1 | /*
|
---|
2 | * CLASS: PCA
|
---|
3 | *
|
---|
4 | * USAGE: Principlal Component Analysis
|
---|
5 | *
|
---|
6 | * This is a subclass of the superclass Scores
|
---|
7 | *
|
---|
8 | *
|
---|
9 | * WRITTEN BY: Dr Michael Thomas Flanagan
|
---|
10 | *
|
---|
11 | * DATE: October 2008
|
---|
12 | * AMENDED: 17-18 October 2008, 4 January 2010, 13 November 2010, 29-30 November 2010, 4 December 2010, 18 January 2011
|
---|
13 | *
|
---|
14 | * DOCUMENTATION:
|
---|
15 | * See Michael Thomas Flanagan's Java library on-line web pages:
|
---|
16 | * http://www.ee.ucl.ac.uk/~mflanaga/java/
|
---|
17 | * http://www.ee.ucl.ac.uk/~mflanaga/java/PCA.html
|
---|
18 | *
|
---|
19 | * Copyright (c) 2008 - 2011 Michael Thomas Flanagan
|
---|
20 | *
|
---|
21 | * PERMISSION TO COPY:
|
---|
22 | *
|
---|
23 | * Permission to use, copy and modify this software and its documentation for NON-COMMERCIAL purposes is granted, without fee,
|
---|
24 | * provided that an acknowledgement to the author, Dr Michael Thomas Flanagan at www.ee.ucl.ac.uk/~mflanaga, appears in all copies
|
---|
25 | * and associated documentation or publications.
|
---|
26 | *
|
---|
27 | * Redistributions of the source code of this source code, or parts of the source codes, must retain the above copyright notice, this list of conditions
|
---|
28 | * and the following disclaimer and requires written permission from the Michael Thomas Flanagan:
|
---|
29 | *
|
---|
30 | * Redistribution in binary form of all or parts of this class must reproduce the above copyright notice, this list of conditions and
|
---|
31 | * the following disclaimer in the documentation and/or other materials provided with the distribution and requires written permission from the Michael Thomas Flanagan:
|
---|
32 | *
|
---|
33 | * Dr Michael Thomas Flanagan makes no representations about the suitability or fitness of the software for any or for a particular purpose.
|
---|
34 | * Dr Michael Thomas Flanagan shall not be liable for any damages suffered as a result of using, modifying or distributing this software
|
---|
35 | * or its derivatives.
|
---|
36 | *
|
---|
37 | ***************************************************************************************/
|
---|
38 |
|
---|
39 |
|
---|
40 | package agents.anac.y2015.agentBuyogV2.flanagan.analysis;
|
---|
41 |
|
---|
42 | import java.util.*;
|
---|
43 |
|
---|
44 | import agents.anac.y2015.agentBuyogV2.flanagan.analysis.*;
|
---|
45 | import agents.anac.y2015.agentBuyogV2.flanagan.io.*;
|
---|
46 | import agents.anac.y2015.agentBuyogV2.flanagan.math.*;
|
---|
47 | import agents.anac.y2015.agentBuyogV2.flanagan.plot.*;
|
---|
48 |
|
---|
49 | import java.text.*;
|
---|
50 | import java.awt.*;
|
---|
51 |
|
---|
52 |
|
---|
53 | public class PCA extends Scores{
|
---|
54 |
|
---|
55 | private Matrix data = null; // data as row per item as a Matrix
|
---|
56 | private Matrix dataMinusMeans = null; // data with row means subtracted as row per item as a Matrix
|
---|
57 | private Matrix dataMinusMeansTranspose = null; // data with row means subtracted as row per item as a Matrix
|
---|
58 | private Matrix covarianceMatrix = null; // variance-covariance Matrix
|
---|
59 | private Matrix correlationMatrix = null; // variance-covariance Matrix
|
---|
60 |
|
---|
61 | private double[] eigenValues = null; // eigenvalues
|
---|
62 | private double[] orderedEigenValues = null; // eigenvalues sorted into a descending order
|
---|
63 | private int[] eigenValueIndices = null; // indices of the eigenvalues before sorting into a descending order
|
---|
64 | private double eigenValueTotal = 0.0; // total of all eigen values;
|
---|
65 | private int[] rotatedIndices = null; // rearranged indices on ordering after rotation
|
---|
66 |
|
---|
67 | private double[] rotatedEigenValues = null; // scaled rotated eigenvalues
|
---|
68 | private double[] usRotatedEigenValues = null; // unscaled rotated eigenvalues
|
---|
69 |
|
---|
70 |
|
---|
71 | private int nMonteCarlo = 200; // number of Monte Carlo generated eigenvalue calculations
|
---|
72 | private double[][] randomEigenValues = null; // Monte Carlo generated eigenvalues
|
---|
73 | private double[] randomEigenValuesMeans = null; // means of the Monte Carlo generated eigenvalues
|
---|
74 | private double[] randomEigenValuesSDs = null; // standard deviations of the Monte Carlo generated eigenvalues
|
---|
75 | private double[] randomEigenValuesPercentiles = null; // percentiles of the Monte Carlo generated eigenvalues
|
---|
76 | private double percentile = 95.0; // percentile used in parallel analysis
|
---|
77 | private boolean gaussianDeviates = false; // = false: uniform random deviates used in Monte Carlo
|
---|
78 | // = true: Gaussian random deviates used in Monte Carlo
|
---|
79 | private double[] proportionPercentage = null; // eigenvalues expressesed as percentage of total
|
---|
80 | private double[] cumulativePercentage = null; // cumulative values of the eigenvalues expressesed as percentage of total
|
---|
81 | private double[] rotatedProportionPercentage = null; // scaled rotated eigenvalues expressesed as percentage of unrotated total
|
---|
82 | private double[] rotatedCumulativePercentage = null; // scaled rotated cumulative values of the eigenvalues expressesed as percentage of unrotated total
|
---|
83 |
|
---|
84 | private double[][] eigenVectorsAsColumns = null; // eigenvectors as columns
|
---|
85 | private double[][] eigenVectorsAsRows = null; // eigenvectors as rows
|
---|
86 |
|
---|
87 | private double[][] orderedEigenVectorsAsColumns = null; // eigenvectors, as columns, arranged to match a descending order of eigenvalues
|
---|
88 | private double[][] orderedEigenVectorsAsRows = null; // eigenvectors, as rows, arranged to match a descending order of eigenvalues
|
---|
89 |
|
---|
90 | private double[][] loadingFactorsAsColumns = null; // loading factors as column per eigenvalue
|
---|
91 | private double[][] loadingFactorsAsRows = null; // loading factors as row per eigenvalue
|
---|
92 |
|
---|
93 | private double[][] rotatedLoadingFactorsAsColumns = null; // scaled rotated loading factors as column per eigenvalue
|
---|
94 | private double[][] rotatedLoadingFactorsAsRows = null; // scaled rotated loading factors as row per eigenvalue
|
---|
95 | private double[][] usRotatedLoadingFactorsAsColumns = null; // unscaled rotated loading factors as column per eigenvalue
|
---|
96 | private double[][] usRotatedLoadingFactorsAsRows = null; // unscaled rotated loading factors as row per eigenvalue
|
---|
97 |
|
---|
98 | private double[] communalities = null; // communalities
|
---|
99 | private double[] communalityWeights = null; // communality weights
|
---|
100 |
|
---|
101 | private boolean covRhoOption = false; // = true: covariance matrix used
|
---|
102 | // = false: correlation matrix used
|
---|
103 |
|
---|
104 | private int greaterThanOneLimit = 0; // number of components extracted using eigenvalue greater than one
|
---|
105 | private int percentileCrossover = 0; // number of components extracted using percentile scree crossover
|
---|
106 | private int meanCrossover = 0; // number of components extracted using mean scree crossover
|
---|
107 |
|
---|
108 | private int nVarimaxMax = 1000; // maximum iterations allowed by the varimax criterion
|
---|
109 | private int nVarimax = 0; // number of iterations taken by the varimax criterion
|
---|
110 | private double varimaxTolerance = 1.0E-8; // tolerance for terminatiing 2 criterion iteration
|
---|
111 |
|
---|
112 | private boolean varimaxOption = true; // = true: normal varimax, i.e. comunality weighted varimax
|
---|
113 | // = false: raw varimax
|
---|
114 | private boolean pcaDone = false; // = true when PCA performed
|
---|
115 | private boolean monteCarloDone = false; // = true when parallel monte Carlo simultaion performed
|
---|
116 | private boolean rotationDone = false; // = true when rotation performed
|
---|
117 |
|
---|
118 |
|
---|
119 |
|
---|
120 | // CONSTRUCTOR
|
---|
121 | public PCA(){
|
---|
122 | super.trunc = 4;
|
---|
123 | }
|
---|
124 |
|
---|
125 | // CHOICE OF MATRIX
|
---|
126 | // Use covariance matrix (default option)
|
---|
127 | public void useCovarianceMatrix(){
|
---|
128 | this.covRhoOption = true;
|
---|
129 | }
|
---|
130 |
|
---|
131 | // Use correlation matrix (default option)
|
---|
132 | public void useCorrelationMatrix(){
|
---|
133 | this.covRhoOption = false;
|
---|
134 | }
|
---|
135 |
|
---|
136 | // CHOICE OF VARIMAX CRITERION
|
---|
137 | // Use normal varimax rotation
|
---|
138 | public void useNormalVarimax(){
|
---|
139 | this. varimaxOption = true;
|
---|
140 | }
|
---|
141 |
|
---|
142 | // Use raw varimax rotation
|
---|
143 | public void useRawVarimax(){
|
---|
144 | this. varimaxOption = false;
|
---|
145 | }
|
---|
146 |
|
---|
147 | // Return varimax rotation option
|
---|
148 | public String getVarimaxOption(){
|
---|
149 | if(this. varimaxOption){
|
