|
---|
11845 | }
|
---|
11846 | }
|
---|
11847 |
|
---|
11848 | return icdf;
|
---|
11849 | }
|
---|
11850 |
|
---|
11851 | // Exponential Inverse Cumulative Density Function
|
---|
11852 | public static double inverseExponentialCDF(double mu, double sigma, double prob){
|
---|
11853 | return exponentialInverseCDF(mu, sigma, prob);
|
---|
11854 | }
|
---|
11855 |
|
---|
11856 | // Exponential probability density function
|
---|
11857 | public static double exponentialPDF(double mu,double sigma, double x){
|
---|
11858 | double arg =(x-mu)/sigma;
|
---|
11859 | double y = 0.0D;
|
---|
11860 | if(arg>=0.0D){
|
---|
11861 | y = Math.exp(-arg)/sigma;
|
---|
11862 | }
|
---|
11863 | return y;
|
---|
11864 | }
|
---|
11865 |
|
---|
11866 | // Exponential probability density function
|
---|
11867 | public static double exponential(double mu,double sigma, double x){
|
---|
11868 | double arg =(x-mu)/sigma;
|
---|
11869 | double y = 0.0D;
|
---|
11870 | if(arg>=0.0D){
|
---|
11871 | y = Math.exp(-arg)/sigma;
|
---|
11872 | }
|
---|
11873 | return y;
|
---|
11874 | }
|
---|
11875 |
|
---|
11876 | // Exponential mean
|
---|
11877 | public static double exponentialMean(double mu, double sigma){
|
---|
11878 | return mu + sigma;
|
---|
11879 | }
|
---|
11880 |
|
---|
11881 | // Exponential standard deviation
|
---|
11882 | public static double exponentialStandardDeviation(double sigma){
|
---|
11883 | return sigma;
|
---|
11884 | }
|
---|
11885 |
|
---|
11886 | // Exponential standard deviation
|
---|
11887 | public static double exponentialStandDev(double sigma){
|
---|
11888 | return sigma;
|
---|
11889 | }
|
---|
11890 |
|
---|
11891 |
|
---|
11892 | // Exponential mode
|
---|
11893 | public static double exponentialMode(double mu){
|
---|
11894 | return mu;
|
---|
11895 | }
|
---|
11896 |
|
---|
11897 | // Exponential median
|
---|
11898 | public static double exponentialMedian(double mu,double sigma){
|
---|
11899 | return mu + sigma*Math.log(2.0D);
|
---|
11900 | }
|
---|
11901 |
|
---|
11902 | // Returns an array of Exponential random deviates - clock seed
|
---|
11903 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11904 | public static double[] exponentialRand(double mu, double sigma, int n){
|
---|
11905 | double[] ran = new double[n];
|
---|
11906 | Random rr = new Random();
|
---|
11907 | for(int i=0; i<n; i++){
|
---|
11908 | ran[i] = mu - Math.log(1.0D-rr.nextDouble())*sigma;
|
---|
11909 | }
|
---|
11910 | return ran;
|
---|
11911 | }
|
---|
11912 |
|
---|
11913 | // Returns an array of Exponential random deviates - user supplied seed
|
---|
11914 | // mu = location parameter, sigma = cale parameter, gamma = shape parametern = length of array
|
---|
11915 | public static double[] exponentialRand(double mu, double sigma, int n, long seed){
|
---|
11916 | double[] ran = new double[n];
|
---|
11917 | Random rr = new Random(seed);
|
---|
11918 | for(int i=0; i<n; i++){
|
---|
11919 | ran[i] = mu - Math.log(1.0D-rr.nextDouble())*sigma;
|
---|
11920 | }
|
---|
11921 | return ran;
|
---|
11922 | }
|
---|
11923 |
|
---|
11924 | // Exponential order statistic medians (n points)
|
---|
11925 | public static double[] exponentialOrderStatisticMedians(double mu, double sigma, int n){
|
---|
11926 | double nn = (double)n;
|
---|
11927 | double[] eosm = new double[n];
|
---|
11928 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
11929 | for(int i=0; i<n; i++){
|
---|
11930 | eosm[i] = Stat.inverseExponentialCDF(mu, sigma, uosm[i]);
|
---|
11931 | }
|
---|
11932 | return eosm;
|
---|
11933 | }
|
---|
11934 |
|
---|
11935 |
|
---|
11936 |
|
---|
11937 | // RAYLEIGH DISTRIBUTION
|
---|
11938 |
|
---|
11939 | // Rayleigh cumulative distribution function
|
---|
11940 | // probability that a variate will assume a value less than the upperlimit
|
---|
11941 | public static double rayleighCDF(double beta, double upperlimit){
|
---|
11942 | double arg = (upperlimit)/beta;
|
---|
11943 | double y = 0.0D;
|
---|
11944 | if(arg>0.0D)y = 1.0D - Math.exp(-arg*arg/2.0D);
|
---|
11945 | return y;
|
---|
11946 | }
|
---|
11947 |
|
---|
11948 | // Rayleigh cumulative distribution function
|
---|
11949 | // probability that a variate will assume a value less than the upperlimit
|
---|
11950 | public static double rayleighProb(double beta, double upperlimit){
|
---|
11951 | double arg = (upperlimit)/beta;
|
---|
11952 | double y = 0.0D;
|
---|
11953 | if(arg>0.0D)y = 1.0D - Math.exp(-arg*arg/2.0D);
|
---|
11954 | return y;
|
---|
11955 | }
|
---|
11956 |
|
---|
11957 | // Rayleigh cumulative distribution function
|
---|
11958 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11959 | public static double rayleighCDF(double beta, double lowerlimit, double upperlimit){
|
---|
11960 | double arg1 = (lowerlimit)/beta;
|
---|
11961 | double arg2 = (upperlimit)/beta;
|
---|
11962 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11963 | if(arg1>=0.0D)term1 = -Math.exp(-arg1*arg1/2.0D);
|
---|
11964 | if(arg2>=0.0D)term2 = -Math.exp(-arg2*arg2/2.0D);
|
---|
11965 | return term2-term1;
|
---|
11966 | }
|
---|
11967 |
|
---|
11968 | // Rayleigh cumulative distribution function
|
---|
11969 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
11970 | public static double rayleighProb(double beta, double lowerlimit, double upperlimit){
|
---|
11971 | double arg1 = (lowerlimit)/beta;
|
---|
11972 | double arg2 = (upperlimit)/beta;
|
---|
11973 | double term1 = 0.0D, term2 = 0.0D;
|
---|
11974 | if(arg1>=0.0D)term1 = -Math.exp(-arg1*arg1/2.0D);
|
---|
11975 | if(arg2>=0.0D)term2 = -Math.exp(-arg2*arg2/2.0D);
|
---|
11976 | return term2-term1;
|
---|
11977 | }
|
---|
11978 |
|
---|
11979 | // Rayleigh Inverse Cumulative Density Function
|
---|
11980 | public static double rayleighInverseCDF(double beta, double prob){
|
---|
11981 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
11982 | double icdf = 0.0D;
|
---|
11983 |
|
---|
11984 | if(prob==0.0){
|
---|
11985 | icdf = 0.0;
|
---|
11986 | }
|
---|
11987 | else{
|
---|
11988 | if(prob==1.0){
|
---|
11989 | icdf = Double.POSITIVE_INFINITY;
|
---|
11990 | }
|
---|
11991 | else{
|
---|
11992 | icdf = beta*(Math.sqrt(-Math.log(1.0 - prob)));
|
---|
11993 | }
|
---|
11994 | }
|
---|
11995 |
|
---|
11996 | return icdf;
|
---|
11997 | }
|
---|
11998 |
|
---|
11999 | // Rayleigh Inverse Cumulative Density Function
|
---|
12000 | public static double inverseRayleighCDF(double beta, double prob){
|
---|
12001 | return rayleighInverseCDF(beta, prob);
|
---|
12002 | }
|
---|
12003 |
|
---|
12004 |
|
---|
12005 | // Rayleigh probability density function
|
---|
12006 | public static double rayleighPDF(double beta, double x){
|
---|
12007 | double arg =x/beta;
|
---|
12008 | double y = 0.0D;
|
---|
12009 | if(arg>=0.0D){
|
---|
12010 | y = (arg/beta)*Math.exp(-arg*arg/2.0D)/beta;
|
---|
12011 | }
|
---|
12012 | return y;
|
---|
12013 | }
|
---|
12014 |
|
---|
12015 | // Rayleigh probability density function
|
---|
12016 | public static double rayleigh(double beta, double x){
|
---|
12017 | double arg =x/beta;
|
---|
12018 | double y = 0.0D;
|
---|
12019 | if(arg>=0.0D){
|
---|
12020 | y = (arg/beta)*Math.exp(-arg*arg/2.0D)/beta;
|
---|
12021 | }
|
---|
12022 | return y;
|
---|
12023 | }
|
---|
12024 |
|
---|
12025 | // Rayleigh mean
|
---|
12026 | public static double rayleighMean(double beta){
|
---|
12027 | return beta*Math.sqrt(Math.PI/2.0D);
|
---|
12028 | }
|
---|
12029 |
|
---|
12030 | // Rayleigh standard deviation
|
---|
12031 | public static double rayleighStandardDeviation(double beta){
|
---|
12032 | return beta*Math.sqrt(2.0D-Math.PI/2.0D);
|
---|
12033 | }
|
---|
12034 |
|
---|
12035 | // Rayleigh standard deviation
|
---|
12036 | public static double rayleighStandDev(double beta){
|
---|
12037 | return beta*Math.sqrt(2.0D-Math.PI/2.0D);
|
---|
12038 | }
|
---|
12039 |
|
---|
12040 | // Rayleigh mode
|
---|
12041 | public static double rayleighMode(double beta){
|
---|
12042 | return beta;
|
---|
12043 | }
|
---|
12044 |
|
---|
12045 | // Rayleigh median
|
---|
12046 | public static double rayleighMedian(double beta){
|
---|
12047 | return beta*Math.sqrt(Math.log(2.0D));
|
---|
12048 | }
|
---|
12049 |
|
---|
12050 | // Returns an array of Rayleigh random deviates - clock seed
|
---|
12051 | // beta = scale parameter, n = length of array
|
---|
12052 | public static double[] rayleighRand(double beta, int n){
|
---|
12053 | double[] ran = new double[n];
|
---|
12054 | Random rr = new Random();
|
---|
12055 | for(int i=0; i<n; i++){
|
---|
12056 | ran[i] = Math.sqrt(-2.0D*Math.log(1.0D-rr.nextDouble()))*beta;
|
---|
12057 | }
|
---|
12058 | return ran;
|
---|
12059 | }
|
---|
12060 |
|
---|
12061 | // Returns an array of Rayleigh random deviates - user supplied seed
|
---|
12062 | // beta = scale parameter, n = length of array
|
---|
12063 | public static double[] rayleighRand(double beta, int n, long seed){
|
---|
12064 | double[] ran = new double[n];
|
---|
12065 | Random rr = new Random(seed);
|
---|
12066 | for(int i=0; i<n; i++){
|
---|
12067 | ran[i] = Math.sqrt(-2.0D*Math.log(1.0D-rr.nextDouble()))*beta;
|
---|
12068 | }
|
---|