---|
150 | return "normal varimax option";
|
---|
151 | }
|
---|
152 | else{
|
---|
153 | return "raw varimax option";
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | // PARALLEL ANALYSIS OPTIONS
|
---|
158 | // Reset number of Monte Carlo simulations
|
---|
159 | public void setNumberOfSimulations(int nSimul){
|
---|
160 | this.nMonteCarlo = nSimul;
|
---|
161 | }
|
---|
162 |
|
---|
163 | // Return number of Monte Carlo simulations
|
---|
164 | public int getNumberOfSimulations(){
|
---|
165 | return this.nMonteCarlo;
|
---|
166 | }
|
---|
167 |
|
---|
168 | // Use Gaussian random deviates in MontMonte Carlo simulations
|
---|
169 | public void useGaussianDeviates(){
|
---|
170 | this.gaussianDeviates = true;
|
---|
171 | }
|
---|
172 |
|
---|
173 | // Use uniform random deviates in MontMonte Carlo simulations
|
---|
174 | public void useUniformDeviates(){
|
---|
175 | this.gaussianDeviates = false;
|
---|
176 | }
|
---|
177 |
|
---|
178 | // Reset percentile percentage in parallel analysis (defalut option = 95%)
|
---|
179 | public void setParallelAnalysisPercentileValue(double percent){
|
---|
180 | this.percentile = percent;
|
---|
181 | }
|
---|
182 |
|
---|
183 | // Return percentile percentage in parallel analysis (defalut option = 95%)
|
---|
184 | public double getParallelAnalysisPercentileValue(){
|
---|
185 | return this.percentile;
|
---|
186 | }
|
---|
187 |
|
---|
188 |
|
---|
189 |
|
---|
190 | // PRINCIPAL COMPONENT ANALYSIS
|
---|
191 | public void pca(){
|
---|
192 |
|
---|
193 | if(!this.pcaDone){
|
---|
194 |
|
---|
195 | if(this.nItems==1)throw new IllegalArgumentException("You have entered only one item - PCA is not meaningful");
|
---|
196 | if(this.nPersons==1)throw new IllegalArgumentException("You have entered only one score or measurement source - PCA is not meaningful");
|
---|
197 |
|
---|
198 | // Check that data is preprocessed
|
---|
199 | if(!this.dataPreprocessed)this.preprocessData();
|
---|
200 |
|
---|
201 | // Store data as an instance of matrix
|
---|
202 | this.data = new Matrix(super.scores0);
|
---|
203 |
|
---|
204 | // Subtract row means
|
---|
205 | this.dataMinusMeans = this.data.subtractRowMeans();
|
---|
206 |
|
---|
207 | // Transpose
|
---|
208 | this.dataMinusMeansTranspose = this.dataMinusMeans.transpose();
|
---|
209 |
|
---|
210 | // Covariance matrix
|
---|
211 | this.covarianceMatrix = this.dataMinusMeans.times(this.dataMinusMeansTranspose);
|
---|
212 | double denom = this.nPersons;
|
---|
213 | if(!super.nFactorOption)denom -= 1.0;
|
---|
214 | this.covarianceMatrix = this.covarianceMatrix.times(1.0/denom);
|
---|
215 |
|
---|
216 |
|
---|
217 |
|
---|
218 | // Correlation matrix
|
---|
219 | boolean tinyCheck = false;
|
---|
220 | double[][] cov = this.covarianceMatrix.getArrayCopy();
|
---|
221 | double[][] corr = new double[this.nItems][this.nItems];
|
---|
222 | for(int i=0; i<this.nItems; i++){
|
---|
223 | for(int j=0; j<this.nItems; j++){
|
---|
224 | if(i==j){
|
---|
225 | corr[i][j] = 1.0;
|
---|
226 | }
|
---|
227 | else{
|
---|
228 | corr[i][j] = cov[i][j]/Math.sqrt(cov[i][i]*cov[j][j]);
|
---|
229 | if(Fmath.isNaN(corr[i][j])){
|
---|
230 | corr[i][j] = 0.0;
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 | }
|
---|
235 |
|
---|
236 | this.correlationMatrix = new Matrix(corr);
|
---|
237 |
|
---|
238 | // Choose matrix
|
---|
239 | Matrix forEigen = null;
|
---|
240 | if(covRhoOption){
|
---|
241 | forEigen = this.covarianceMatrix;
|
---|
242 | }
|
---|
243 | else{
|
---|
244 | forEigen = this.correlationMatrix;
|
---|
245 | }
|
---|
246 |
|
---|
247 | // Calculate eigenvalues
|
---|
248 | this.eigenValues = forEigen.getEigenValues();
|
---|
249 |
|
---|
250 | // Calculate ordered eigenvalues
|
---|
251 | this.orderedEigenValues = forEigen.getSortedEigenValues();
|
---|
252 |
|
---|
253 | // Store indices of the eigenvalues before sorting into escending order
|
---|
254 | this.eigenValueIndices = forEigen.eigenValueIndices();
|
---|
255 |
|
---|
256 | // Calculate eigenvectors
|
---|
257 | this.eigenVectorsAsColumns = forEigen.getEigenVectorsAsColumns();
|
---|
258 | this.eigenVectorsAsRows = forEigen.getEigenVectorsAsRows();
|
---|
259 |
|
---|
260 | // Calculate ordered eigenvectors
|
---|
261 | this.orderedEigenVectorsAsColumns = forEigen.getSortedEigenVectorsAsColumns();
|
---|
262 | this.orderedEigenVectorsAsRows = forEigen.getSortedEigenVectorsAsRows();
|
---|
263 |
|
---|
264 | // Express eigenvalues as percentage of total
|
---|
265 | ArrayMaths am = new ArrayMaths(this.orderedEigenValues);
|
---|
266 | double total = am.sum();
|
---|
267 | am = am.times(100.0/total);
|
---|
268 | this.proportionPercentage = am.array();
|
---|
269 |
|
---|
270 | // Calculate cumulative percentage
|
---|
271 | this.cumulativePercentage = new double[this.nItems];
|
---|
272 | this.cumulativePercentage[0] = this.proportionPercentage[0];
|
---|
273 | this.eigenValueTotal = 0.0;
|
---|
274 | for(int i=1; i<this.nItems; i++){
|
---|
275 | this.cumulativePercentage[i] = this.cumulativePercentage[i-1] + this.proportionPercentage[i];
|
---|
276 | this.eigenValueTotal += this.eigenValues[i];
|
---|
277 | }
|
---|
278 |
|
---|
279 |
|
---|
280 | // Calculate 'eigenvalue less than or equal to one' extraction limit
|
---|
281 | boolean test = true;
|
---|
282 | int counter = 0;
|
---|
283 | while(test){
|
---|
284 | if(this.orderedEigenValues[counter]<1.0){
|
---|
285 | this.greaterThanOneLimit = counter;
|
---|
286 | test = false;
|
---|
287 | }
|
---|
288 | else{
|
---|
289 | counter++;
|
---|
290 | if(counter==this.nItems){
|
---|
291 | this.greaterThanOneLimit = counter;
|
---|
292 | test = false;
|
---|
293 | }
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | // Calculate loading factors
|
---|
298 | this.loadingFactorsAsColumns = new double[this.nItems][this.nItems];
|
---|
299 | this.loadingFactorsAsRows = new double[this.nItems][this.nItems];
|
---|
300 | for(int i=0; i<this.nItems; i++){
|
---|
301 | for(int j=0; j<this.nItems; j++){
|
---|
302 | this.loadingFactorsAsColumns[i][j] = this.orderedEigenVectorsAsColumns[i][j]*Math.sqrt(Math.abs(this.orderedEigenValues[j]));
|
---|
303 | this.loadingFactorsAsRows[i][j] = this.orderedEigenVectorsAsRows[i][j]*Math.sqrt(Math.abs(this.orderedEigenValues[i]));
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | // Calculate communalities
|
---|
308 | this.communalities = new double[this.nItems];
|
---|
309 | this.communalityWeights = new double[this.nItems];
|
---|
310 | for(int k=0; k<this.nItems; k++){
|
---|
311 | double sum = 0.0;
|
---|
312 | for(int j=0; j<this.nItems; j++)sum += loadingFactorsAsRows[j][k]*loadingFactorsAsRows[j][k];
|
---|
313 | this.communalities[k] = sum;
|
---|
314 | this.communalityWeights[k] = Math.sqrt(this.communalities[k]);
|
---|
315 | }
|
---|
316 |
|
---|
317 | }
|
---|
318 |
|
---|
319 | this.pcaDone = true;
|
---|
320 |
|
---|
321 | }
|
---|
322 |
|
---|
323 | // MonteCarlo Eigenvalues
|
---|
324 | public void monteCarlo(){
|
---|
325 | if(!pcaDone)this.pca();
|
---|
326 | double[] rowMeans = super.rawItemMeans();
|
---|
327 | double[] rowSDs = super.rawItemStandardDeviations();
|
---|
328 | double[][] randomData = new double[super.nItems][super.nPersons];
|
---|
329 | this.randomEigenValues = new double[this.nMonteCarlo][super.nItems];
|
---|
330 | PsRandom rr = new PsRandom();
|
---|
331 | for(int i=0; i<this.nMonteCarlo; i++){
|
---|
332 | for(int j=0; j<this.nItems; j++){
|
---|
333 | if(this.gaussianDeviates){
|
---|
334 | randomData[j] = rr.gaussianArray(rowMeans[j], rowSDs[j], super.nPersons);
|
---|
335 | }
|
---|
336 | else{
|
---|
337 | randomData[j] = rr.doubleArray(super.nPersons);
|
---|
338 | randomData[j] = Stat.scale(randomData[j], rowMeans[j], rowSDs[j]);
|
---|
339 | }
|
---|
340 | }
|
---|
341 | PCA pca = new PCA();
|
---|
342 | if(this.covRhoOption){
|
---|
343 | pca.useCovarianceMatrix();
|
---|
344 | }
|
---|
345 | else{
|
---|
346 | pca.useCorrelationMatrix();
|
---|
347 | }
|
---|
348 | pca.enterScoresAsRowPerItem(randomData);
|
---|
349 | this.randomEigenValues[i] = pca.orderedEigenValues();
|
---|
350 |
|
---|
351 | }
|
---|
352 | Matrix mat = new Matrix(randomEigenValues);
|
---|
353 | this.randomEigenValuesMeans = mat.columnMeans();
|
---|
354 | this.randomEigenValuesSDs = mat.columnStandardDeviations();
|
---|
355 | this.randomEigenValuesPercentiles = new double[this.nItems];
|
---|
356 |
|
---|
357 | int pIndex1 = (int)Math.ceil(this.nMonteCarlo*this.percentile/100.0);
|
---|
358 | int pIndex2 = pIndex1-1;
|
---|
359 | double factor = (this.percentile*this.nMonteCarlo/100.0 - pIndex2);
|
---|
360 | pIndex1--;
|
---|
361 | pIndex2--;
|
---|
362 | for(int j=0; j<this.nItems; j++){
|
---|
363 | double[] ordered = new double[this.nMonteCarlo];
|
---|
364 | for(int k=0; k<this.nMonteCarlo; k++)ordered[k] = this.randomEigenValues[k][j];
|
---|
365 | ArrayMaths am = new ArrayMaths(ordered);
|
---|
366 | am = am.sort();
|
---|