12069 | return ran;
|
---|
12070 | }
|
---|
12071 |
|
---|
12072 | // Rayleigh order statistic medians (n points)
|
---|
12073 | public static double[] rayleighOrderStatisticMedians(double beta, int n){
|
---|
12074 | double nn = (double)n;
|
---|
12075 | double[] rosm = new double[n];
|
---|
12076 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
12077 | for(int i=0; i<n; i++){
|
---|
12078 | rosm[i] = Stat.inverseRayleighCDF(beta, uosm[i]);
|
---|
12079 | }
|
---|
12080 | return rosm;
|
---|
12081 | }
|
---|
12082 |
|
---|
12083 |
|
---|
12084 | // PARETO DISTRIBUTION
|
---|
12085 |
|
---|
12086 | // Pareto cumulative distribution function
|
---|
12087 | // probability that a variate will assume a value less than the upperlimit
|
---|
12088 | public static double paretoCDF(double alpha, double beta, double upperlimit){
|
---|
12089 | double y = 0.0D;
|
---|
12090 | if(upperlimit>=beta)y = 1.0D - Math.pow(beta/upperlimit, alpha);
|
---|
12091 | return y;
|
---|
12092 | }
|
---|
12093 |
|
---|
12094 | // Pareto cumulative distribution function
|
---|
12095 | // probability that a variate will assume a value less than the upperlimit
|
---|
12096 | public static double paretoProb(double alpha, double beta, double upperlimit){
|
---|
12097 | double y = 0.0D;
|
---|
12098 | if(upperlimit>=beta)y = 1.0D - Math.pow(beta/upperlimit, alpha);
|
---|
12099 | return y;
|
---|
12100 | }
|
---|
12101 |
|
---|
12102 | // Pareto cumulative distribution function
|
---|
12103 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
12104 | public static double paretoCDF(double alpha, double beta, double lowerlimit, double upperlimit){
|
---|
12105 | double term1 = 0.0D, term2 = 0.0D;
|
---|
12106 | if(lowerlimit>=beta)term1 = -Math.pow(beta/lowerlimit, alpha);
|
---|
12107 | if(upperlimit>=beta)term2 = -Math.pow(beta/upperlimit, alpha);
|
---|
12108 | return term2-term1;
|
---|
12109 | }
|
---|
12110 |
|
---|
12111 | // Pareto cumulative distribution function
|
---|
12112 | // probability that a variate will assume a value between the lower and the upper limits
|
---|
12113 | public static double paretoProb(double alpha, double beta, double lowerlimit, double upperlimit){
|
---|
12114 | double term1 = 0.0D, term2 = 0.0D;
|
---|
12115 | if(lowerlimit>=beta)term1 = -Math.pow(beta/lowerlimit, alpha);
|
---|
12116 | if(upperlimit>=beta)term2 = -Math.pow(beta/upperlimit, alpha);
|
---|
12117 | return term2-term1;
|
---|
12118 | }
|
---|
12119 |
|
---|
12120 | // Pareto Inverse Cumulative Density Function
|
---|
12121 | public static double paretoInverseCDF(double alpha, double beta, double prob){
|
---|
12122 | if(prob<0.0 || prob>1.0)throw new IllegalArgumentException("Entered cdf value, " + prob + ", must lie between 0 and 1 inclusive");
|
---|
12123 | double icdf = 0.0D;
|
---|
12124 |
|
---|
12125 | if(prob==0.0){
|
---|
12126 | icdf = beta;
|
---|
12127 | }
|
---|
12128 | else{
|
---|
12129 | if(prob==1.0){
|
---|
12130 | icdf = Double.POSITIVE_INFINITY;
|
---|
12131 | }
|
---|
12132 | else{
|
---|
12133 | icdf = beta/Math.pow((1.0 - prob), 1.0/alpha);
|
---|
12134 | }
|
---|
12135 | }
|
---|
12136 |
|
---|
12137 | return icdf;
|
---|
12138 | }
|
---|
12139 |
|
---|
12140 | // Pareto Inverse Cumulative Density Function
|
---|
12141 | public static double inverseParetoCDF(double alpha, double beta, double prob){
|
---|
12142 | return paretoInverseCDF(alpha, beta, prob);
|
---|
12143 | }
|
---|
12144 |
|
---|
12145 |
|
---|
12146 | // Pareto probability density function
|
---|
12147 | public static double paretoPDF(double alpha, double beta, double x){
|
---|
12148 | double y = 0.0D;
|
---|
12149 | if(x>=beta){
|
---|
12150 | y = alpha*Math.pow(beta, alpha)/Math.pow(x, alpha+1.0D);
|
---|
12151 | }
|
---|
12152 | return y;
|
---|
12153 | }
|
---|
12154 |
|
---|
12155 | // Pareto probability density function
|
---|
12156 | public static double pareto(double alpha, double beta, double x){
|
---|
12157 | double y = 0.0D;
|
---|
12158 | if(x>=beta){
|
---|
12159 | y = alpha*Math.pow(beta, alpha)/Math.pow(x, alpha+1.0D);
|
---|
12160 | }
|
---|
12161 | return y;
|
---|
12162 | }
|
---|
12163 |
|
---|
12164 | // Pareto mean
|
---|
12165 | public static double paretoMean(double alpha, double beta){
|
---|
12166 | double y = Double.NaN;
|
---|
12167 | if(alpha>1.0D)y = alpha*beta/(alpha-1);
|
---|
12168 | return y;
|
---|
12169 | }
|
---|
12170 |
|
---|
12171 | // Pareto standard deviation
|
---|
12172 | public static double paretoStandardDeviation(double alpha, double beta){
|
---|
12173 | double y = Double.NaN;
|
---|
12174 | if(alpha>1.0D)y = alpha*Fmath.square(beta)/(Fmath.square(alpha-1)*(alpha-2));
|
---|
12175 | return y;
|
---|
12176 | }
|
---|
12177 |
|
---|
12178 | // Pareto standard deviation
|
---|
12179 | public static double paretoStandDev(double alpha, double beta){
|
---|
12180 | double y = Double.NaN;
|
---|
12181 | if(alpha>1.0D)y = alpha*Fmath.square(beta)/(Fmath.square(alpha-1)*(alpha-2));
|
---|
12182 | return y;
|
---|
12183 | }
|
---|
12184 |
|
---|
12185 | // Pareto mode
|
---|
12186 | public static double paretoMode(double beta){
|
---|
12187 | return beta;
|
---|
12188 | }
|
---|
12189 |
|
---|
12190 | // Returns an array of Pareto random deviates - clock seed
|
---|
12191 | public static double[] paretoRand(double alpha, double beta, int n){
|
---|
12192 | double[] ran = new double[n];
|
---|
12193 | Random rr = new Random();
|
---|
12194 | for(int i=0; i<n; i++){
|
---|
12195 | ran[i] = Math.pow(1.0D-rr.nextDouble(), -1.0D/alpha)*beta;
|
---|
12196 | }
|
---|
12197 | return ran;
|
---|
12198 | }
|
---|
12199 |
|
---|
12200 | // Returns an array of Pareto random deviates - user supplied seed
|
---|
12201 | public static double[] paretoRand(double alpha, double beta, int n, long seed){
|
---|
12202 | double[] ran = new double[n];
|
---|
12203 | Random rr = new Random(seed);
|
---|
12204 | for(int i=0; i<n; i++){
|
---|
12205 | ran[i] = Math.pow(1.0D-rr.nextDouble(), -1.0D/alpha)*beta;
|
---|
12206 | }
|
---|
12207 | return ran;
|
---|
12208 | }
|
---|
12209 |
|
---|
12210 | // Pareto order statistic medians (n points)
|
---|
12211 | public static double[] paretoOrderStatisticMedians(double alpha, double beta, int n){
|
---|
12212 | double nn = (double)n;
|
---|
12213 | double[] posm = new double[n];
|
---|
12214 | double[] uosm = uniformOrderStatisticMedians(n);
|
---|
12215 | for(int i=0; i<n; i++){
|
---|
12216 | posm[i] = Stat.inverseParetoCDF(alpha, beta, uosm[i]);
|
---|
12217 | }
|
---|
12218 | return posm;
|
---|
12219 | }
|
---|
12220 |
|
---|
12221 |
|
---|
12222 | // FITTING DATA TO ABOVE DISTRIBUTIONS
|
---|
12223 |
|
---|
12224 | // Fit a data set to one, several or all of the above distributions (instance)
|
---|
12225 | public void fitOneOrSeveralDistributions(){
|
---|
12226 | double[] dd = this.getArray_as_double();
|
---|
12227 | Regression.fitOneOrSeveralDistributions(dd);
|
---|
12228 | }
|
---|
12229 |
|
---|
12230 | // Fit a data set to one, several or all of the above distributions (static)
|
---|
12231 | public static void fitOneOrSeveralDistributions(double[] array){
|
---|
12232 | Regression.fitOneOrSeveralDistributions(array);
|
---|
12233 | }
|
---|
12234 |
|
---|
12235 |
|
---|
12236 | // OUTLIER TESTING (STATIC)
|
---|
12237 |
|
---|
12238 | // Anscombe test for a upper outlier - output as Vector
|
---|
12239 | public static Vector<Object> upperOutliersAnscombeAsVector(double[] values, double constant){
|
---|
12240 | ArrayList<Object> res = Stat.upperOutliersAnscombeAsArrayList(values, constant);
|
---|
12241 | Vector<Object> ret = null;
|
---|
12242 | if(res!=null){
|
---|
12243 | int n = res.size();
|
---|
12244 | ret = new Vector<Object>(n);
|
---|
12245 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12246 | }
|
---|
12247 | return ret;
|
---|
12248 | }
|
---|
12249 |
|
---|
12250 |
|
---|
12251 | // Anscombe test for a upper outlier as Vector
|
---|
12252 | public static Vector<Object> upperOutliersAnscombe(double[] values, double constant){
|
---|
12253 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12254 | }
|
---|
12255 |
|
---|
12256 |
|
---|
12257 | // Anscombe test for a upper outlier - output as ArrayList
|
---|
12258 | public static ArrayList<Object> upperOutliersAnscombeAsArrayList(double[] values, double constant){
|
---|
12259 |
|
---|
12260 | Stat am = new Stat(values);
|
---|
12261 | double[] copy0 = am.getArray_as_double();
|
---|
12262 | double[] copy1 = am.getArray_as_double();
|
---|
12263 | int nValues = values.length;
|
---|
12264 | int nValues0 = nValues;
|
---|
12265 | ArrayList<Object> outers = new ArrayList<Object>();
|
---|
12266 | int nOutliers = 0;
|
---|
12267 | boolean test = true;
|
---|
12268 |
|
---|
12269 | while(test){
|
---|
12270 | double mean = am.mean_as_double();
|
---|
12271 | double standDev = am.standardDeviation_as_double();
|
---|
12272 | double max = am.getMaximum_as_double();
|
---|
12273 | int maxIndex = am.getMaximumIndex();
|
---|
12274 | double statistic = (max - mean)/standDev;
|
---|
12275 | if(statistic>constant){
|
---|
12276 | outers.add(new Double(max));
|
---|