367 | ordered = am.array();
|
---|
368 | this.randomEigenValuesPercentiles[j] = ordered[pIndex2] + factor*(ordered[pIndex1] - ordered[pIndex2]);
|
---|
369 | }
|
---|
370 |
|
---|
371 | // Calculate percentile crossover extraction limit
|
---|
372 | boolean test = true;
|
---|
373 | int counter = 0;
|
---|
374 | while(test){
|
---|
375 | if(this.orderedEigenValues[counter]<=this.randomEigenValuesPercentiles[counter]){
|
---|
376 | this.percentileCrossover = counter;
|
---|
377 | test = false;
|
---|
378 | }
|
---|
379 | else{
|
---|
380 | counter++;
|
---|
381 | if(counter==this.nItems){
|
---|
382 | this.percentileCrossover = counter;
|
---|
383 | test = false;
|
---|
384 | }
|
---|
385 | }
|
---|
386 | }
|
---|
387 |
|
---|
388 | // Calculate mean crossover extraction limit
|
---|
389 | test = true;
|
---|
390 | counter = 0;
|
---|
391 | while(test){
|
---|
392 | if(this.orderedEigenValues[counter]<=this.randomEigenValuesMeans[counter]){
|
---|
393 | this.meanCrossover = counter;
|
---|
394 | test = false;
|
---|
395 | }
|
---|
396 | else{
|
---|
397 | counter++;
|
---|
398 | if(counter==this.nItems){
|
---|
399 | this.meanCrossover = counter;
|
---|
400 | test = false;
|
---|
401 | }
|
---|
402 | }
|
---|
403 | }
|
---|
404 |
|
---|
405 | this.monteCarloDone = true;
|
---|
406 |
|
---|
407 | }
|
---|
408 |
|
---|
409 | // SCREE PLOTS
|
---|
410 | // Scree plot of data alone
|
---|
411 | public void screePlotDataAlone(){
|
---|
412 | if(!this.pcaDone)this.pca();
|
---|
413 |
|
---|
414 | // Create X-axis data array
|
---|
415 | double[] components = new double[super.nItems];
|
---|
416 | for(int i=0; i<this.nItems; i++)components[i] = i+1;
|
---|
417 |
|
---|
418 | // Create instance of PlotGraph
|
---|
419 | PlotGraph pg = new PlotGraph(components, this.orderedEigenValues);
|
---|
420 | pg.setGraphTitle("Principal Component Analysis Scree Plot");
|
---|
421 | pg.setXaxisLegend("Component");
|
---|
422 | pg.setYaxisLegend("Eigenvalues");
|
---|
423 | pg.setLine(3);
|
---|
424 | pg.setPoint(1);
|
---|
425 | pg.plot();
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | // Scree plot eigenvalues plus plot of Monte Carlo percentiles, means and standard deviations
|
---|
430 | public void screePlot(){
|
---|
431 | if(!this.pcaDone)this.pca();
|
---|
432 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
433 |
|
---|
434 | // Create plotting data array
|
---|
435 | double[][] plotData = new double[6][super.nItems];
|
---|
436 | double[] components = new double[super.nItems];
|
---|
437 | for(int i=0; i<this.nItems; i++)components[i] = i+1;
|
---|
438 | plotData[0] = components;
|
---|
439 | plotData[1] = this.orderedEigenValues;
|
---|
440 | plotData[2] = components;
|
---|
441 | plotData[3] = this.randomEigenValuesPercentiles;
|
---|
442 | plotData[4] = components;
|
---|
443 | plotData[5] = this.randomEigenValuesMeans;
|
---|
444 |
|
---|
445 | // Create instance of PlotGraph
|
---|
446 | PlotGraph pg = new PlotGraph(plotData);
|
---|
447 | pg.setErrorBars(2, this.randomEigenValuesSDs);
|
---|
448 | if(this.gaussianDeviates){
|
---|
449 | pg.setGraphTitle("Principal Component Analysis Scree Plot with Parallel Analysis using Gaussian deviates (" + nMonteCarlo + " simulations)");
|
---|
450 | }
|
---|
451 | else{
|
---|
452 | pg.setGraphTitle("Principal Component Analysis Scree Plot with Parallel Analysis using uniform deviates (" + nMonteCarlo + " simulations)");
|
---|
453 | }
|
---|
454 | pg.setGraphTitle2("Closed squares - data eigenvalues; open circles = Monte Carlo eigenvalue " + this.percentile + "% percentiles; error bars = standard deviations about the Monte carlo means (crosses)");
|
---|
455 | pg.setXaxisLegend("Component");
|
---|
456 | pg.setYaxisLegend("Eigenvalue");
|
---|
457 | int[] line = {3, 0, 3};
|
---|
458 | pg.setLine(line);
|
---|
459 | int point[] = {5, 1, 7};
|
---|
460 | pg.setPoint(point);
|
---|
461 | pg.plot();
|
---|
462 | }
|
---|
463 |
|
---|
464 |
|
---|
465 | // VARIMAX ROTATION
|
---|
466 | // Set varimax tolerance
|
---|
467 | public void setVarimaxTolerance(double tolerance){
|
---|
468 | this.varimaxTolerance = tolerance;
|
---|
469 | }
|
---|
470 |
|
---|
471 | // Set varimax maximum number of iterations
|
---|
472 | public void setVarimaxMaximumIterations(int max){
|
---|
473 | this.nVarimaxMax = max;
|
---|
474 | }
|
---|
475 |
|
---|
476 | // Get varimax number of iterations
|
---|
477 | public int getVarimaxIterations(){
|
---|
478 | return this.nVarimax;
|
---|
479 | }
|
---|
480 |
|
---|
481 |
|
---|
482 | // Varimax rotation: option set by default
|
---|
483 | public void varimaxRotation(int nFactors){
|
---|
484 | if(!this.pcaDone)this.pca();
|
---|
485 | if(this.varimaxOption){
|
---|
486 | this.normalVarimaxRotation(nFactors);
|
---|
487 | }
|
---|
488 | else{
|
---|
489 | this.rawVarimaxRotation(nFactors);
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 | // Varimax rotation: option set by default
|
---|
494 | // only raw option possible
|
---|
495 | public void varimaxRotation(double[][] loadingFactorMatrix){
|
---|
496 | if(this.varimaxOption)System.out.println("Method varimaxRotation: communality weights not supplied - raw varimax option used");
|
---|
497 | this.rawVarimaxRotationInHouse(loadingFactorMatrix);
|
---|
498 | }
|
---|
499 |
|
---|
500 | // Varimax rotation: option set by default
|
---|
501 | public void varimaxRotation(double[][] loadingFactorMatrix, double[] communalityWeights){
|
---|
502 | if(this.varimaxOption){
|
---|
503 | this.normalVarimaxRotationInHouse(loadingFactorMatrix, communalityWeights);
|
---|
504 | }
|
---|
505 | else{
|
---|
506 | System.out.println("Method varimaxRotation: raw varimax option chosen, supplied communality weights ignored");
|
---|
507 | this.rawVarimaxRotationInHouse(loadingFactorMatrix);
|
---|
508 | }
|
---|
509 | }
|
---|
510 |
|
---|
511 |
|
---|
512 | // Raw varimax rotation
|
---|
513 | public void rawVarimaxRotation(int nFactors){
|
---|
514 | if(!this.pcaDone)this.pca();
|
---|
515 | double[][] loadingFactorMatrix = new double[nFactors][this.nItems];
|
---|
516 | for(int i = 0; i<nFactors; i++)loadingFactorMatrix[i] = this.loadingFactorsAsRows[i];
|
---|
517 | double[] communalityWeights = new double[this.nItems];
|
---|
518 | for(int i = 0; i<this.nItems; i++)communalityWeights[i] = 1.0;
|
---|
519 | this.normalVarimaxRotationInHouse(loadingFactorMatrix, communalityWeights);
|
---|
520 | }
|
---|
521 |
|
---|
522 | // Raw varimax rotation
|
---|
523 | private void rawVarimaxRotationInHouse(double[][] loadingFactorMatrix){
|
---|
524 | double[] communalityWeights = new double[this.nItems];
|
---|
525 | for(int i = 0; i<this.nItems; i++)communalityWeights[i] = 1.0;
|
---|
526 | this.normalVarimaxRotationInHouse(loadingFactorMatrix, communalityWeights);
|
---|
527 | }
|
---|
528 |
|
---|
529 | // Normal varimax rotation
|
---|
530 | public void normalVarimaxRotation(int nFactors){
|
---|
531 | if(!this.pcaDone)this.pca();
|
---|
532 | double[][] loadingFactorMatrix = new double[nFactors][this.nItems];
|
---|
533 | for(int i = 0; i<nFactors; i++)loadingFactorMatrix[i] = this.loadingFactorsAsRows[i];
|
---|
534 | double[] communalityWeights = new double[this.nItems];
|
---|
535 | for(int i = 0; i<nItems; i++){
|
---|
536 | communalityWeights[i] = 0.0;
|
---|
537 | for(int j = 0; j<nFactors; j++)communalityWeights[i] += loadingFactorMatrix[j][i]*loadingFactorMatrix[j][i];
|
---|
538 | }
|
---|
539 | this.normalVarimaxRotationInHouse(loadingFactorMatrix, communalityWeights);
|
---|
540 | }
|
---|
541 |
|
---|
542 | // Normal varimax rotation - also used by raw varimax rotation with weights set to unity
|
---|
543 | private void normalVarimaxRotationInHouse(double[][] loadingFactorMatrix, double[] communalityWeights){
|
---|
544 | if(!this.pcaDone)this.pca();
|
---|
545 | int nRows = loadingFactorMatrix.length;
|
---|
546 | int nColumns = loadingFactorMatrix[0].length;
|
---|
547 | this.usRotatedLoadingFactorsAsRows = new double[nRows][nColumns];
|
---|
548 | this.rotatedLoadingFactorsAsRows = new double[nRows][nColumns];
|
---|
549 | this.usRotatedEigenValues = new double[nRows];
|
---|
550 | this.rotatedEigenValues = new double[nRows];
|
---|
551 | this.rotatedProportionPercentage= new double[nRows];
|
---|
552 | this.rotatedCumulativePercentage= new double[nRows];
|
---|
553 |
|
---|
554 | // Calculate weights and normalize the loading factors
|
---|
555 | for(int j = 0; j<nColumns; j++)communalityWeights[j] = Math.sqrt(communalityWeights[j]);
|
---|
556 | for(int i = 0; i<nRows; i++){
|
---|
557 | for(int j = 0; j<nColumns; j++){
|
---|
558 | if(loadingFactorMatrix[i][j]==0.0 && communalityWeights[j]==0){
|
---|
559 | loadingFactorMatrix[i][j] = 1.0;
|
---|
560 | }
|
---|
561 | else{
|
---|
562 | loadingFactorMatrix[i][j] /= communalityWeights[j];
|
---|
563 | }
|
---|
564 | this.usRotatedLoadingFactorsAsRows[i][j] = loadingFactorMatrix[i][j];