12277 | outers.add(new Integer(maxIndex));
|
---|
12278 | nOutliers++;
|
---|
12279 | copy1 = new double[nValues-1];
|
---|
12280 | for(int i=maxIndex; i<nValues-1; i++)copy1[i] = copy0[i+1];
|
---|
12281 |
|
---|
12282 | nValues--;
|
---|
12283 | am = new Stat(Conv.copy(copy1));
|
---|
12284 | }
|
---|
12285 | else{
|
---|
12286 | test=false;
|
---|
12287 | }
|
---|
12288 | }
|
---|
12289 |
|
---|
12290 | double[] outliers = null;
|
---|
12291 | int[] outIndices = null;
|
---|
12292 |
|
---|
12293 | if(nOutliers>0){
|
---|
12294 | outliers = new double[nOutliers];
|
---|
12295 | outIndices = new int[nOutliers];
|
---|
12296 | for(int i=0; i<nOutliers; i++){
|
---|
12297 | outliers[i] = ((Double)outers.get(2*i)).doubleValue();
|
---|
12298 | outIndices[i] = ((Integer)outers.get(2*i+1)).intValue();
|
---|
12299 | }
|
---|
12300 | }
|
---|
12301 |
|
---|
12302 | ArrayList<Object> ret = new ArrayList<Object>(4);
|
---|
12303 | ret.add(new Integer(nOutliers));
|
---|
12304 | ret.add(outliers);
|
---|
12305 | ret.add(outIndices);
|
---|
12306 | ret.add(copy1);
|
---|
12307 | return ret;
|
---|
12308 | }
|
---|
12309 |
|
---|
12310 | // Anscombe test for a upper outlier - output as Vector
|
---|
12311 | public static Vector<Object> upperOutliersAnscombeAsVector(BigDecimal[] values, BigDecimal constant){
|
---|
12312 | ArrayList<Object> res = Stat.upperOutliersAnscombeAsArrayList(values, constant);
|
---|
12313 | Vector<Object> ret = null;
|
---|
12314 | if(res!=null){
|
---|
12315 | int n = res.size();
|
---|
12316 | ret = new Vector<Object>(n);
|
---|
12317 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12318 | }
|
---|
12319 | return ret;
|
---|
12320 | }
|
---|
12321 |
|
---|
12322 |
|
---|
12323 | // Anscombe test for a upper outlier as Vector
|
---|
12324 | public static Vector<Object> upperOutliersAnscombe(BigDecimal[] values, BigDecimal constant){
|
---|
12325 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12326 | }
|
---|
12327 |
|
---|
12328 |
|
---|
12329 | // Anscombe test for a upper outlier - output as ArrayList
|
---|
12330 | public static ArrayList<Object> upperOutliersAnscombeAsArrayList(BigDecimal[] values, BigDecimal constant){
|
---|
12331 |
|
---|
12332 | Stat am = new Stat(values);
|
---|
12333 | BigDecimal[] copy0 = am.getArray_as_BigDecimal();
|
---|
12334 | BigDecimal[] copy1 = am.getArray_as_BigDecimal();
|
---|
12335 | int nValues = values.length;
|
---|
12336 | int nValues0 = nValues;
|
---|
12337 | ArrayList<Object> outers = new ArrayList<Object>();
|
---|
12338 | int nOutliers = 0;
|
---|
12339 | boolean test = true;
|
---|
12340 | while(test){
|
---|
12341 | BigDecimal mean = am.mean_as_BigDecimal();
|
---|
12342 | BigDecimal variance = am.variance_as_BigDecimal();
|
---|
12343 | BigDecimal max = am.getMaximum_as_BigDecimal();
|
---|
12344 | int maxIndex = am.getMaximumIndex();
|
---|
12345 | BigDecimal statistic = (max.subtract(mean)).divide(variance, BigDecimal.ROUND_HALF_UP);
|
---|
12346 | if(statistic.compareTo(constant.multiply(constant))==1){
|
---|
12347 | outers.add(max);
|
---|
12348 | outers.add(new Integer(maxIndex));
|
---|
12349 | nOutliers++;
|
---|
12350 | copy1 = new BigDecimal[nValues-1];
|
---|
12351 | for(int i=maxIndex; i<nValues-1; i++)copy1[i] = copy0[i+1];
|
---|
12352 |
|
---|
12353 | nValues--;
|
---|
12354 | am = new Stat(Conv.copy(copy1));
|
---|
12355 | }
|
---|
12356 | else{
|
---|
12357 | mean = null;
|
---|
12358 | variance = null;
|
---|
12359 | statistic = null;
|
---|
12360 | copy0 = null;
|
---|
12361 | test=false;
|
---|
12362 | }
|
---|
12363 | }
|
---|
12364 |
|
---|
12365 | BigDecimal[] outliers = null;
|
---|
12366 | int[] outIndices = null;
|
---|
12367 |
|
---|
12368 | if(nOutliers>0){
|
---|
12369 | outliers = new BigDecimal[nOutliers];
|
---|
12370 | outIndices = new int[nOutliers];
|
---|
12371 | for(int i=0; i<nOutliers; i++){
|
---|
12372 | outliers[i] = ((BigDecimal)outers.get(2*i));
|
---|
12373 | outIndices[i] = ((Integer)outers.get(2*i+1)).intValue();
|
---|
12374 | }
|
---|
12375 | }
|
---|
12376 |
|
---|
12377 | ArrayList<Object> ret = new ArrayList<Object>(4);
|
---|
12378 | ret.add(new Integer(nOutliers));
|
---|
12379 | ret.add(outliers);
|
---|
12380 | ret.add(outIndices);
|
---|
12381 | ret.add(copy1);
|
---|
12382 | return ret;
|
---|
12383 | }
|
---|
12384 |
|
---|
12385 |
|
---|
12386 | // Anscombe test for a upper outlier - output as Vector
|
---|
12387 | public static Vector<Object> upperOutliersAnscombeAsVector(BigInteger[] values, BigInteger constant){
|
---|
12388 | ArrayList<Object> res = Stat.upperOutliersAnscombeAsArrayList(values, constant);
|
---|
12389 | Vector<Object> ret = null;
|
---|
12390 | if(res!=null){
|
---|
12391 | int n = res.size();
|
---|
12392 | ret = new Vector<Object>(n);
|
---|
12393 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12394 | }
|
---|
12395 | return ret;
|
---|
12396 | }
|
---|
12397 |
|
---|
12398 |
|
---|
12399 | // Anscombe test for a upper outlier as Vector
|
---|
12400 | public static Vector<Object> upperOutliersAnscombe(BigInteger[] values, BigInteger constant){
|
---|
12401 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12402 | }
|
---|
12403 |
|
---|
12404 |
|
---|
12405 | // Anscombe test for a upper outlier - output as ArrayList
|
---|
12406 | public static ArrayList<Object> upperOutliersAnscombeAsArrayList(BigInteger[] values, BigInteger constant){
|
---|
12407 | ArrayMaths am = new ArrayMaths(values);
|
---|
12408 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
12409 | BigDecimal cd = new BigDecimal(constant);
|
---|
12410 | return Stat.upperOutliersAnscombeAsArrayList(bd, cd);
|
---|
12411 | }
|
---|
12412 |
|
---|
12413 |
|
---|
12414 | // Anscombe test for a lower outlier - output as Vector
|
---|
12415 | public static Vector<Object> lowerOutliersAnscombeAsVector(double[] values, double constant){
|
---|
12416 | ArrayList<Object> res = Stat.lowerOutliersAnscombeAsArrayList(values, constant);
|
---|
12417 | Vector<Object> ret = null;
|
---|
12418 | if(res!=null){
|
---|
12419 | int n = res.size();
|
---|
12420 | ret = new Vector<Object>(n);
|
---|
12421 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12422 | }
|
---|
12423 | return ret;
|
---|
12424 | }
|
---|
12425 |
|
---|
12426 |
|
---|
12427 | // Anscombe test for a lower outlier as Vector
|
---|
12428 | public static Vector<Object> lowerOutliersAnscombe(double[] values, double constant){
|
---|
12429 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12430 | }
|
---|
12431 |
|
---|
12432 | // Anscombe test for a lower outlier
|
---|
12433 | public static ArrayList<Object> lowerOutliersAnscombeAsArrayList(double[] values, double constant){
|
---|
12434 |
|
---|
12435 | Stat am = new Stat(values);
|
---|
12436 | double[] copy0 = am.getArray_as_double();
|
---|
12437 | double[] copy1 = am.getArray_as_double();
|
---|
12438 | int nValues = values.length;
|
---|
12439 | int nValues0 = nValues;
|
---|
12440 | ArrayList<Object> outers = new ArrayList<Object>();
|
---|
12441 | int nOutliers = 0;
|
---|
12442 | boolean test = true;
|
---|
12443 |
|
---|
12444 | while(test){
|
---|
12445 | double mean = am.mean_as_double();
|
---|
12446 | double standDev = am.standardDeviation_as_double();
|
---|
12447 | double min = am.getMinimum_as_double();
|
---|
12448 | int minIndex = am.getMinimumIndex();
|
---|
12449 | double statistic = (mean - min)/standDev;
|
---|
12450 | if(statistic>constant){
|
---|
12451 | outers.add(new Double(min));
|
---|
12452 | outers.add(new Integer(minIndex));
|
---|
12453 | nOutliers++;
|
---|
12454 | copy1 = new double[nValues-1];
|
---|
12455 | for(int i=minIndex; i<nValues-1; i++)copy1[i] = copy0[i+1];
|
---|
12456 |
|
---|
12457 | nValues--;
|
---|
12458 | am = new Stat(Conv.copy(copy1));
|
---|
12459 | }
|
---|
12460 | else{
|
---|
12461 | test=false;
|
---|
12462 | }
|
---|
12463 | }
|
---|
12464 |
|
---|
12465 | double[] outliers = null;
|
---|
12466 | int[] outIndices = null;
|
---|
12467 |
|
---|
12468 | if(nOutliers>0){
|
---|
12469 | outliers = new double[nOutliers];
|
---|
12470 | outIndices = new int[nOutliers];
|
---|
12471 | for(int i=0; i<nOutliers; i++){
|
---|
12472 | outliers[i] = ((Double)outers.get(2*i)).doubleValue();
|
---|
12473 | outIndices[i] = ((Integer)outers.get(2*i+1)).intValue();
|
---|
12474 | }
|
---|
12475 | }
|
---|
12476 |
|
---|
12477 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
12478 | ret.add(new Integer(nOutliers));
|
---|
12479 | ret.add(outliers);
|
---|
12480 | ret.add(outIndices);
|
---|
12481 | ret.add(copy1);
|
---|
12482 | return ret;
|
---|
12483 | }
|
---|
12484 |
|
---|
12485 | // Anscombe test for a lower outlier - output as Vector
|
---|
12486 | public static Vector<Object> lowerOutliersAnscombeAsVector(BigDecimal[] values, BigDecimal constant){
|
---|
12487 | ArrayList<Object> res = Stat.lowerOutliersAnscombeAsArrayList(values, constant);
|
---|
12488 | Vector<Object> ret = null;
|
---|
12489 | if(res!=null){
|
---|
12490 | int n = res.size();
|
---|
12491 | ret = new Vector<Object>(n);
|
---|
12492 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12493 | }
|
---|