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 | // Loop through pairwise rotations until varimax function maximised
|
---|
569 | double va = PCA.varimaxCriterion(this.usRotatedLoadingFactorsAsRows);
|
---|
570 | double vaLast = 0;
|
---|
571 | double angle = 0;
|
---|
572 | boolean test = true;
|
---|
573 | this.nVarimax = 0;
|
---|
574 | while(test){
|
---|
575 | for(int i=0; i<nRows-1; i++){
|
---|
576 | for(int j=i+1; j<nRows; j++){
|
---|
577 | angle = PCA.varimaxAngle(this.usRotatedLoadingFactorsAsRows, i, j);
|
---|
578 | this.usRotatedLoadingFactorsAsRows = PCA.singleRotation(this.usRotatedLoadingFactorsAsRows, i, j, angle);
|
---|
579 | va = PCA.varimaxCriterion(this.usRotatedLoadingFactorsAsRows);
|
---|
580 | }
|
---|
581 | }
|
---|
582 | if(Math.abs(va - vaLast)<this.varimaxTolerance){
|
---|
583 | test=false;
|
---|
584 | }
|
---|
585 | else{
|
---|
586 | vaLast = va;
|
---|
587 | this.nVarimax++;
|
---|
588 | if(this.nVarimax>nVarimaxMax){
|
---|
589 | test=false;
|
---|
590 | System.out.println("Method varimaxRotation: maximum iterations " + nVarimaxMax + " exceeded");
|
---|
591 | System.out.println("Tolerance = " + this.varimaxTolerance + ", Comparison value = " + Math.abs(va - vaLast));
|
---|
592 | System.out.println("Current values returned");
|
---|
593 | if(super.sameCheck>0){
|
---|
594 | System.out.println("Presence of identical element row/s and/or column/s in the data probably impeding convergence");
|
---|
595 | System.out.println("Returned values are likely to be correct");
|
---|
596 | }
|
---|
597 | }
|
---|
598 | }
|
---|
599 | }
|
---|
600 |
|
---|
601 | // undo normalization of rotated loading factors
|
---|
602 | this.usRotatedLoadingFactorsAsColumns = new double[nColumns][nRows];
|
---|
603 | for(int i=0; i<nRows; i++){
|
---|
604 | for(int j=0; j<nColumns; j++){
|
---|
605 | this.usRotatedLoadingFactorsAsRows[i][j] *= communalityWeights[j];
|
---|
606 | this.usRotatedLoadingFactorsAsColumns[j][i] = this.usRotatedLoadingFactorsAsRows[i][j];
|
---|
607 | loadingFactorMatrix[i][j] *= communalityWeights[j];
|
---|
608 | }
|
---|
609 | }
|
---|
610 |
|
---|
611 | // Rotated eigenvalues
|
---|
612 | double usRotatedEigenValueTotal = 0.0;
|
---|
613 | double unRotatedEigenValueTotal = 0.0;
|
---|
614 | for(int i=0; i<nRows; i++){
|
---|
615 | this.usRotatedEigenValues[i] = 0.0;
|
---|
616 | for(int j=0; j<nColumns; j++){
|
---|
617 | this.usRotatedEigenValues[i] += this.usRotatedLoadingFactorsAsRows[i][j]*this.usRotatedLoadingFactorsAsRows[i][j];
|
---|
618 | }
|
---|
619 | usRotatedEigenValueTotal += this.usRotatedEigenValues[i];
|
---|
620 | unRotatedEigenValueTotal += this.orderedEigenValues[i];
|
---|
621 | }
|
---|
622 |
|
---|
623 | // Order unscaled rotated eigenvalues
|
---|
624 | ArrayMaths amrot = new ArrayMaths(this.usRotatedEigenValues);
|
---|
625 | amrot = amrot.sort();
|
---|
626 | this.usRotatedEigenValues = amrot.array();
|
---|
627 | int[] sortedRotIndices = amrot.originalIndices();
|
---|
628 |
|
---|
629 | // reverse order
|
---|
630 | int nh = nRows/2;
|
---|
631 | double holdD = 0.0;
|
---|
632 | int holdI = 0;
|
---|
633 | for(int i=0; i<nh; i++){
|
---|
634 | holdD = this.usRotatedEigenValues[i];
|
---|
635 | this.usRotatedEigenValues[i] = this.usRotatedEigenValues[nRows - 1 - i];
|
---|
636 | this.usRotatedEigenValues[nRows - 1 - i] = holdD;
|
---|
637 | holdI = sortedRotIndices[i];
|
---|
638 | sortedRotIndices[i] = sortedRotIndices[nRows - 1 - i];
|
---|
639 | sortedRotIndices[nRows - 1 - i] = holdI;
|
---|
640 | }
|
---|
641 |
|
---|
642 | // order rotated power factors to match ordered rotated eigenvalues
|
---|
643 | int nn = this.usRotatedLoadingFactorsAsRows.length;
|
---|
644 | int mm = this.usRotatedLoadingFactorsAsRows[0].length;
|
---|
645 | double[][] holdDA = new double[nn][mm];
|
---|
646 | for(int i=0; i<nn; i++){
|
---|
647 | for(int j=0; j<mm; j++){
|
---|
648 | holdDA[i][j] = this.usRotatedLoadingFactorsAsRows[sortedRotIndices[i]][j];
|
---|
649 | }
|
---|
650 | }
|
---|
651 | this.usRotatedLoadingFactorsAsRows = Conv.copy((double[][])holdDA);
|
---|
652 |
|
---|
653 | nn = sortedRotIndices.length;
|
---|
654 | this.rotatedIndices = new int[nn];
|
---|
655 | int[]holdIA = new int[nn];
|
---|
656 | for(int i=0; i<nn; i++){
|
---|
657 | holdIA[i] = this.eigenValueIndices[sortedRotIndices[i]];
|
---|
658 | }
|
---|
659 | this.rotatedIndices = Conv.copy((int[])this.eigenValueIndices);
|
---|
660 | for(int i=0; i<nn; i++){
|
---|
661 | this.rotatedIndices[i] = holdIA[i];
|
---|
662 | }
|
---|
663 |
|
---|
664 | // Scale rotated loading factors and eigenvalues to the unrotated variance percentage for the sum of the extracted eigenvalues
|
---|
665 | double scale0 = Math.abs(unRotatedEigenValueTotal/usRotatedEigenValueTotal);
|
---|
666 | double scale1 = Math.sqrt(scale0);
|
---|
667 | for(int i=0; i<nRows; i++){
|
---|
668 | this.rotatedEigenValues[i] = scale0*this.usRotatedEigenValues[i];
|
---|
669 | this.rotatedProportionPercentage[i] = this.rotatedEigenValues[i]*100.0/this.eigenValueTotal;
|
---|
670 | for(int j=0; j<nColumns; j++){
|
---|
671 | this.rotatedLoadingFactorsAsRows[i][j] = scale1*this.usRotatedLoadingFactorsAsRows[i][j];
|
---|
672 | }
|
---|
673 | }
|
---|
674 | this.rotatedCumulativePercentage[0] = this.rotatedProportionPercentage[0];
|
---|
675 | for(int i=1; i<nRows; i++)this.rotatedCumulativePercentage[i] = this.rotatedCumulativePercentage[i-1] + this.rotatedProportionPercentage[i];
|
---|
676 |
|
---|
677 | this.rotationDone = true;
|
---|
678 |
|
---|
679 | }
|
---|
680 |
|
---|
681 | // Raw varimax rotation
|
---|
682 | // Static method - default tolerance and maximum iterations
|
---|
683 | public static double[][] rawVarimaxRotation(double[][] loadingFactorMatrix){
|
---|
684 | double tolerance = 0.0001;
|
---|
685 | int nIterMax = 1000;
|
---|
686 | return PCA.rawVarimaxRotation(loadingFactorMatrix, tolerance, nIterMax);
|
---|
687 | }
|
---|
688 |
|
---|
689 | // Raw varimax rotation
|
---|
690 | // Static method - user supplied tolerance and maximum iterations
|
---|
691 | public static double[][] rawVarimaxRotation(double[][] loadingFactorMatrix, double tolerance, int nIterMax){
|
---|
692 | int nRows = loadingFactorMatrix.length;
|
---|
693 | int nColumns = loadingFactorMatrix[0].length;
|
---|
694 | double[] communalityWeights = new double[nColumns];
|
---|
695 | for(int i = 0; i<nColumns; i++){
|
---|
696 | communalityWeights[i] = 1.0;
|
---|
697 | }
|
---|
698 | return PCA.normalVarimaxRotation(loadingFactorMatrix, communalityWeights, tolerance, nIterMax);
|
---|
699 | }
|
---|
700 |
|
---|
701 | // Normal varimax rotation - also used by raw varimax rotation with weights set to unity
|
---|
702 | // Static method - default tolerance and maximum iterations
|
---|
703 | public static double[][] normalVarimaxRotation(double[][] loadingFactorMatrix, double[] communalityWeights){
|
---|
704 | double tolerance = 0.0001;
|
---|
705 | int nIterMax = 1000;
|
---|
706 | return normalVarimaxRotation(loadingFactorMatrix, communalityWeights, tolerance, nIterMax);
|
---|
707 | }
|
---|
708 |
|
---|
709 | // Normal varimax rotation - also used by raw varimax rotation with weights set to unity
|
---|
710 | // Static method - tolerance and maximum iterations provided by the user
|
---|
711 | public static double[][] normalVarimaxRotation(double[][] loadingFactorMatrix, double[] communalityWeights, double tolerance, int nIterMax){
|
---|
712 | int nRows = loadingFactorMatrix.length;
|
---|
713 | int nColumns = loadingFactorMatrix[0].length;
|
---|
714 | for(int i=1; i<nRows; i++)if(loadingFactorMatrix[i].length!=nColumns)throw new IllegalArgumentException("All rows must be the same length");
|
---|
715 | double[][] rotatedLoadingFactorsAsRows = new double[nRows][nColumns];
|
---|
716 |
|
---|
717 | // Calculate weights and normalize the loading factors
|
---|
718 | for(int i = 0; i<nRows; i++){
|
---|
719 | for(int j = 0; j<nColumns; j++){
|
---|
720 | loadingFactorMatrix[i][j] /= communalityWeights[j];
|
---|
721 | rotatedLoadingFactorsAsRows[i][j] = loadingFactorMatrix[i][j];
|
---|
722 | }
|
---|
723 | }
|
---|
724 |
|
---|
725 | // Loop through pairwise rotations until varimax function maximised
|
---|
726 | double va = PCA.varimaxCriterion(rotatedLoadingFactorsAsRows);
|
---|
727 | double vaLast = 0;
|
---|
728 | double angle = 0;
|
---|
729 | boolean test = true;
|
---|
730 | int nIter = 0;
|
---|
731 | while(test){
|
---|
732 | for(int i=0; i<nRows-1; i++){
|
---|
733 | for(int j=i+1; j<nRows; j++){
|
---|
734 | angle = PCA.varimaxAngle(rotatedLoadingFactorsAsRows, i, j);
|
---|
735 | rotatedLoadingFactorsAsRows = PCA.singleRotation(rotatedLoadingFactorsAsRows, i, j, angle);
|
---|
736 | va = PCA.varimaxCriterion(rotatedLoadingFactorsAsRows);
|
---|
737 | }
|
---|
738 | }
|
---|
739 | if(Math.abs(va - vaLast)<tolerance){
|
---|
740 | test=false;
|
---|
741 | }
|
---|
742 | else{
|
---|
743 | vaLast = va;
|
---|
744 | nIter++;
|
---|
745 | if(nIter>nIterMax){
|
---|
746 | test=false;
|
---|
747 | System.out.println("Method varimaxRotation: maximum iterations " + nIterMax + " exceeded");
|
---|
748 | System.out.println("Current values returned");
|
---|
749 | }
|
---|
750 | }
|
---|
751 | }
|
---|
752 |
|
---|
753 | // undo normalization of loading factors
|
---|
754 | for(int i=0; i<nRows; i++){
|
---|
755 | for(int j=0; j<nColumns; j++){
|
---|
756 | rotatedLoadingFactorsAsRows[i][j] *= communalityWeights[j];
|
---|
757 | loadingFactorMatrix[i][j] *= communalityWeights[j];
|
---|
758 | }
|
---|
759 | }
|
---|
760 |
|
---|
761 | return rotatedLoadingFactorsAsRows;
|
---|
762 | }
|
---|
763 |
|
---|
764 | // Transpose a matrix (as a possible aide to the use of the static methods)
|
---|
765 | public static double[][] transposeMatrix(double[][] matrix){
|
---|
766 | int nRows = matrix.length;
|
---|
767 | int nColumns = matrix[0].length;
|
---|
768 | for(int i=1; i<nRows; i++)if(matrix[i].length!=nColumns)throw new IllegalArgumentException("All rows must be the same length");
|
---|
769 | double[][] transpose = new double[nColumns][nRows];
|
---|
770 | for(int i=0; i<nRows; i++){
|
---|
771 | for(int j=0; j<nColumns; j++){
|
---|
772 | transpose[j][i] = matrix[i][j];
|
---|
773 | }
|
---|
774 | }
|
---|
775 | return transpose;
|
---|
776 | }
|
---|
777 |
|
---|
778 | // Varimax criterion calculation
|
---|
779 | public static double varimaxCriterion(double[][] loadingFactorMatrix){
|
---|
780 | int nRows = loadingFactorMatrix.length;
|
---|
781 | int nColumns = loadingFactorMatrix[0].length;
|
---|
782 | double va1 = 0.0;
|
---|
783 | double va2 = 0.0;
|
---|
784 | double va3 = 0.0;
|
---|
785 | for(int j=0; j<nRows; j++){
|
---|
786 | double sum1 = 0.0;
|
---|
787 | for(int k=0; k<nColumns; k++){
|
---|
788 | sum1 += Math.pow(loadingFactorMatrix[j][k], 4);
|
---|
789 | }
|
---|
790 | va1 += sum1;
|
---|
791 | }
|
---|
792 | //Db.show("STOP");
|
---|
793 | va1 *= nColumns;
|
---|
794 | for(int j=0; j<nRows; j++){
|
---|
795 | double sum2 = 0.0;
|
---|
796 | for(int k=0; k<nColumns; k++)sum2 += Math.pow(loadingFactorMatrix[j][k], 2);
|
---|
797 | va2 += sum2*sum2;
|
---|
798 | }
|
---|
799 | va3 = va1 - va2;
|
---|
800 |
|
---|
801 | return va3;
|
---|
802 | }
|
---|
803 |
|
---|
804 | // Varimax rotation angle calculation
|
---|
805 | // Kaiset maximization procedure
|
---|
806 | public static double varimaxAngle(double[][] loadingFactorMatrix, int k, int l){
|
---|
807 | int nColumns = loadingFactorMatrix[0].length;
|
---|
808 | double uTerm = 0.0;
|
---|
809 | double vTerm = 0.0;
|
---|
810 | double bigA = 0.0;
|
---|
811 | double bigB = 0.0;
|
---|
812 | double bigC = 0.0;
|
---|
813 | double bigD = 0.0;
|
---|
814 |
|
---|
815 | for(int j=0; j<nColumns; j++){
|
---|
816 | double lmjk = loadingFactorMatrix[k][j];
|
---|
817 | double lmjl = loadingFactorMatrix[l][j];
|
---|
818 | uTerm = lmjk*lmjk - lmjl*lmjl;
|
---|
819 | vTerm = 2.0*lmjk*lmjl;
|
---|
820 | bigA += uTerm;
|
---|
821 | bigB += vTerm;
|
---|
822 | bigC += uTerm*uTerm - vTerm*vTerm;
|
---|
823 | bigD += 2.0*uTerm*vTerm;
|
---|
824 | }
|
---|
825 | double bigE = bigD - 2.0*bigA*bigB/nColumns;
|
---|
826 | double bigF = bigC - (bigA*bigA - bigB*bigB)/nColumns;
|
---|
827 | double angle = 0.25*Math.atan2(bigE, bigF);
|
---|
828 | return angle;
|
---|
829 | }
|
---|
830 |
|
---|
831 | // Single rotation
|
---|
832 | public static double[][] singleRotation(double[][] loadingFactorMatrix, int k, int l, double angle){
|
---|
833 | int nRows = loadingFactorMatrix.length;
|
---|
834 | int nColumns = loadingFactorMatrix[0].length;
|
---|
835 | double[][] rotatedMatrix = new double[nRows][nColumns];
|
---|
836 | for(int i=0; i<nRows; i++){
|
---|
837 | for(int j=0; j<nColumns; j++){
|
---|
838 | rotatedMatrix[i][j] = loadingFactorMatrix[i][j];
|
---|
839 | }
|
---|
840 | }
|
---|
841 |
|
---|
842 | double sinphi = Math.sin(angle);
|
---|
843 | double cosphi = Math.cos(angle);
|
---|
844 | for(int j=0; j<nColumns; j++){
|
---|
845 | rotatedMatrix[k][j] = loadingFactorMatrix[k][j]*cosphi + loadingFactorMatrix[l][j]*sinphi;
|
---|
846 | rotatedMatrix[l][j] = -loadingFactorMatrix[k][j]*sinphi + loadingFactorMatrix[l][j]*cosphi;
|
---|
847 | }
|
---|
848 | return rotatedMatrix;
|
---|
849 | }
|
---|
850 |
|
---|
851 |
|
---|
852 | // RETURN DATA
|
---|
853 |
|
---|
854 | // Return eigenvalues as calculated
|
---|
855 | public double[] eigenValues(){
|
---|
856 | if(!this.pcaDone)this.pca();
|
---|
857 | return this.eigenValues;
|
---|
858 | }
|
---|
859 |
|
---|
860 | // Return eigenvalues ordered into a descending order
|
---|
861 | public double[] orderedEigenValues(){
|
---|
862 | if(!this.pcaDone)this.pca();
|
---|
863 | return this.orderedEigenValues;
|
---|
864 | }
|
---|
865 |
|
---|
866 | // Return indices of the eigenvalues before ordering into a descending order
|
---|
867 | public int[] eigenValueIndices(){
|
---|
868 | if(!this.pcaDone)this.pca();
|
---|
869 | return this.eigenValueIndices;
|
---|
870 | }
|
---|
871 |
|
---|
872 | // Return sum of the eigenvalues
|
---|
873 | public double eigenValueTotal(){
|
---|
874 | if(!this.pcaDone)this.pca();
|
---|
875 | return this.eigenValueTotal;
|
---|
876 | }
|
---|
877 |
|
---|
878 |
|
---|
879 | // Return eigenvalues ordered into a descending order and expressed as a percentage of total
|
---|
880 | public double[] proportionPercentage(){
|
---|
881 | if(!this.pcaDone)this.pca();
|
---|
882 | return this.proportionPercentage;
|
---|
883 | }
|
---|
884 |
|
---|
885 | // Return cumulative values of the eigenvalues ordered into a descending order and expressed as a percentage of total
|
---|
886 | public double[] cumulativePercentage(){
|
---|
887 | if(!this.pcaDone)this.pca();
|
---|
888 | return this.cumulativePercentage;
|
---|
889 | }
|
---|
890 |
|
---|
891 | // Return scaled rotated eigenvalues
|
---|
892 | public double[] rotatedEigenValues(){
|
---|
893 | if(!this.rotationDone)throw new IllegalArgumentException("No rotation has been performed");
|
---|
894 | return this.rotatedEigenValues;
|
---|
895 | }
|
---|
896 |
|
---|
897 | // Return scaled rotated eigenvalues as proportion of total variance
|
---|
898 | public double[] rotatedProportionPercentage(){
|
---|
899 | if(!this.rotationDone)throw new IllegalArgumentException("No rotation has been performed");
|
---|
900 | return this.rotatedProportionPercentage;
|
---|
901 | }
|
---|
902 |
|
---|
903 | // Return scaled rotated eigenvalues as cumulative percentages
|
---|
904 | public double[] rotatedCumulativePercentage(){
|
---|
905 | if(!this.rotationDone)throw new IllegalArgumentException("No rotation has been performed");
|
---|
906 | return this.rotatedCumulativePercentage;
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 |
|
---|
911 | // Return eigenvectors as calculated
|
---|
912 | // Each column is the eigenvector for an eigenvalue
|
---|
913 | public double[][] eigenVectors(){
|
---|
914 | if(!this.pcaDone)this.pca();
|
---|
915 | return this.eigenVectorsAsColumns;
|
---|
916 | }
|
---|
917 |
|
---|
918 | // Return eigenvectors as calculated
|
---|
919 | // Each row is the eigenvector for an eigenvalue
|
---|
920 | public double[][] eigenVectorsAsRows(){
|
---|
921 | if(!this.pcaDone)this.pca();
|
---|
922 | return this.eigenVectorsAsRows;
|
---|
923 | }
|
---|
924 |
|
---|
925 | // Return eigenvector ordered to match the eigenvalues sorted into a descending order
|
---|
926 | // Each column is the eigenvector for an eigenvalue
|
---|
927 | public double[][] orderedEigenVectorsAsColumns(){
|
---|
928 | if(!this.pcaDone)this.pca();
|
---|
929 | return this.orderedEigenVectorsAsColumns;
|
---|
930 | }
|
---|
931 |
|
---|
932 | // Return eigenvector ordered to match the eigenvalues sorted into a descending order
|
---|
933 | // Each column is the eigenvector for an eigenvalue
|
---|
934 | public double[][] orderedEigenVectors(){
|
---|
935 | if(!this.pcaDone)this.pca();
|
---|
936 | return this.orderedEigenVectorsAsColumns;
|
---|
937 | }
|
---|
938 |
|
---|
939 | // Return eigenvector ordered to match the eigenvalues sorted into a descending order
|
---|
940 | // Each rowis the eigenvector for an eigenvalue
|
---|
941 | public double[][] orderedEigenVectorsAsRows(){
|
---|
942 | if(!this.pcaDone)this.pca();
|
---|
943 | return this.orderedEigenVectorsAsRows;
|
---|
944 | }
|
---|
945 |
|
---|
946 | // Return loading factors ordered to match the eigenvalues sorted into a descending order
|
---|
947 | // Each column is the loading factors for an eigenvalue
|
---|
948 | public double[][] loadingFactorsAsColumns(){
|
---|
949 | if(!this.pcaDone)this.pca();
|
---|
950 | return this.loadingFactorsAsColumns;
|
---|
951 | }
|
---|
952 |
|
---|
953 | // Return loading factors ordered to match the eigenvalues sorted into a descending order
|
---|
954 | // Each row is the loading factors for an eigenvalue
|
---|
955 | public double[][] loadingFactorsAsRows(){
|
---|
956 | if(!this.pcaDone)this.pca();