12494 | return ret;
|
---|
12495 | }
|
---|
12496 |
|
---|
12497 | // Anscombe test for a lower outlier as Vector
|
---|
12498 | public static Vector<Object> lowerOutliersAnscombe(BigDecimal[] values, BigDecimal constant){
|
---|
12499 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12500 | }
|
---|
12501 |
|
---|
12502 | // Anscombe test for a lower outlier
|
---|
12503 | public static ArrayList<Object> lowerOutliersAnscombeAsArrayList(BigDecimal[] values, BigDecimal constant){
|
---|
12504 |
|
---|
12505 | Stat am = new Stat(values);
|
---|
12506 | BigDecimal[] copy0 = am.getArray_as_BigDecimal();
|
---|
12507 | BigDecimal[] copy1 = am.getArray_as_BigDecimal();
|
---|
12508 | int nValues = values.length;
|
---|
12509 | int nValues0 = nValues;
|
---|
12510 | ArrayList<Object> outers = new ArrayList<Object>();
|
---|
12511 | int nOutliers = 0;
|
---|
12512 | boolean test = true;
|
---|
12513 | while(test){
|
---|
12514 | BigDecimal mean = am.mean_as_BigDecimal();
|
---|
12515 | BigDecimal variance = am.variance_as_BigDecimal();
|
---|
12516 | BigDecimal min = am.getMinimum_as_BigDecimal();
|
---|
12517 | int minIndex = am.getMinimumIndex();
|
---|
12518 | BigDecimal statistic = (mean.subtract(min)).divide(variance, BigDecimal.ROUND_HALF_UP);
|
---|
12519 | if(statistic.compareTo(constant.multiply(constant))==1){
|
---|
12520 | outers.add(min);
|
---|
12521 | outers.add(new Integer(minIndex));
|
---|
12522 | nOutliers++;
|
---|
12523 | copy1 = new BigDecimal[nValues-1];
|
---|
12524 | for(int i=minIndex; i<nValues-1; i++)copy1[i] = copy0[i+1];
|
---|
12525 |
|
---|
12526 | nValues--;
|
---|
12527 | am = new Stat(Conv.copy(copy1));
|
---|
12528 | }
|
---|
12529 | else{
|
---|
12530 | mean = null;
|
---|
12531 | variance = null;
|
---|
12532 | statistic = null;
|
---|
12533 | copy0 = null;
|
---|
12534 | test=false;
|
---|
12535 | }
|
---|
12536 | }
|
---|
12537 |
|
---|
12538 | BigDecimal[] outliers = null;
|
---|
12539 | int[] outIndices = null;
|
---|
12540 |
|
---|
12541 | if(nOutliers>0){
|
---|
12542 | outliers = new BigDecimal[nOutliers];
|
---|
12543 | outIndices = new int[nOutliers];
|
---|
12544 | for(int i=0; i<nOutliers; i++){
|
---|
12545 | outliers[i] = ((BigDecimal)outers.get(2*i));
|
---|
12546 | outIndices[i] = ((Integer)outers.get(2*i+1)).intValue();
|
---|
12547 | }
|
---|
12548 | }
|
---|
12549 |
|
---|
12550 | ArrayList<Object> ret = new ArrayList<Object>();
|
---|
12551 | ret.add(new Integer(nOutliers));
|
---|
12552 | ret.add(outliers);
|
---|
12553 | ret.add(outIndices);
|
---|
12554 | ret.add(copy1);
|
---|
12555 | return ret;
|
---|
12556 | }
|
---|
12557 |
|
---|
12558 |
|
---|
12559 | // Anscombe test for a lower outlier - output as Vector
|
---|
12560 | public static Vector<Object> lowerOutliersAnscombeAsVector(BigInteger[] values, BigInteger constant){
|
---|
12561 | ArrayList<Object> res = Stat.lowerOutliersAnscombeAsArrayList(values, constant);
|
---|
12562 | Vector<Object> ret = null;
|
---|
12563 | if(res!=null){
|
---|
12564 | int n = res.size();
|
---|
12565 | ret = new Vector<Object>(n);
|
---|
12566 | for(int i=0; i<n; i++)ret.add(res.get(i));
|
---|
12567 | }
|
---|
12568 | return ret;
|
---|
12569 | }
|
---|
12570 |
|
---|
12571 | // Anscombe test for a lower outlier as Vector
|
---|
12572 | public static Vector<Object> lowerOutliersAnscombe(BigInteger[] values, BigInteger constant){
|
---|
12573 | return upperOutliersAnscombeAsVector(values, constant);
|
---|
12574 | }
|
---|
12575 |
|
---|
12576 | // Anscombe test for a lower outlier
|
---|
12577 | public static ArrayList<Object> lowerOutliersAnscombeAsArrayList(BigInteger[] values, BigInteger constant){
|
---|
12578 | ArrayMaths am = new ArrayMaths(values);
|
---|
12579 | BigDecimal[] bd = am.getArray_as_BigDecimal();
|
---|
12580 | BigDecimal cd = new BigDecimal(constant);
|
---|
12581 | return Stat.lowerOutliersAnscombeAsArrayList(bd, cd);
|
---|
12582 | }
|
---|
12583 |
|
---|
12584 |
|
---|
12585 |
|
---|
12586 |
|
---|
12587 |
|
---|
12588 | // METHODS OVERRIDING ArrayMaths METHODS
|
---|
12589 | // DEEP COPY
|
---|
12590 | // Copy to a new instance of Stat
|
---|
12591 | public Stat copy(){
|
---|
12592 |
|
---|
12593 | Stat am = new Stat();
|
---|
12594 |
|
---|
12595 | if(this.amWeights==null){
|
---|
12596 | am.amWeights = null;
|
---|
12597 | }
|
---|
12598 | else{
|
---|
12599 | am.amWeights = this.amWeights;
|
---|
12600 | }
|
---|
12601 | am.weightsSupplied = this.weightsSupplied;
|
---|
12602 | am.upperOutlierDetails = new ArrayList<Object>();
|
---|
12603 | if(this.upperOutlierDetails.size()!=0){
|
---|
12604 | Integer hold0 = (Integer)this.upperOutlierDetails.get(0);
|
---|
12605 | am.upperOutlierDetails.add(hold0);
|
---|
12606 | am.upperOutlierDetails.add(this.upperOutlierDetails.get(1));
|
---|
12607 | int[] hold2 = (int[])this.upperOutlierDetails.get(2);
|
---|
12608 | am.upperOutlierDetails.add(hold2);
|
---|
12609 | am.upperOutlierDetails.add(this.upperOutlierDetails.get(3));
|
---|
12610 | }
|
---|
12611 | am.upperDone = this.upperDone;
|
---|
12612 | am.lowerOutlierDetails = new ArrayList<Object>();
|
---|
12613 | if(this.lowerOutlierDetails.size()!=0){
|
---|
12614 | Integer hold0 = (Integer)this.lowerOutlierDetails.get(0);
|
---|
12615 | am.lowerOutlierDetails.add(hold0);
|
---|
12616 | am.lowerOutlierDetails.add(this.lowerOutlierDetails.get(1));
|
---|
12617 | int[] hold2 = (int[])this.lowerOutlierDetails.get(2);
|
---|
12618 | am.lowerOutlierDetails.add(hold2);
|
---|
12619 | am.lowerOutlierDetails.add(this.lowerOutlierDetails.get(3));
|
---|
12620 | }
|
---|
12621 | am.lowerDone = this.lowerDone;
|
---|
12622 |
|
---|
12623 | am.length = this.length;
|
---|
12624 | am.maxIndex = this.maxIndex;
|
---|
12625 | am.minIndex = this.minIndex;
|
---|
12626 | am.sumDone = this.sumDone;
|
---|
12627 | am.productDone = this.productDone;
|
---|
12628 | am.sumlongToDouble = this.sumlongToDouble;
|
---|
12629 | am.productlongToDouble = this.productlongToDouble;
|
---|
12630 | am.type = this.type;
|
---|
12631 | if(this.originalTypes==null){
|
---|
12632 | am.originalTypes = null;
|
---|
12633 | }
|
---|
12634 | else{
|
---|
12635 | am.originalTypes = Conv.copy(this.originalTypes);
|
---|
12636 | }
|
---|
12637 | if(this.sortedIndices==null){
|
---|
12638 | am.sortedIndices = null;
|
---|
12639 | }
|
---|
12640 | else{
|
---|
12641 | am.sortedIndices = Conv.copy(this.sortedIndices);
|
---|
12642 | }
|
---|
12643 | am.suppressMessages = this.suppressMessages;
|
---|
12644 | am.minmax = new ArrayList<Object>();
|
---|
12645 | if(this.minmax.size()!=0){
|
---|
12646 | switch(this.type){
|
---|
12647 | case 0:
|
---|
12648 | case 1: double dd = ((Double)this.minmax.get(0)).doubleValue();
|
---|
12649 | am.minmax.add(new Double(dd));
|
---|
12650 | dd = ((Double)this.minmax.get(1)).doubleValue();
|
---|
12651 | am.minmax.add(new Double(dd));
|
---|
12652 | break;
|
---|
12653 | case 4:
|
---|
12654 | case 5: long ll= ((Long)this.minmax.get(0)).longValue();
|
---|
12655 | am.minmax.add(new Double(ll));
|
---|
12656 | ll = ((Long)this.minmax.get(1)).longValue();
|
---|
12657 | am.minmax.add(new Long(ll));
|
---|
12658 | break;
|
---|
12659 | case 2:
|
---|
12660 | case 3: float ff = ((Float)this.minmax.get(0)).floatValue();
|
---|
12661 | am.minmax.add(new Double(ff));
|
---|
12662 | ff = ((Float)this.minmax.get(1)).floatValue();
|
---|
12663 | am.minmax.add(new Double(ff));
|
---|
12664 | break;
|
---|
12665 | case 6:
|
---|
12666 | case 7: int ii = ((Integer)this.minmax.get(0)).intValue();
|
---|
12667 | am.minmax.add(new Integer(ii));
|
---|
12668 | ii = ((Double)this.minmax.get(1)).intValue();
|
---|
12669 | am.minmax.add(new Integer(ii));
|
---|
12670 | break;
|
---|
12671 | case 8:
|
---|
12672 | case 9: short ss = ((Short)this.minmax.get(0)).shortValue();
|
---|
12673 | am.minmax.add(new Short(ss));
|
---|
12674 | ss = ((Double)this.minmax.get(1)).shortValue();
|
---|
12675 | am.minmax.add(new Short((ss)));
|
---|
12676 | break;
|
---|
12677 | case 10:
|
---|
12678 | case 11: byte bb = ((Byte)this.minmax.get(0)).byteValue();
|
---|
12679 | am.minmax.add(new Byte(bb));
|
---|
12680 | ss = ((Byte)this.minmax.get(1)).byteValue();
|
---|
12681 | am.minmax.add(new Byte((bb)));
|
---|
12682 | break;
|
---|
12683 | case 12: BigDecimal bd = (BigDecimal)this.minmax.get(0);
|
---|
12684 | am.minmax.add(bd);
|
---|
12685 | bd = (BigDecimal)this.minmax.get(1);
|
---|
12686 | am.minmax.add(bd);
|
---|
12687 | bd = null;
|
---|
12688 | break;
|
---|
12689 | case 13: BigInteger bi = (BigInteger)this.minmax.get(0);
|
---|
12690 | am.minmax.add(bi);
|
---|
12691 | bi = (BigInteger)this.minmax.get(1);
|
---|
12692 | am.minmax.add(bi);
|
---|
12693 | bi = null;
|
---|
12694 | break;
|
---|
12695 | case 16:
|
---|
12696 | case 17: int iii = ((Integer)this.minmax.get(0)).intValue();
|
---|
12697 | am.minmax.add(new Integer(iii));
|
---|
12698 | iii = ((Double)this.minmax.get(1)).intValue();
|
---|
12699 | am.minmax.add(new Integer(iii));
|
---|
12700 | break;
|
---|
12701 | }
|
---|
12702 | }
|
---|
12703 |
|
---|
12704 | am.summ = new ArrayList<Object>();
|
---|
12705 | if(this.summ.size()!=0){