|
---|
957 | return this.loadingFactorsAsRows;
|
---|
958 | }
|
---|
959 |
|
---|
960 | // Return rotated loading factors as columns
|
---|
961 | public double[][] rotatedLoadingFactorsAsColumns(){
|
---|
962 | if(!this.rotationDone)throw new IllegalArgumentException("No rotation has been performed");
|
---|
963 | return this.rotatedLoadingFactorsAsColumns;
|
---|
964 | }
|
---|
965 |
|
---|
966 | // Return rotated loading factors as rows
|
---|
967 | public double[][] rotatedLoadingFactorsAsRows(){
|
---|
968 | if(!this.rotationDone)throw new IllegalArgumentException("No rotation has been performed");
|
---|
969 | return this.rotatedLoadingFactorsAsRows;
|
---|
970 | }
|
---|
971 |
|
---|
972 | // Return communalities
|
---|
973 | public double[] communalities(){
|
---|
974 | if(!this.pcaDone)this.pca();
|
---|
975 | return this.communalities;
|
---|
976 | }
|
---|
977 |
|
---|
978 | // Return communality weights
|
---|
979 | public double[] communalityWeights(){
|
---|
980 | if(!this.pcaDone)this.pca();
|
---|
981 | return this.communalityWeights;
|
---|
982 | }
|
---|
983 |
|
---|
984 | // Return covariance matrix
|
---|
985 | public Matrix covarianceMatrix(){
|
---|
986 | if(!this.pcaDone)this.pca();
|
---|
987 | return this.covarianceMatrix;
|
---|
988 | }
|
---|
989 |
|
---|
990 | // Return correlation matrix
|
---|
991 | public Matrix correlationMatrix(){
|
---|
992 | if(!this.pcaDone)this.pca();
|
---|
993 | return this.correlationMatrix;
|
---|
994 | }
|
---|
995 |
|
---|
996 | // Return Monte Carlo means
|
---|
997 | public double[] monteCarloMeans(){
|
---|
998 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
999 | return this.randomEigenValuesMeans;
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | // Return Monte Carlo standard deviations
|
---|
1003 | public double[] monteCarloStandardDeviations(){
|
---|
1004 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1005 | return this.randomEigenValuesSDs;
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | // Return Monte Carlo percentiles
|
---|
1009 | public double[] monteCarloPercentiles(){
|
---|
1010 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1011 | return this.randomEigenValuesPercentiles;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | // Return Monte Carlo eigenvalue matrix
|
---|
1015 | public double[][] monteCarloEigenValues(){
|
---|
1016 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1017 | return this.randomEigenValues;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | // Return original data matrix
|
---|
1021 | public Matrix originalData(){
|
---|
1022 | if(!this.pcaDone)this.pca();
|
---|
1023 | return this.data;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | // Return data minus row means divided by n-1 or n
|
---|
1027 | public Matrix xMatrix(){
|
---|
1028 | if(!this.pcaDone)this.pca();
|
---|
1029 | double denom = this.nItems;
|
---|
1030 | if(!super.nFactorOption)denom -= 1.0;
|
---|
1031 | Matrix mat = dataMinusMeans.times(1.0/Math.sqrt(denom));
|
---|
1032 | return mat;
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | // Return transpose of data minus row means divided by n-1 or n
|
---|
1036 | public Matrix xMatrixTranspose(){
|
---|
1037 | if(!this.pcaDone)this.pca();
|
---|
1038 | double denom = this.nItems;
|
---|
1039 | if(!super.nFactorOption)denom -= 1.0;
|
---|
1040 | Matrix mat = dataMinusMeansTranspose.times(1.0/Math.sqrt(denom));
|
---|
1041 | return mat;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | // Return number of extracted components with eigenvalues greater than or equal to one
|
---|
1045 | public int nEigenOneOrGreater(){
|
---|
1046 | if(!this.pcaDone)this.pca();
|
---|
1047 | return this.greaterThanOneLimit;
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | // Return number of extracted components with eigenvalues greater than the corresponding Monte Carlo mean
|
---|
1051 | public int nMeanCrossover(){
|
---|
1052 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1053 | return this.meanCrossover;
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | // Return number of extracted components with eigenvalues greater than the corresponding Monte Carlo percentile
|
---|
1057 | public int nPercentileCrossover(){
|
---|
1058 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1059 | return this.percentileCrossover;
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | // OUTPUT THE ANALYSIS
|
---|
1063 |
|
---|
1064 | // Full analysis without output of input data
|
---|
1065 | // no input file name entered via method argument list
|
---|
1066 | public void analysis(){
|
---|
1067 |
|
---|
1068 |
|
---|
1069 | this.outputFilename = "PCAOutput";
|
---|
1070 | if(this.fileOption==1){
|
---|
1071 | this.outputFilename += ".txt";
|
---|
1072 | }
|
---|
1073 | else{
|
---|
1074 | this.outputFilename += ".xls";
|
---|
1075 | }
|
---|
1076 | String message1 = "Output file name for the analysis details:";
|
---|
1077 | String message2 = "\nEnter the required name (as a single word) and click OK ";
|
---|
1078 | String message3 = "\nor simply click OK for default value";
|
---|
1079 | String message = message1 + message2 + message3;
|
---|
1080 | String defaultName = this.outputFilename;
|
---|
1081 | this.outputFilename = Db.readLine(message, defaultName);
|
---|
1082 | this.analysis(this.outputFilename);
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | // Full analysis without output of input data
|
---|
1086 | // input file name via method argument list
|
---|
1087 | public void analysis(String filename){
|
---|
1088 |
|
---|
1089 | // Scree Plot
|
---|
1090 | this.screePlot();
|
---|
1091 |
|
---|
1092 | // Open output file
|
---|
1093 | this.outputFilename = filename;
|
---|
1094 | String outputFilenameWithoutExtension = null;
|
---|
1095 | String extension = null;
|
---|
1096 | int pos = filename.indexOf('.');
|
---|
1097 | if(pos==-1){
|
---|
1098 | outputFilenameWithoutExtension = filename;
|
---|
1099 | if(this.fileOption==1){
|
---|
1100 | this.outputFilename += ".txt";
|
---|
1101 | }
|
---|
1102 | else{
|
---|
1103 | this.outputFilename += ".xls";
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 | else{
|
---|
1107 | extension = (filename.substring(pos)).trim();
|
---|
1108 |
|
---|
1109 | outputFilenameWithoutExtension = (filename.substring(0, pos)).trim();
|
---|
1110 | if(extension.equalsIgnoreCase(".xls")){
|
---|
1111 | if(this.fileOption==1){
|
---|
1112 | if(this.fileOptionSet){
|
---|
1113 | String message1 = "Your entered output file type is .xls";
|
---|
1114 | String message2 = "\nbut you have chosen a .txt output";
|
---|
1115 | String message = message1 + message2;
|
---|
1116 | String headerComment = "Your output file name extension";
|
---|
1117 | String[] comments = {message, "replace it with .txt [text file]"};
|
---|
1118 | String[] boxTitles = {"Retain", ".txt"};
|
---|
1119 | int defaultBox = 1;
|
---|
1120 | int opt = Db.optionBox(headerComment, comments, boxTitles, defaultBox);
|
---|
1121 | if(opt==2)this.outputFilename = outputFilenameWithoutExtension + ".txt";
|
---|
1122 | }
|
---|
1123 | else{
|
---|
1124 | this.fileOption=2;
|
---|
1125 | }
|
---|
1126 | }
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | if(extension.equalsIgnoreCase(".txt")){
|
---|
1130 | if(this.fileOption==2){
|
---|
1131 | if(this.fileOptionSet){
|
---|
1132 | String message1 = "Your entered output file type is .txt";
|
---|
1133 | String message2 = "\nbut you have chosen a .xls output";
|
---|
1134 | String message = message1 + message2;
|
---|
1135 | String headerComment = "Your output file name extension";
|
---|
1136 | String[] comments = {message, "replace it with .xls [Excel file]"};
|
---|
1137 | String[] boxTitles = {"Retain", ".xls"};
|
---|
1138 | int defaultBox = 1;
|
---|
1139 | int opt = Db.optionBox(headerComment, comments, boxTitles, defaultBox);
|
---|
1140 | if(opt==2)this.outputFilename = outputFilenameWithoutExtension + ".xls";
|
---|
1141 | }
|
---|
1142 | else{
|
---|
1143 | this.fileOption=1;
|
---|
1144 | }
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | if(!extension.equalsIgnoreCase(".txt") && !extension.equalsIgnoreCase(".xls")){
|
---|
1149 | String message1 = "Your extension is " + extension;
|
---|
1150 | String message2 = "\n Do you wish to retain it:";
|
---|
1151 | String message = message1 + message2;
|
---|
1152 | String headerComment = "Your output file name extension";
|
---|
1153 | String[] comments = {message, "replace it with .txt [text file]", "replace it with .xls [MS Excel file]"};
|
---|
1154 | String[] boxTitles = {"Retain", ".txt", ".xls"};
|
---|
1155 | int defaultBox = 1;
|
---|
1156 | int opt = Db.optionBox(headerComment, comments, boxTitles, defaultBox);
|
---|
1157 | switch(opt){
|
---|
1158 | case 1: this.fileOption=1;
|
---|
1159 | break;
|
---|
1160 | case 2: this.outputFilename = outputFilenameWithoutExtension + ".txt";
|
---|
1161 | this.fileOption=1;