|
---|
12706 | switch(this.type){
|
---|
12707 | case 0:
|
---|
12708 | case 1:
|
---|
12709 | case 2:
|
---|
12710 | case 3:
|
---|
12711 | case 18: double dd = ((Double)summ.get(0)).doubleValue();
|
---|
12712 | am.summ.add(new Double(dd));
|
---|
12713 | break;
|
---|
12714 | case 4:
|
---|
12715 | case 5:
|
---|
12716 | case 6:
|
---|
12717 | case 7:
|
---|
12718 | case 8:
|
---|
12719 | case 9:
|
---|
12720 | case 10:
|
---|
12721 | case 11:
|
---|
12722 | case 16:
|
---|
12723 | case 17: if(this.sumlongToDouble){
|
---|
12724 | double dd2 = ((Double)summ.get(0)).doubleValue();
|
---|
12725 | am.summ.add(new Double(dd2));
|
---|
12726 | }
|
---|
12727 | else{
|
---|
12728 | long ll = ((Long)summ.get(0)).longValue();
|
---|
12729 | am.summ.add(new Long(ll));
|
---|
12730 | }
|
---|
12731 | break;
|
---|
12732 | case 12: BigDecimal bd = (BigDecimal)summ.get(0);
|
---|
12733 | am.summ.add(bd);
|
---|
12734 | break;
|
---|
12735 | case 13: BigInteger bi = (BigInteger)summ.get(0);
|
---|
12736 | am.summ.add(bi);
|
---|
12737 | break;
|
---|
12738 | case 14: Complex cc = (Complex)summ.get(0);
|
---|
12739 | am.summ.add(cc);
|
---|
12740 | break;
|
---|
12741 | case 15: Phasor pp = (Phasor)summ.get(0);
|
---|
12742 | am.summ.add(pp);
|
---|
12743 | break;
|
---|
12744 | default: throw new IllegalArgumentException("Data type not identified by this method");
|
---|
12745 | }
|
---|
12746 | }
|
---|
12747 |
|
---|
12748 | am.productt = new ArrayList<Object>();
|
---|
12749 | if(this.productt.size()!=0){
|
---|
12750 | switch(this.type){
|
---|
12751 | case 0:
|
---|
12752 | case 1:
|
---|
12753 | case 2:
|
---|
12754 | case 3:
|
---|
12755 | case 18: double dd = ((Double)productt.get(0)).doubleValue();
|
---|
12756 | am.productt.add(new Double(dd));
|
---|
12757 | break;
|
---|
12758 | case 4:
|
---|
12759 | case 5:
|
---|
12760 | case 6:
|
---|
12761 | case 7:
|
---|
12762 | case 8:
|
---|
12763 | case 9:
|
---|
12764 | case 10:
|
---|
12765 | case 11:
|
---|
12766 | case 16:
|
---|
12767 | case 17: if(this.sumlongToDouble){
|
---|
12768 | double dd2 = ((Double)productt.get(0)).doubleValue();
|
---|
12769 | am.productt.add(new Double(dd2));
|
---|
12770 | }
|
---|
12771 | else{
|
---|
12772 | long ll = ((Long)productt.get(0)).longValue();
|
---|
12773 | am.productt.add(new Long(ll));
|
---|
12774 | }
|
---|
12775 | break;
|
---|
12776 | case 12: BigDecimal bd = (BigDecimal)productt.get(0);
|
---|
12777 | am.productt.add(bd);
|
---|
12778 | break;
|
---|
12779 | case 13: BigInteger bi = (BigInteger)productt.get(0);
|
---|
12780 | am.productt.add(bi);
|
---|
12781 | break;
|
---|
12782 | case 14: Complex cc = (Complex)productt.get(0);
|
---|
12783 | am.productt.add(cc);
|
---|
12784 | break;
|
---|
12785 | case 15: Phasor pp = (Phasor)productt.get(0);
|
---|
12786 | am.productt.add(pp);
|
---|
12787 | break;
|
---|
12788 | default: throw new IllegalArgumentException("Data type not identified by this method");
|
---|
12789 | }
|
---|
12790 | }
|
---|
12791 |
|
---|
12792 |
|
---|
12793 | switch(this.type){
|
---|
12794 | case 0:
|
---|
12795 | case 1: double[] dd = Conv.copy(this.getArray_as_double());
|
---|
12796 | for(int i=0; i<this.length; i++)am.array.add(new Double(dd[i]));
|
---|
12797 | break;
|
---|
12798 | case 2:
|
---|
12799 | case 3: float[] ff = Conv.copy(this.getArray_as_float());
|
---|
12800 | for(int i=0; i<this.length; i++)am.array.add(new Float(ff[i]));
|
---|
12801 | break;
|
---|
12802 | case 4:
|
---|
12803 | case 5: long[] ll = Conv.copy(this.getArray_as_long());
|
---|
12804 | for(int i=0; i<this.length; i++)am.array.add(new Long(ll[i]));
|
---|
12805 | break;
|
---|
12806 | case 6:
|
---|
12807 | case 7: int[] ii = Conv.copy(this.getArray_as_int());
|
---|
12808 | for(int i=0; i<this.length; i++)am.array.add(new Integer(ii[i]));
|
---|
12809 | break;
|
---|
12810 | case 8:
|
---|
12811 | case 9: short[] ss = Conv.copy(this.getArray_as_short());
|
---|
12812 | for(int i=0; i<this.length; i++)am.array.add(new Short(ss[i]));
|
---|
12813 | break;
|
---|
12814 | case 10:
|
---|
12815 | case 11: byte[] bb = Conv.copy(this.getArray_as_byte());
|
---|
12816 | for(int i=0; i<this.length; i++)am.array.add(new Byte(bb[i]));
|
---|
12817 | break;
|
---|
12818 | case 12: BigDecimal[] bd = Conv.copy(this.getArray_as_BigDecimal());
|
---|
12819 | for(int i=0; i<this.length; i++)am.array.add(bd[i]);
|
---|
12820 | break;
|
---|
12821 | case 13: BigInteger[] bi = Conv.copy(this.getArray_as_BigInteger());
|
---|
12822 | for(int i=0; i<this.length; i++)am.array.add(bi[i]);
|
---|
12823 | break;
|
---|
12824 | case 14: Complex[] ccc = this.getArray_as_Complex();
|
---|
12825 | for(int i=0; i<this.length; i++)am.array.add(ccc[i].copy());
|
---|
12826 | break;
|
---|
12827 | case 15: Phasor[] ppp = this.getArray_as_Phasor();
|
---|
12828 | for(int i=0; i<this.length; i++)am.array.add(ppp[i].copy());
|
---|
12829 | break;
|
---|
12830 | case 16:
|
---|
12831 | case 17: char[] cc = Conv.copy(this.getArray_as_char());
|
---|
12832 | for(int i=0; i<this.length; i++)am.array.add(new Character(cc[i]));
|
---|
12833 | break;
|
---|
12834 | case 18: String[] sss = Conv.copy(this.getArray_as_String());
|
---|
12835 | for(int i=0; i<this.length; i++)am.array.add(sss[i]);
|
---|
12836 | break;
|
---|
12837 | }
|
---|
12838 |
|
---|
12839 | return am;
|
---|
12840 | }
|
---|
12841 |
|
---|
12842 | public Stat plus(double constant){
|
---|
12843 | return super.plus(constant).toStat();
|
---|
12844 | }
|
---|
12845 |
|
---|
12846 | public Stat plus(float constant){
|
---|
12847 | return super.plus(constant).toStat();
|
---|
12848 | }
|
---|
12849 |
|
---|
12850 | public Stat plus(long constant){
|
---|
12851 | return super.plus(constant).toStat();
|
---|
12852 | }
|
---|
12853 |
|
---|
12854 | public Stat plus(int constant){
|
---|
12855 | return super.plus(constant).toStat();
|
---|
12856 | }
|
---|
12857 |
|
---|
12858 | public Stat plus(short constant){
|
---|
12859 | return super.plus(constant).toStat();
|
---|
12860 | }
|
---|
12861 |
|
---|
12862 | public Stat plus(byte constant){
|
---|
12863 | return super.plus(constant).toStat();
|
---|
12864 | }
|
---|
12865 |
|
---|
12866 | public Stat plus(char constant){
|
---|
12867 | return super.plus(constant).toStat();
|
---|
12868 | }
|
---|
12869 |
|
---|
12870 | public Stat plus(BigDecimal constant){
|
---|
12871 | return super.plus(constant).toStat();
|
---|
12872 | }
|
---|
12873 |
|
---|
12874 | public Stat plus(BigInteger constant){
|
---|
12875 | return super.plus(constant).toStat();
|
---|
12876 | }
|
---|
12877 |
|
---|
12878 | public Stat plus(Complex constant){
|
---|
12879 | return super.plus(constant).toStat();
|
---|
12880 | }
|
---|
12881 |
|
---|
12882 | public Stat plus(Phasor constant){
|
---|
12883 | return super.plus(constant).toStat();
|
---|
12884 | }
|
---|
12885 |
|
---|
12886 | public Stat plus(String constant){
|
---|
12887 | return super.plus(constant).toStat();
|
---|
12888 | }
|
---|
12889 |
|
---|
12890 |
|
---|
12891 | public Stat plus(Double constant){
|
---|
12892 | return super.plus(constant).toStat();
|
---|
12893 | }
|
---|
12894 |
|
---|
12895 | public Stat plus(Float constant){
|
---|
12896 | return super.plus(constant).toStat();
|
---|
12897 | }
|
---|
12898 |
|
---|
12899 | public Stat plus(Long constant){
|
---|
12900 | return super.plus(constant).toStat();
|
---|
12901 | }
|
---|
12902 |
|
---|
12903 | public Stat plus(Integer constant){
|
---|
12904 | return super.plus(constant).toStat();
|
---|
12905 | }
|
---|
12906 |
|
---|
12907 | public Stat plus(Short constant){
|
---|
12908 | return super.plus(constant).toStat();
|
---|
12909 | }
|
---|
12910 |
|
---|
12911 | public Stat plus(Byte constant){
|
---|
12912 | return super.plus(constant).toStat();
|
---|
12913 | }
|
---|
12914 |
|
---|
12915 |
|
---|
12916 | public Stat plus(Character constant){
|
---|
12917 | return super.plus(constant).toStat();
|
---|
12918 | }
|
---|
12919 |
|
---|
12920 | public Stat plus(Stat arrays){
|
---|
12921 | return super.plus(arrays).toStat();
|
---|
12922 | }
|
---|
12923 |
|
---|
12924 | public Stat plus(ArrayMaths arraym){
|
---|
12925 | return super.plus(arraym).toStat();
|
---|
12926 | }
|
---|
12927 |
|
---|
12928 | public Stat plus(ArrayList<Object> arrayl){
|
---|
12929 | return super.plus(arrayl).toStat();
|
---|
12930 | }
|
---|
12931 |
|
---|
12932 | public Stat plus(Vector<Object> list){
|
---|
12933 | return super.plus(list).toStat();
|
---|
12934 | }
|
---|
12935 |
|
---|
12936 | public Stat plus(double[] array){
|
---|
12937 | return super.plus(array).toStat();
|
---|
12938 | }
|
---|
12939 |
|
---|
12940 | public Stat plus(float[] array){
|
---|
12941 | return super.plus(array).toStat();
|
---|
12942 | }
|
---|
12943 |
|
---|
12944 | public Stat plus(long[] array){
|
---|
12945 | return super.plus(array).toStat();
|
---|
12946 | }
|
---|
12947 |
|
---|
12948 | public Stat plus(int[] array){
|
---|
12949 | return super.plus(array).toStat();
|
---|
12950 | }
|
---|
12951 |
|
---|
12952 | public Stat plus(short[] array){
|
---|
12953 | return super.plus(array).toStat();
|
---|
12954 | }
|
---|
12955 |
|
---|
12956 | public Stat plus(byte[] array){
|
---|
12957 | return super.plus(array).toStat();
|
---|
12958 | }
|
---|
12959 |
|
---|
12960 | public Stat plus(char[] array){
|
---|
12961 | return super.plus(array).toStat();
|
---|
12962 | }
|
---|
12963 |
|
---|
12964 | public Stat plus(BigDecimal[] array){
|
---|
12965 | return super.plus(array).toStat();
|
---|
12966 | }
|
---|
12967 |
|
---|
12968 | public Stat plus(BigInteger[] array){
|
---|
12969 | return super.plus(array).toStat();
|
---|
12970 | }
|
---|
12971 |
|
---|
12972 | public Stat plus(Complex[] array){
|
---|
12973 | return super.plus(array).toStat();
|
---|
12974 | }
|
---|
12975 |
|
---|
12976 | public Stat plus(Phasor[] array){
|
---|
12977 | return super.plus(array).toStat();
|
---|
12978 | }
|
---|
12979 |
|
---|
12980 | public Stat plus(String[] array){
|
---|
12981 | return super.plus(array).toStat();
|
---|
12982 | }
|
---|
12983 |
|
---|
12984 | public Stat plus(Double[] array){
|
---|
12985 | return super.plus(array).toStat();
|
---|
12986 | }
|
---|
12987 |
|
---|
12988 | public Stat plus(Float[] array){
|
---|
12989 | return super.plus(array).toStat();
|
---|
12990 | }
|
---|
12991 |
|
---|
12992 | public Stat plus(Long[] array){
|
---|
12993 | return super.plus(array).toStat();
|
---|
12994 | }
|
---|
12995 |
|
---|
12996 | public Stat plus(Integer[] array){
|
---|
12997 | return super.plus(array).toStat();
|
---|
12998 | }
|
---|
12999 |
|
---|
13000 | public Stat plus(Short[] array){
|
---|
13001 | return super.plus(array).toStat();
|
---|
13002 | }
|
---|
13003 |
|
---|
13004 | public Stat plus(Byte[] array){
|
---|
13005 | return super.plus(array).toStat();
|
---|
13006 | }
|
---|
13007 |
|
---|
13008 | public Stat plus(Character[] array){
|
---|
13009 | return super.plus(array).toStat();
|
---|
13010 | }
|
---|
13011 |
|
---|
13012 | public Stat minus(double constant){
|
---|
13013 | return super.minus(constant).toStat();
|
---|
13014 | }
|
---|
13015 |
|
---|
13016 | public Stat minus(float constant){
|
---|
13017 | return super.minus(constant).toStat();
|
---|
13018 | }
|
---|
13019 |
|
---|
13020 | public Stat minus(long constant){
|
---|
13021 | return super.minus(constant).toStat();
|
---|
13022 | }
|
---|
13023 |
|
---|
13024 | public Stat minus(int constant){
|
---|
13025 | return super.minus(constant).toStat();
|
---|
13026 | }
|
---|
13027 |
|
---|
13028 | public Stat minus(short constant){
|
---|
13029 | return super.minus(constant).toStat();
|
---|
13030 | }
|
---|
13031 |
|
---|
13032 | public Stat minus(byte constant){
|
---|
13033 | return super.minus(constant).toStat();
|
---|
13034 | }
|
---|
13035 |
|
---|
13036 | public Stat minus(char constant){
|
---|
13037 | return super.minus(constant).toStat();
|
---|
13038 | }
|
---|
13039 |
|
---|
13040 | public Stat minus(BigDecimal constant){
|
---|
13041 | return super.minus(constant).toStat();
|
---|
13042 | }
|
---|
13043 |
|
---|
13044 | public Stat minus(BigInteger constant){
|
---|
13045 | return super.minus(constant).toStat();
|
---|
13046 | }
|
---|
13047 |
|
---|
13048 | public Stat minus(Complex constant){
|
---|
13049 | return super.minus(constant).toStat();
|
---|
13050 | }
|
---|
13051 |
|
---|
13052 | public Stat minus(Phasor constant){
|
---|
13053 | return super.minus(constant).toStat();
|
---|
13054 | }
|
---|
13055 |
|
---|
13056 | public Stat minus(Double constant){
|
---|
13057 | return super.minus(constant).toStat();
|
---|
13058 | }
|
---|
13059 |
|
---|
13060 | public Stat minus(Float constant){
|
---|
13061 | return super.minus(constant).toStat();
|
---|
13062 | }
|
---|
13063 |
|
---|
13064 | public Stat minus(Long constant){
|
---|
13065 | return super.minus(constant).toStat();
|
---|
13066 | }
|
---|
13067 |
|
---|
13068 | public Stat minus(Integer constant){
|
---|
13069 | return super.minus(constant).toStat();
|
---|
13070 | }
|
---|
13071 |
|
---|
13072 | public Stat minus(Short constant){
|
---|
13073 | return super.minus(constant).toStat();
|
---|
13074 | }
|
---|
13075 |
|
---|
13076 | public Stat minus(Byte constant){
|
---|
13077 | return super.minus(constant).toStat();
|
---|
13078 | }
|
---|
13079 |
|
---|
13080 |
|
---|
13081 | public Stat minus(Character constant){
|
---|
13082 | return super.minus(constant).toStat();
|
---|
13083 | }
|
---|
13084 |
|
---|
13085 | public Stat minus(Stat arrays){
|
---|
13086 | return super.minus(arrays).toStat();
|
---|
13087 | }
|
---|
13088 |
|
---|
13089 | public Stat minus(ArrayMaths arraym){
|
---|
13090 | return super.minus(arraym).toStat();
|
---|
13091 | }
|
---|
13092 |
|
---|
13093 | public Stat minus(Vector<Object> vec){
|
---|
13094 | return super.minus(vec).toStat();
|
---|
13095 | }
|
---|
13096 |
|
---|
13097 | public Stat minus(ArrayList<Object> list){
|
---|
13098 | return super.minus(list).toStat();
|
---|
13099 | }
|
---|
13100 |
|
---|
13101 | public Stat minus(double[] array){
|
---|
13102 | return super.minus(array).toStat();
|
---|
13103 | }
|
---|
13104 |
|
---|
13105 | public Stat minus(float[] array){
|
---|
13106 | return super.minus(array).toStat();
|
---|
13107 | }
|
---|
13108 |
|
---|
13109 | public Stat minus(long[] array){
|
---|
13110 | return super.minus(array).toStat();
|
---|
13111 | }
|
---|
13112 |
|
---|
13113 | public Stat minus(int[] array){
|
---|
13114 | return super.minus(array).toStat();
|
---|
13115 | }
|
---|
13116 |
|
---|
13117 | public Stat minus(short[] array){
|
---|
13118 | return super.minus(array).toStat();
|
---|
13119 | }
|
---|
13120 |
|
---|
13121 | public Stat minus(byte[] array){
|
---|
13122 | return super.minus(array).toStat();
|
---|
13123 | }
|
---|
13124 |
|
---|
13125 | public Stat minus(BigDecimal[] array){
|
---|
13126 | return super.minus(array).toStat();
|
---|
13127 | }
|
---|
13128 |
|
---|
13129 | public Stat minus(BigInteger[] array){
|
---|
13130 | return super.minus(array).toStat();
|
---|
13131 | }
|
---|
13132 |
|
---|
13133 | public Stat minus(Complex[] array){
|
---|
13134 | return super.minus(array).toStat();
|
---|
13135 | }
|
---|
13136 |
|
---|
13137 | public Stat minus(Phasor[] array){
|
---|
13138 | return super.minus(array).toStat();
|
---|
13139 | }
|
---|
13140 |
|
---|
13141 | public Stat minus(Double[] array){
|
---|
13142 | return super.minus(array).toStat();
|
---|
13143 | }
|
---|
13144 |
|
---|
13145 | public Stat minus(Float[] array){
|
---|
13146 | return super.minus(array).toStat();
|
---|
13147 | }
|
---|
13148 |
|
---|
13149 | public Stat minus(Long[] array){
|
---|
13150 | return super.minus(array).toStat();
|
---|
13151 | }
|
---|
13152 |
|
---|
13153 | public Stat minus(Integer[] array){
|
---|
13154 | return super.minus(array).toStat();
|
---|
13155 | }
|
---|
13156 |
|
---|
13157 | public Stat minus(Short[] array){
|
---|
13158 | return super.minus(array).toStat();
|
---|
13159 | }
|
---|
13160 |
|
---|
13161 | public Stat minus(Byte[] array){
|
---|
13162 | return super.minus(array).toStat();
|
---|
13163 | }
|
---|
13164 |
|
---|
13165 | public Stat times(double constant){
|
---|
13166 | return super.times(constant).toStat();
|
---|
13167 | }
|
---|
13168 |
|
---|
13169 | public Stat times(float constant){
|
---|
13170 | return super.times(constant).toStat();
|
---|
13171 | }
|
---|
13172 |
|
---|
13173 | public Stat times(long constant){
|
---|
13174 | return super.times(constant).toStat();
|
---|
13175 | }
|
---|
13176 |
|
---|
13177 | public Stat times(int constant){
|
---|
13178 | return super.times(constant).toStat();
|
---|
13179 | }
|
---|
13180 |
|
---|
13181 | public Stat times(short constant){
|
---|
13182 | return super.times(constant).toStat();
|
---|
13183 | }
|
---|
13184 |
|
---|
13185 | public Stat times(byte constant){
|
---|
13186 | return super.times(constant).toStat();
|
---|
13187 | }
|
---|
13188 |
|
---|
13189 | public Stat times(BigDecimal constant){
|
---|
13190 | return super.times(constant).toStat();
|
---|
13191 | }
|
---|
13192 |
|
---|
13193 | public Stat times(BigInteger constant){
|
---|
13194 | return super.times(constant).toStat();
|
---|
13195 | }
|
---|
13196 |
|
---|
13197 | public Stat times(Complex constant){
|
---|
13198 | return super.times(constant).toStat();
|
---|
13199 | }
|
---|
13200 |
|
---|
13201 | public Stat times(Phasor constant){
|
---|
13202 | return super.times(constant).toStat();
|
---|
13203 | }
|
---|
13204 |
|
---|
13205 | public Stat times(Double constant){
|
---|
13206 | return super.times(constant).toStat();
|
---|
13207 | }
|
---|
13208 |
|
---|
13209 | public Stat times(Float constant){
|
---|
13210 | return super.times(constant).toStat();
|
---|
13211 | }
|
---|
13212 |
|
---|
13213 | public Stat times(Long constant){
|
---|
13214 | return super.times(constant).toStat();
|
---|
13215 | }
|
---|
13216 |
|
---|
13217 | public Stat times(Integer constant){
|
---|
13218 | return super.times(constant).toStat();
|
---|
13219 | }
|
---|
13220 |
|
---|
13221 | public Stat times(Short constant){
|
---|
13222 | return super.times(constant).toStat();
|
---|
13223 | }
|
---|
13224 |
|
---|
13225 | public Stat times(Byte constant){
|
---|