|
---|
1162 | break;
|
---|
1163 | case 3: this.outputFilename = outputFilenameWithoutExtension + ".xls";
|
---|
1164 | this.fileOption=2;
|
---|
1165 | break;
|
---|
1166 | }
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | if(this.fileOption==1){
|
---|
1171 | this.analysisText();
|
---|
1172 | }
|
---|
1173 | else{
|
---|
1174 | this.analysisExcel();
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | System.out.println("The analysis has been written to the file " + this.outputFilename);
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | // Output analysis to a text (.txt) file
|
---|
1181 | private void analysisText(){
|
---|
1182 |
|
---|
1183 | FileOutput fout = null;
|
---|
1184 | if(this.fileNumberingSet){
|
---|
1185 | fout = new FileOutput(this.outputFilename, 'n');
|
---|
1186 | }
|
---|
1187 | else{
|
---|
1188 | fout = new FileOutput(this.outputFilename);
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | // perform PCA if not already performed
|
---|
1192 | if(!pcaDone)this.pca();
|
---|
1193 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1194 |
|
---|
1195 | // output title
|
---|
1196 | fout.println("PRINCIPAL COMPONENT ANALYSIS");
|
---|
1197 | fout.println("Program: PCA - Analysis Output");
|
---|
1198 | for(int i=0; i<this.titleLines; i++)fout.println(title[i]);
|
---|
1199 | Date d = new Date();
|
---|
1200 | String day = DateFormat.getDateInstance().format(d);
|
---|
1201 | String tim = DateFormat.getTimeInstance().format(d);
|
---|
1202 | fout.println("Program executed at " + tim + " on " + day);
|
---|
1203 | fout.println();
|
---|
1204 | if(this.covRhoOption){
|
---|
1205 | fout.println("Covariance matrix used");
|
---|
1206 | }
|
---|
1207 | else{
|
---|
1208 | fout.println("Correlation matrix used");
|
---|
1209 | }
|
---|
1210 | fout.println();
|
---|
1211 |
|
---|
1212 | // output eigenvalue table
|
---|
1213 | // field width
|
---|
1214 | int field1 = 10;
|
---|
1215 | int field2 = 12;
|
---|
1216 | int field3 = 2;
|
---|
1217 |
|
---|
1218 | fout.println("ALL EIGENVALUES");
|
---|
1219 |
|
---|
1220 | fout.print("Component ", field1);
|
---|
1221 | fout.print("Unordered ", field1);
|
---|
1222 | fout.print("Eigenvalue ", field2);
|
---|
1223 | fout.print("Proportion ", field2);
|
---|
1224 | fout.print("Cumulative ", field2);
|
---|
1225 | fout.println("Difference ");
|
---|
1226 |
|
---|
1227 | fout.print(" ", field1);
|
---|
1228 | fout.print("index", field1);
|
---|
1229 | fout.print(" ", field2);
|
---|
1230 | fout.print("as % ", field2);
|
---|
1231 | fout.print("percentage ", field2);
|
---|
1232 | fout.println(" ");
|
---|
1233 |
|
---|
1234 |
|
---|
1235 |
|
---|
1236 | for(int i=0; i<this.nItems; i++){
|
---|
1237 | fout.print(i+1, field1);
|
---|
1238 | fout.print((this.eigenValueIndices[i]+1), field1);
|
---|
1239 | fout.print(Fmath.truncate(this.orderedEigenValues[i], this.trunc), field2);
|
---|
1240 | fout.print(Fmath.truncate(this.proportionPercentage[i], this.trunc), field2);
|
---|
1241 | fout.print(Fmath.truncate(this.cumulativePercentage[i], this.trunc), field2);
|
---|
1242 | if(i<this.nItems-1){
|
---|
1243 | fout.print(Fmath.truncate((this.orderedEigenValues[i] - this.orderedEigenValues[i+1]), this.trunc), field2);
|
---|
1244 | }
|
---|
1245 | else{
|
---|
1246 | fout.print(" ", field2);
|
---|
1247 | }
|
---|
1248 | fout.print(" ", field3);
|
---|
1249 |
|
---|
1250 | fout.println();
|
---|
1251 | }
|
---|
1252 | fout.println();
|
---|
1253 |
|
---|
1254 |
|
---|
1255 | // Extracted components
|
---|
1256 | int nMax = this.greaterThanOneLimit;
|
---|
1257 | if(nMax<this.meanCrossover)nMax=this.meanCrossover;
|
---|
1258 | if(nMax<this.percentileCrossover)nMax=this.percentileCrossover;
|
---|
1259 | fout.println("EXTRACTED EIGENVALUES");
|
---|
1260 | fout.print(" ", field1);
|
---|
1261 | fout.print("Greater than unity", 3*field2 + field3);
|
---|
1262 | fout.print("Greater than Monte Carlo Mean ", 3*field2 + field3);
|
---|
1263 | fout.println("Greater than Monte Carlo Percentile");
|
---|
1264 |
|
---|
1265 | fout.print("Component ", field1);
|
---|
1266 | fout.print("Eigenvalue ", field2);
|
---|
1267 | fout.print("Proportion ", field2);
|
---|
1268 | fout.print("Cumulative ", field2);
|
---|
1269 | fout.print(" ", field3);
|
---|
1270 |
|
---|
1271 | fout.print("Eigenvalue ", field2);
|
---|
1272 | fout.print("Proportion ", field2);
|
---|
1273 | fout.print("Cumulative ", field2);
|
---|
1274 | fout.print(" ", field3);
|
---|
1275 |
|
---|
1276 | fout.print("Eigenvalue ", field2);
|
---|
1277 | fout.print("Proportion ", field2);
|
---|
1278 | fout.print("Cumulative ", field2);
|
---|
1279 | fout.println(" ");
|
---|
1280 |
|
---|
1281 | fout.print(" ", field1);
|
---|
1282 | fout.print(" ", field2);
|
---|
1283 | fout.print("as % ", field2);
|
---|
1284 | fout.print("percentage ", field2);
|
---|
1285 | fout.print(" ", field3);
|
---|
1286 |
|
---|
1287 | fout.print(" ", field2);
|
---|
1288 | fout.print("as % ", field2);
|
---|
1289 | fout.print("percentage ", field2);
|
---|
1290 | fout.print(" ", field3);
|
---|
1291 |
|
---|
1292 | fout.print(" ", field2);
|
---|
1293 | fout.print("as % ", field2);
|
---|
1294 | fout.print("percentage ", field2);
|
---|
1295 | fout.println(" ");
|
---|
1296 |
|
---|
1297 | int ii=0;
|
---|
1298 | while(ii<nMax){
|
---|
1299 | fout.print(ii+1, field1);
|
---|
1300 |
|
---|
1301 | if(ii<this.greaterThanOneLimit){
|
---|
1302 | fout.print(Fmath.truncate(this.orderedEigenValues[ii], this.trunc), field2);
|
---|
1303 | fout.print(Fmath.truncate(this.proportionPercentage[ii], this.trunc), field2);
|
---|
1304 | fout.print(Fmath.truncate(this.cumulativePercentage[ii], this.trunc), (field2+field3));
|
---|
1305 | }
|
---|
1306 |
|
---|
1307 | if(ii<this.meanCrossover){
|
---|
1308 | fout.print(Fmath.truncate(this.orderedEigenValues[ii], this.trunc), field2);
|
---|
1309 | fout.print(Fmath.truncate(this.proportionPercentage[ii], this.trunc), field2);
|
---|
1310 | fout.print(Fmath.truncate(this.cumulativePercentage[ii], this.trunc), (field2+field3));
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | if(ii<this.percentileCrossover){
|
---|
1314 | fout.print(Fmath.truncate(this.orderedEigenValues[ii], this.trunc), field2);
|
---|
1315 | fout.print(Fmath.truncate(this.proportionPercentage[ii], this.trunc), field2);
|
---|
1316 | fout.print(Fmath.truncate(this.cumulativePercentage[ii], this.trunc));
|
---|
1317 | }
|
---|
1318 | fout.println();
|
---|
1319 | ii++;
|
---|
1320 | }
|
---|
1321 | fout.println();
|
---|
1322 |
|
---|
1323 |
|
---|
1324 | fout.println("PARALLEL ANALYSIS");
|
---|
1325 | fout.println("Number of simulations = " + this.nMonteCarlo);
|
---|
1326 | if(this.gaussianDeviates){
|
---|
1327 | fout.println("Gaussian random deviates used");
|
---|
1328 | }
|
---|
1329 | else{
|
---|
1330 | fout.println("Uniform random deviates used");
|
---|
1331 | }
|
---|
1332 | fout.println("Percentile value used = " + this.percentile + " %");
|
---|
1333 |
|
---|
1334 | fout.println();
|
---|
1335 | fout.print("Component ", field1);
|
---|
1336 | fout.print("Data ", field2);
|
---|
1337 | fout.print("Proportion ", field2);
|
---|
1338 | fout.print("Cumulative ", field2);
|
---|
1339 | fout.print(" ", field3);
|
---|
1340 | fout.print("Data ", field2);
|
---|
1341 | fout.print("Monte Carlo ", field2);
|
---|
1342 | fout.print("Monte Carlo ", field2);
|
---|
1343 | fout.println("Monte Carlo ");
|
---|
1344 |
|
---|
1345 | fout.print(" ", field1);
|
---|
1346 | fout.print("Eigenvalue ", field2);
|
---|
1347 | fout.print("as % ", field2);
|
---|
1348 | fout.print("percentage ", field2);
|
---|
1349 | fout.print(" ", field3);
|
---|
1350 | fout.print("Eigenvalue ", field2);
|
---|
1351 | fout.print("Eigenvalue ", field2);
|
---|
1352 | fout.print("Eigenvalue ", field2);
|
---|
1353 | fout.println("Eigenvalue ");
|
---|
1354 |
|
---|
1355 | fout.print(" ", field1);
|
---|
1356 | fout.print(" ", field2);
|
---|
1357 | fout.print(" ", field2);
|
---|
1358 | fout.print(" ", field2);
|
---|
1359 | fout.print(" ", field3);
|
---|
1360 | fout.print(" ", field2);
|
---|
1361 | fout.print("Percentile ", field2);
|
---|
1362 | fout.print("Mean ", field2);
|
---|
1363 | fout.println("Standard Deviation ");
|
---|
1364 |
|
---|
1365 | for(int i=0; i<this.nItems; i++){
|
---|
1366 | fout.print(i+1, field1);
|
---|
1367 | fout.print(Fmath.truncate(this.orderedEigenValues[i], this.trunc), field2);
|
---|
1368 | fout.print(Fmath.truncate(this.proportionPercentage[i], this.trunc), field2);
|
---|
1369 | fout.print(Fmath.truncate(this.cumulativePercentage[i], this.trunc), field2);
|
---|
1370 | fout.print(" ", field3);
|
---|
1371 | fout.print(Fmath.truncate(this.orderedEigenValues[i], this.trunc), field2);
|
---|
1372 | fout.print(Fmath.truncate(this.randomEigenValuesPercentiles[i], this.trunc), field2);
|
---|
1373 | fout.print(Fmath.truncate(this.randomEigenValuesMeans[i], this.trunc), field2);
|
---|