13226 | return super.times(constant).toStat();
|
---|
13227 | }
|
---|
13228 |
|
---|
13229 | public Stat over(double constant){
|
---|
13230 | return super.over(constant).toStat();
|
---|
13231 | }
|
---|
13232 |
|
---|
13233 | public Stat over(float constant){
|
---|
13234 | return super.over(constant).toStat();
|
---|
13235 | }
|
---|
13236 |
|
---|
13237 | public Stat over(long constant){
|
---|
13238 | return super.over(constant).toStat();
|
---|
13239 | }
|
---|
13240 |
|
---|
13241 | public Stat over(int constant){
|
---|
13242 | return super.over(constant).toStat();
|
---|
13243 | }
|
---|
13244 |
|
---|
13245 | public Stat over(short constant){
|
---|
13246 | return super.over(constant).toStat();
|
---|
13247 | }
|
---|
13248 |
|
---|
13249 | public Stat over(byte constant){
|
---|
13250 | return super.over(constant).toStat();
|
---|
13251 | }
|
---|
13252 |
|
---|
13253 | public Stat over(BigDecimal constant){
|
---|
13254 | return super.over(constant).toStat();
|
---|
13255 | }
|
---|
13256 |
|
---|
13257 | public Stat over(BigInteger constant){
|
---|
13258 | return super.over(constant).toStat();
|
---|
13259 | }
|
---|
13260 |
|
---|
13261 | public Stat over(Complex constant){
|
---|
13262 | return super.over(constant).toStat();
|
---|
13263 | }
|
---|
13264 |
|
---|
13265 | public Stat over(Phasor constant){
|
---|
13266 | return super.over(constant).toStat();
|
---|
13267 | }
|
---|
13268 |
|
---|
13269 | public Stat over(Double constant){
|
---|
13270 | return super.over(constant).toStat();
|
---|
13271 | }
|
---|
13272 |
|
---|
13273 | public Stat over(Float constant){
|
---|
13274 | return super.over(constant).toStat();
|
---|
13275 | }
|
---|
13276 |
|
---|
13277 | public Stat over(Long constant){
|
---|
13278 | return super.over(constant).toStat();
|
---|
13279 | }
|
---|
13280 |
|
---|
13281 | public Stat over(Integer constant){
|
---|
13282 | return super.over(constant).toStat();
|
---|
13283 | }
|
---|
13284 |
|
---|
13285 | public Stat over(Short constant){
|
---|
13286 | return super.over(constant).toStat();
|
---|
13287 | }
|
---|
13288 |
|
---|
13289 | public Stat over(Byte constant){
|
---|
13290 | return super.over(constant).toStat();
|
---|
13291 | }
|
---|
13292 |
|
---|
13293 |
|
---|
13294 | public Stat pow(double n){
|
---|
13295 | return super.pow(n).toStat();
|
---|
13296 | }
|
---|
13297 |
|
---|
13298 | public Stat pow(float n){
|
---|
13299 | return super.pow(n).toStat();
|
---|
13300 | }
|
---|
13301 |
|
---|
13302 | public Stat pow(long n){
|
---|
13303 | return super.pow(n).toStat();
|
---|
13304 | }
|
---|
13305 |
|
---|
13306 | public Stat pow(int n){
|
---|
13307 | return super.pow(n).toStat();
|
---|
13308 | }
|
---|
13309 |
|
---|
13310 | public Stat pow(short n){
|
---|
13311 | return super.pow(n).toStat();
|
---|
13312 | }
|
---|
13313 |
|
---|
13314 | public Stat pow(byte n){
|
---|
13315 | return super.pow(n).toStat();
|
---|
13316 | }
|
---|
13317 |
|
---|
13318 | public Stat pow(Double n){
|
---|
13319 | return super.pow(n).toStat();
|
---|
13320 | }
|
---|
13321 |
|
---|
13322 | public Stat pow(Float n){
|
---|
13323 | return super.pow(n).toStat();
|
---|
13324 | }
|
---|
13325 |
|
---|
13326 | public Stat pow(Long n){
|
---|
13327 | return super.pow(n).toStat();
|
---|
13328 | }
|
---|
13329 |
|
---|
13330 | public Stat pow(Integer n){
|
---|
13331 | return super.pow(n).toStat();
|
---|
13332 | }
|
---|
13333 |
|
---|
13334 | public Stat pow(Short n){
|
---|
13335 | return super.pow(n).toStat();
|
---|
13336 | }
|
---|
13337 |
|
---|
13338 | public Stat pow(Byte n){
|
---|
13339 | return super.pow(n).toStat();
|
---|
13340 | }
|
---|
13341 |
|
---|
13342 | public Stat pow(BigInteger n){
|
---|
13343 | return super.pow(n).toStat();
|
---|
13344 | }
|
---|
13345 |
|
---|
13346 | public Stat pow(BigDecimal n){
|
---|
13347 | return super.pow(n).toStat();
|
---|
13348 | }
|
---|
13349 |
|
---|
13350 | public Stat sqrt(){
|
---|
13351 | return super.sqrt().toStat();
|
---|
13352 | }
|
---|
13353 |
|
---|
13354 | public Stat oneOverSqrt(){
|
---|
13355 | return super.oneOverSqrt().toStat();
|
---|
13356 | }
|
---|
13357 |
|
---|
13358 | public Stat abs(){
|
---|
13359 | return super.abs().toStat();
|
---|
13360 | }
|
---|
13361 |
|
---|
13362 | public Stat log(){
|
---|
13363 | return super.log().toStat();
|
---|
13364 | }
|
---|
13365 |
|
---|
13366 | public Stat log2(){
|
---|
13367 | return super.log2().toStat();
|
---|
13368 | }
|
---|
13369 |
|
---|
13370 | public Stat log10(){
|
---|
13371 | return super.log10().toStat();
|
---|
13372 | }
|
---|
13373 |
|
---|
13374 | public Stat antilog10(){
|
---|
13375 | return super.antilog10().toStat();
|
---|
13376 | }
|
---|
13377 |
|
---|
13378 | public Stat xLog2x(){
|
---|
13379 | return super.xLog2x().toStat();
|
---|
13380 | }
|
---|
13381 |
|
---|
13382 | public Stat xLogEx(){
|
---|
13383 | return super.xLogEx().toStat();
|
---|
13384 | }
|
---|
13385 |
|
---|
13386 | public Stat xLog10x(){
|
---|
13387 | return super.xLog10x().toStat();
|
---|
13388 | }
|
---|
13389 |
|
---|
13390 | public Stat minusxLog2x(){
|
---|
13391 | return super.minusxLog2x().toStat();
|
---|
13392 | }
|
---|
13393 |
|
---|
13394 | public Stat minusxLogEx(){
|
---|
13395 | return super.minusxLogEx().toStat();
|
---|
13396 | }
|
---|
13397 |
|
---|
13398 | public Stat minusxLog10x(){
|
---|
13399 | return super.minusxLog10x().toStat();
|
---|
13400 | }
|
---|
13401 |
|
---|
13402 | public Stat exp(){
|
---|
13403 | return super.exp().toStat();
|
---|
13404 | }
|
---|
13405 |
|
---|
13406 | public Stat invert(){
|
---|
13407 | return super.invert().toStat();
|
---|
13408 | }
|
---|
13409 |
|
---|
13410 | public Stat negate(){
|
---|
13411 | return super.negate().toStat();
|
---|
13412 | }
|
---|
13413 |
|
---|
13414 | public Stat sort(){
|
---|
13415 | return super.sort().toStat();
|
---|
13416 | }
|
---|
13417 |
|
---|
13418 | public Stat sort(int[] indices){
|
---|
13419 | return super.sort(indices).toStat();
|
---|
13420 | }
|
---|
13421 |
|
---|
13422 | public Stat reverse(){
|
---|
13423 | return super.reverse().toStat();
|
---|
13424 | }
|
---|
13425 |
|
---|
13426 | public Stat concatenate(Stat xx){
|
---|
13427 | return super.concatenate(xx).toStat();
|
---|
13428 | }
|
---|
13429 |
|
---|
13430 | public Stat concatenate(ArrayMaths xx){
|
---|
13431 | return super.concatenate(xx).toStat();
|
---|
13432 | }
|
---|
13433 |
|
---|
13434 | public Stat concatenate(double[] xx){
|
---|
13435 | return super.concatenate(xx).toStat();
|
---|
13436 | }
|
---|
13437 |
|
---|
13438 | public Stat concatenate(float[] xx){
|
---|
13439 | return super.concatenate(xx).toStat();
|
---|
13440 | }
|
---|
13441 |
|
---|
13442 | public Stat concatenate(long[] xx){
|
---|
13443 | return super.concatenate(xx).toStat();
|
---|
13444 | }
|
---|
13445 |
|
---|
13446 | public Stat concatenate(int[] xx){
|
---|
13447 | return super.concatenate(xx).toStat();
|
---|
13448 | }
|
---|
13449 |
|
---|
13450 | public Stat concatenate(short[] xx){
|
---|
13451 | return super.concatenate(xx).toStat();
|
---|
13452 | }
|
---|
13453 |
|
---|
13454 | public Stat concatenate(byte[] xx){
|
---|
13455 | return super.concatenate(xx).toStat();
|
---|
13456 | }
|
---|
13457 |
|
---|
13458 | public Stat concatenate(char[] xx){
|
---|
13459 | return super.concatenate(xx).toStat();
|
---|
13460 | }
|
---|
13461 |
|
---|
13462 | public Stat concatenate(Double[] xx){
|
---|
13463 | return super.concatenate(xx).toStat();
|
---|
13464 | }
|
---|
13465 |
|
---|
13466 | public Stat concatenate(Float[] xx){
|
---|
13467 | return super.concatenate(xx).toStat();
|
---|
13468 | }
|
---|
13469 |
|
---|
13470 | public Stat concatenate(Long[] xx){
|
---|
13471 | return super.concatenate(xx).toStat();
|
---|
13472 | }
|
---|
13473 |
|
---|
13474 | public Stat concatenate(Integer[] xx){
|
---|
13475 | return super.concatenate(xx).toStat();
|
---|
13476 | }
|
---|
13477 |
|
---|
13478 | public Stat concatenate(Short[] xx){
|
---|
13479 | return super.concatenate(xx).toStat();
|
---|
13480 | }
|
---|
13481 |
|
---|
13482 | public Stat concatenate(Byte[] xx){
|
---|
13483 | return super.concatenate(xx).toStat();
|
---|
13484 | }
|
---|
13485 |
|
---|
13486 | public Stat concatenate(Character[] xx){
|
---|
13487 | return super.concatenate(xx).toStat();
|
---|
13488 | }
|
---|
13489 |
|
---|
13490 | public Stat concatenate(String[] xx){
|
---|
13491 | return super.concatenate(xx).toStat();
|
---|
13492 | }
|
---|
13493 |
|
---|
13494 | public Stat concatenate(BigDecimal[] xx){
|
---|
13495 | return super.concatenate(xx).toStat();
|
---|
13496 | }
|
---|
13497 |
|
---|
13498 | public Stat concatenate(BigInteger[] xx){
|
---|
13499 | return super.concatenate(xx).toStat();
|
---|
13500 | }
|
---|
13501 |
|
---|
13502 | public Stat concatenate(Complex[] xx){
|
---|
13503 | return super.concatenate(xx).toStat();
|
---|
13504 | }
|
---|
13505 |
|
---|
13506 | public Stat concatenate(Phasor[] xx){
|
---|
13507 | return super.concatenate(xx).toStat();
|
---|
13508 | }
|
---|
13509 |
|
---|
13510 | public Stat truncate(int n){
|
---|
13511 | return super.truncate(n).toStat();
|
---|
13512 | }
|
---|
13513 |
|
---|
13514 | public Stat floor(){
|
---|
13515 | return super.floor().toStat();
|
---|
13516 | }
|
---|
13517 |
|
---|
13518 | public Stat ceil(){
|
---|
13519 | return super.ceil().toStat();
|
---|
13520 | }
|
---|
13521 |
|
---|
13522 | public Stat rint(){
|
---|
13523 | return super.rint().toStat();
|
---|
13524 | }
|
---|
13525 |
|
---|
13526 | public Stat randomize(){
|
---|
13527 | return super.randomize().toStat();
|
---|
13528 | }
|
---|
13529 |
|
---|
13530 | public Stat randomise(){
|
---|
13531 | return super.randomize().toStat();
|
---|
13532 | }
|
---|
13533 |
|
---|
13534 | }
|
---|
13535 |
|
---|
13536 | // CLASSES NEEDED BY METHODS IN THE ABOVE Stat CLASS
|
---|
13537 |
|
---|
13538 | // Class to evaluate the linear correlation coefficient probablity function
|
---|
13539 | // Needed in calls to Integration.gaussQuad
|
---|
13540 | class CorrCoeff implements IntegralFunction{
|
---|
13541 |
|
---|
13542 | public double a;
|
---|
13543 |
|
---|
13544 | public double function(double x){
|
---|
13545 | double y = Math.pow((1.0D - x*x),a);
|
---|
13546 | return y;
|
---|
13547 | }
|
---|
13548 | }
|
---|
13549 |
|
---|
13550 | // Class to evaluate the normal distribution function
|
---|
13551 | class GaussianFunct implements RealRootFunction{
|
---|
13552 |
|
---|
13553 | public double cfd = 0.0D;
|
---|
13554 | public double mean = 0.0D;
|
---|
13555 | public double sd = 0.0;
|
---|
13556 |
|
---|
13557 | public double function(double x){
|
---|
13558 |
|
---|
13559 | double y = cfd - Stat.gaussianCDF(mean, sd, x);
|
---|
13560 |
|
---|
13561 | return y;
|
---|
13562 | }
|
---|
13563 | }
|
---|
13564 |
|
---|
13565 | // Class to evaluate the Student's t-function
|
---|
13566 | class StudentTfunct implements RealRootFunction{
|
---|
13567 | public int nu = 0;
|
---|
13568 | public double cfd = 0.0D;
|
---|
13569 |
|
---|
13570 | public double function(double x){
|
---|
13571 |
|
---|
13572 | double y = cfd - Stat.studentTcdf(x, nu);
|
---|
13573 |
|
---|
13574 | return y;
|
---|
13575 | }
|
---|
13576 | }
|
---|
13577 |
|
---|
13578 | // Class to evaluate the Gamma distribution function
|
---|
13579 | class GammaFunct implements RealRootFunction{
|
---|
13580 | public double mu = 0.0D;
|
---|
13581 | public double beta = 0.0D;
|
---|
13582 | public double gamma = 0.0D;
|
---|
13583 | public double cfd = 0.0D;
|
---|
13584 |
|
---|
13585 | public double function(double x){
|
---|
13586 |
|
---|
13587 | double y = cfd - Stat.gammaCDF(mu, beta, gamma, x);
|
---|
13588 |
|
---|
13589 | return y;
|
---|
13590 | }
|
---|
13591 | }
|
---|
13592 |
|
---|
13593 | // Class to evaluate the Beta distribution function
|
---|
13594 | class BetaFunct implements RealRootFunction{
|
---|
13595 | public double alpha = 0.0D;
|
---|
13596 | public double beta = 0.0D;
|
---|
13597 | public double min = 0.0D;
|
---|
13598 | public double max = 0.0D;
|
---|
13599 | public double cfd = 0.0D;
|
---|
13600 |
|
---|
13601 | public double function(double x){
|
---|
13602 |
|
---|
13603 | double y = cfd - Stat.betaCDF(min, max, alpha, beta, x);
|
---|
13604 |
|
---|
13605 | return y;
|
---|
13606 | }
|
---|
13607 | }
|
---|
13608 |
|
---|
13609 | // Class to evaluate the Erlang B equation
|
---|
13610 | class ErlangBfunct implements RealRootFunction{
|
---|
13611 |
|
---|
13612 | public double blockingProbability = 0.0D;
|
---|
13613 | public double totalResources = 0.0D;
|
---|
13614 |
|
---|
13615 | public double function(double x){
|
---|
13616 | return blockingProbability - Stat.erlangBprobability(x, totalResources);
|
---|
13617 | }
|
---|
13618 | }
|
---|
13619 |
|
---|
13620 | // Class to evaluate the Erlang C equation
|
---|
13621 | class ErlangCfunct implements RealRootFunction{
|
---|
13622 |
|
---|
13623 | public double nonZeroDelayProbability = 0.0D;
|
---|
13624 | public double totalResources = 0.0D;
|
---|
13625 |
|
---|
13626 | public double function(double x){
|
---|
13627 | return nonZeroDelayProbability - Stat.erlangCprobability(x, totalResources);
|
---|
13628 | }
|
---|
13629 | }
|
---|
13630 |
|
---|
13631 | // Class to evaluate the Engset probability equation
|
---|
13632 | class EngsetProb implements RealRootFunction{
|
---|
13633 |
|
---|
13634 | public double offeredTraffic = 0.0D;
|
---|
13635 | public double totalResources = 0.0D;
|
---|
13636 | public double numberOfSources = 0.0D;
|
---|
13637 |
|
---|
13638 | public double function(double x){
|
---|
13639 | double mTerm = offeredTraffic/(numberOfSources - offeredTraffic*(1.0D - x));
|
---|
13640 | double pNumer = Stat.logFactorial(numberOfSources-1) - Stat.logFactorial(totalResources) - Stat.logFactorial(numberOfSources-1-totalResources);
|
---|
13641 | double pDenom = 0.0D;
|
---|
13642 | double iDenom = 0.0D;
|
---|
13643 | double iCount = 0.0D;
|
---|
13644 | double pTerm = 0.0D;
|
---|
13645 |
|
---|
13646 | while(iCount<=totalResources){
|
---|
13647 | iDenom = Stat.logFactorial(numberOfSources-1) - Stat.logFactorial(iCount) - Stat.logFactorial(numberOfSources-1-iCount);
|
---|
13648 | iDenom += (iCount-totalResources)*Math.log(mTerm);
|
---|
13649 | pDenom += Math.exp(iDenom);
|
---|
13650 | iCount += 1.0D;
|
---|
13651 | }
|
---|
13652 | pTerm = Math.exp(pNumer - Math.log(pDenom));
|
---|
13653 |
|
---|
13654 | return x - pTerm;
|
---|
13655 | }
|
---|
13656 | }
|
---|
13657 |
|
---|
13658 |
|
---|
13659 | // Class to evaluate the Engset load equation
|
---|
13660 | class EngsetLoad implements RealRootFunction{
|
---|
13661 |
|
---|
13662 | public double blockingProbability = 0.0D;
|
---|
13663 | public double totalResources = 0.0D;
|
---|
13664 | public double numberOfSources = 0.0D;
|
---|
13665 |
|
---|
13666 |
|
---|
13667 | public double function(double x){
|
---|
13668 | return blockingProbability - Stat.engsetProbability(x, totalResources, numberOfSources);
|
---|
13669 | }
|
---|
13670 | }
|
---|
13671 |
|
---|
13672 | // Class to evaluate the chi-square distribution function
|
---|
13673 | class ChiSquareFunct implements RealRootFunction{
|
---|
13674 |
|
---|
13675 | public double cfd = 0.0D;
|
---|
13676 | public int nu = 0;
|
---|
13677 |
|
---|
13678 | public double function(double x){
|
---|
13679 |
|
---|
13680 | double y = cfd - Stat.chiSquareCDF(x, nu);
|
---|
13681 |
|
---|
13682 | return y;
|
---|
13683 | }
|
---|
13684 | }
|
---|
13685 |
|
---|
13686 | // Class to evaluate the F-distribution function
|
---|
13687 | class FdistribtionFunct implements RealRootFunction{
|
---|
13688 |
|
---|
13689 | public double cfd = 0.0D;
|
---|
13690 | public int nu1 = 0;
|
---|
13691 | public int nu2 = 0;
|
---|
13692 |
|
---|
13693 | public double function(double x){
|
---|
13694 |
|
---|
13695 | double y = cfd - (1.0 - Stat.fCompCDF(x, nu1, nu2));
|
---|
13696 | // double y = cfd - Stat.fCompCDF(x, nu1, nu2);
|
---|
13697 |
|
---|
13698 | return y;
|
---|
13699 | }
|
---|
13700 | }
|
---|
13701 |
|
---|
13702 | // Class to evaluate the two parameter log-normal distribution function
|
---|
13703 | class LogNormalTwoParFunct implements RealRootFunction{
|
---|
13704 |
|
---|
13705 | public double cfd = 0.0D;
|
---|
13706 | public double mu = 0.0D;
|
---|
13707 | public double sigma = 0.0D;
|
---|
13708 |
|
---|
13709 | public double function(double x){
|
---|
13710 |
|
---|
13711 | double y = cfd - Stat.logNormalCDF(mu, sigma, x);
|
---|
13712 |
|
---|
13713 | return y;
|
---|
13714 | }
|
---|
13715 | }
|
---|
13716 |
|
---|
13717 | // Class to evaluate the three parameter log-normal distribution function
|
---|
13718 | class LogNormalThreeParFunct implements RealRootFunction{
|
---|
13719 |
|
---|
13720 | public double cfd = 0.0D;
|
---|
13721 | public double alpha = 0.0D;
|
---|
13722 | public double beta = 0.0D;
|
---|
13723 | public double gamma = 0.0D;
|
---|
13724 |
|
---|
13725 | public double function(double x){
|
---|
13726 |
|
---|
13727 | double y = cfd - Stat.logNormalThreeParCDF(alpha, beta, gamma, x);
|
---|
13728 |
|
---|
13729 | return y;
|
---|
13730 | }
|
---|
13731 |
|
---|
13732 | }
|
---|
13733 |
|
---|
13734 | // Class to evaluate inverse gamma function
|
---|
13735 | class InverseGammaFunct implements RealRootFunction{
|
---|
13736 |
|
---|
13737 | public double gamma = 0.0D;
|
---|
13738 |
|
---|
13739 | public double function(double x){
|
---|
13740 |
|
---|
13741 | double y = gamma - Stat.gamma(x);
|
---|
13742 |
|
---|
13743 | return y;
|
---|
13744 | }
|
---|
13745 | }
|
---|
13746 |
|
---|
13747 | // Class to evaluate complementary regularised incomplte gamma function
|
---|
13748 | class CrigFunct implements IntegralFunction{
|
---|
13749 |
|
---|
13750 | private double a = 0.0D;
|
---|
13751 | private double b = 0.0D;
|
---|
13752 |
|
---|
13753 | public double function(double x){
|
---|
13754 | double y = -x + (a-1.0)*Math.log(x) - b;
|
---|
13755 | y = Math.exp(y);
|
---|
13756 | return y;
|
---|
13757 | }
|
---|
13758 |
|
---|
13759 | public void setA(double a){
|
---|
13760 | this.a = a;
|
---|
13761 | }
|
---|
13762 |
|
---|
13763 | public void setB(double b){
|
---|
13764 | this.b = b;
|
---|
13765 | }
|
---|
13766 | } |
---|