1374 | fout.println(Fmath.truncate(this.randomEigenValuesSDs[i], this.trunc));
|
---|
1375 | }
|
---|
1376 | fout.println();
|
---|
1377 |
|
---|
1378 | // Correlation Matrix
|
---|
1379 | fout.println("CORRELATION MATRIX");
|
---|
1380 | fout.println("Original component indices in parenthesis");
|
---|
1381 | fout.println();
|
---|
1382 | fout.print(" ", field1);
|
---|
1383 | fout.print("component", field1);
|
---|
1384 | for(int i=0; i<this.nItems; i++)fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", field2);
|
---|
1385 | fout.println();
|
---|
1386 | fout.println("component");
|
---|
1387 | for(int i=0; i<this.nItems; i++){
|
---|
1388 | fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", 2*field1);
|
---|
1389 | for(int j=0; j<this.nItems; j++)fout.print(Fmath.truncate(this.correlationMatrix.getElement(j,i), this.trunc), field2);
|
---|
1390 | fout.println();
|
---|
1391 | }
|
---|
1392 | fout.println();
|
---|
1393 |
|
---|
1394 | // Covariance Matrix
|
---|
1395 | fout.println("COVARIANCE MATRIX");
|
---|
1396 | fout.println("Original component indices in parenthesis");
|
---|
1397 | fout.println();
|
---|
1398 | fout.print(" ", field1);
|
---|
1399 | fout.print("component", field1);
|
---|
1400 | for(int i=0; i<this.nItems; i++)fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", field2);
|
---|
1401 | fout.println();
|
---|
1402 | fout.println("component");
|
---|
1403 | for(int i=0; i<this.nItems; i++){
|
---|
1404 | fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", 2*field1);
|
---|
1405 | for(int j=0; j<this.nItems; j++)fout.print(Fmath.truncate(this.covarianceMatrix.getElement(j,i), this.trunc), field2);
|
---|
1406 | fout.println();
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | fout.println();
|
---|
1410 |
|
---|
1411 | // Eigenvectors
|
---|
1412 | fout.println("EIGENVECTORS");
|
---|
1413 | fout.println("Original component indices in parenthesis");
|
---|
1414 | fout.println("Vector corresponding to an ordered eigenvalues in each row");
|
---|
1415 | fout.println();
|
---|
1416 | fout.print(" ", field1);
|
---|
1417 | fout.print("component", field1);
|
---|
1418 | for(int i=0; i<this.nItems; i++)fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", field2);
|
---|
1419 | fout.println();
|
---|
1420 | fout.println("component");
|
---|
1421 | for(int i=0; i<this.nItems; i++){
|
---|
1422 | fout.print((i+1) + " (" + (this.eigenValueIndices[i]+1) + ")", 2*field1);
|
---|
1423 | for(int j=0; j<this.nItems; j++)fout.print(Fmath.truncate(this.orderedEigenVectorsAsRows[i][j], this.trunc), field2);
|
---|
1424 | fout.println();
|
---|
1425 | }
|
---|
1426 | fout.println();
|
---|
1427 |
|
---|
1428 | // Loading factors
|
---|
1429 | fout.println("LOADING FACTORS");
|
---|
1430 | fout.println("Original indices in parenthesis");
|
---|
1431 | fout.println("Loading factors corresponding to an ordered eigenvalues in each row");
|
---|
1432 | fout.println();
|
---|
1433 | fout.print(" ", field1);
|
---|
1434 | fout.print("component", field1);
|
---|
1435 | for(int i=0; i<this.nItems; i++)fout.print((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")", field2);
|
---|
1436 | fout.print(" ", field1);
|
---|
1437 | fout.print("Eigenvalue", field2);
|
---|
1438 | fout.print("Proportion", field2);
|
---|
1439 | fout.println("Cumulative %");
|
---|
1440 | fout.println("factor");
|
---|
1441 | for(int i=0; i<this.nItems; i++){
|
---|
1442 | fout.print((i+1) + " (" + (this.eigenValueIndices[i]+1) + ")", 2*field1);
|
---|
1443 | for(int j=0; j<this.nItems; j++)fout.print(Fmath.truncate(this.loadingFactorsAsRows[i][j], this.trunc), field2);
|
---|
1444 | fout.print(" ", field1);
|
---|
1445 | fout.print(Fmath.truncate(this.orderedEigenValues[i], this.trunc), field2);
|
---|
1446 | fout.print(Fmath.truncate(proportionPercentage[i], this.trunc), field2);
|
---|
1447 | fout.println(Fmath.truncate(cumulativePercentage[i], this.trunc));
|
---|
1448 | }
|
---|
1449 | fout.println();
|
---|
1450 |
|
---|
1451 | // Rotated loading factors
|
---|
1452 | fout.println("ROTATED LOADING FACTORS");
|
---|
1453 | if(this.varimaxOption){
|
---|
1454 | fout.println("NORMAL VARIMAX");
|
---|
1455 | }
|
---|
1456 | else{
|
---|
1457 | fout.println("RAW VARIMAX");
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | String message = "The ordered eigenvalues with Monte Carlo means and percentiles in parenthesis";
|
---|
1461 | message += "\n (Total number of eigenvalues = " + this.nItems + ")";
|
---|
1462 | int nDisplay = this.nItems;
|
---|
1463 | Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
|
---|
1464 | int screenHeight = screenSize.height;
|
---|
1465 | int nDisplayLimit = 20*screenHeight/800;
|
---|
1466 | if(nDisplay>nDisplay)nDisplay = nDisplayLimit;
|
---|
1467 | for(int i=0; i<nDisplay; i++){
|
---|
1468 | message += "\n " + Fmath.truncate(this.orderedEigenValues[i], 4) + " (" + Fmath.truncate(this.randomEigenValuesMeans[i], 4) + " " + Fmath.truncate(this.randomEigenValuesPercentiles[i], 4) + ")";
|
---|
1469 | }
|
---|
1470 | if(nDisplay<this.nItems)message += "\n . . . ";
|
---|
1471 | message += "\nEnter number of eigenvalues to be extracted";
|
---|
1472 | int nExtracted = this.greaterThanOneLimit;
|
---|
1473 | nExtracted = Db.readInt(message, nExtracted);
|
---|
1474 | this.varimaxRotation(nExtracted);
|
---|
1475 |
|
---|
1476 | fout.println("Varimax rotation for " + nExtracted + " extracted factors");
|
---|
1477 | fout.println("Rotated loading factors and eigenvalues scaled to ensure total 'rotated variance' matches unrotated variance for the extracted factors");
|
---|
1478 | fout.println("Original indices in parenthesis");
|
---|
1479 | fout.println();
|
---|
1480 | fout.print(" ", field1);
|
---|
1481 | fout.print("component", field1);
|
---|
1482 | for(int i=0; i<this.nItems; i++)fout.print((this.rotatedIndices[i]+1) + " (" + (i+1) + ")", field2);
|
---|
1483 | fout.print(" ", field1);
|
---|
1484 | fout.print("Eigenvalue", field2);
|
---|
1485 | fout.print("Proportion", field2);
|
---|
1486 | fout.println("Cumulative %");
|
---|
1487 | fout.println("factor");
|
---|
1488 |
|
---|
1489 | for(int i=0; i<nExtracted; i++){
|
---|
1490 | fout.print((i+1) + " (" + (rotatedIndices[i]+1) + ")", 2*field1);
|
---|
1491 | for(int j=0; j<this.nItems; j++)fout.print(Fmath.truncate(this.rotatedLoadingFactorsAsRows[i][j], this.trunc), field2);
|
---|
1492 | fout.print(" ", field1);
|
---|
1493 | fout.print(Fmath.truncate(rotatedEigenValues[i], this.trunc), field2);
|
---|
1494 | fout.print(Fmath.truncate(rotatedProportionPercentage[i], this.trunc), field2);
|
---|
1495 | fout.println(Fmath.truncate(rotatedCumulativePercentage[i], this.trunc));
|
---|
1496 | }
|
---|
1497 | fout.println();
|
---|
1498 |
|
---|
1499 | fout.println("DATA USED");
|
---|
1500 | fout.println("Number of items = " + this.nItems);
|
---|
1501 | fout.println("Number of persons = " + this.nPersons);
|
---|
1502 |
|
---|
1503 |
|
---|
1504 | if(this.originalDataType==0){
|
---|
1505 | fout.printtab("Item");
|
---|
1506 | for(int i=0; i<this.nPersons; i++){
|
---|
1507 | fout.printtab(i+1);
|
---|
1508 | }
|
---|
1509 | fout.println();
|
---|
1510 | for(int i=0; i<this.nItems; i++){
|
---|
1511 | fout.printtab(this.itemNames[i]);
|
---|
1512 | for(int j=0; j<this.nPersons; j++){
|
---|
1513 | fout.printtab(Fmath.truncate(this.scores0[i][j], this.trunc));
|
---|
1514 | }
|
---|
1515 | fout.println();
|
---|
1516 | }
|
---|
1517 | }
|
---|
1518 | else{
|
---|
1519 | fout.printtab("Person");
|
---|
1520 | for(int i=0; i<this.nItems; i++){
|
---|
1521 | fout.printtab(this.itemNames[i]);
|
---|
1522 | }
|
---|
1523 | fout.println();
|
---|
1524 | for(int i=0; i<this.nPersons; i++){
|
---|
1525 | fout.printtab(i+1);
|
---|
1526 | for(int j=0; j<this.nItems; j++){
|
---|
1527 | fout.printtab(Fmath.truncate(this.scores1[i][j], this.trunc));
|
---|
1528 | }
|
---|
1529 | fout.println();
|
---|
1530 | }
|
---|
1531 | }
|
---|
1532 |
|
---|
1533 | fout.close();
|
---|
1534 | }
|
---|
1535 |
|
---|
1536 | // Output to an Excel readable file
|
---|
1537 | private void analysisExcel(){
|
---|
1538 |
|
---|
1539 | FileOutput fout = null;
|
---|
1540 | if(this.fileNumberingSet){
|
---|
1541 | fout = new FileOutput(this.outputFilename, 'n');
|
---|
1542 | }
|
---|
1543 | else{
|
---|
1544 | fout = new FileOutput(this.outputFilename);
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | // perform PCA if not already performed
|
---|
1548 | if(!pcaDone)this.pca();
|
---|
1549 | if(!this.monteCarloDone)this.monteCarlo();
|
---|
1550 |
|
---|
1551 | // output title
|
---|
1552 | fout.println("PRINCIPAL COMPONENT ANALYSIS");
|
---|
1553 | fout.println("Program: PCA - Analysis Output");
|
---|
1554 | for(int i=0; i<this.titleLines; i++)fout.println(title[i]);
|
---|
1555 | Date d = new Date();
|
---|
1556 | String day = DateFormat.getDateInstance().format(d);
|
---|
1557 | String tim = DateFormat.getTimeInstance().format(d);
|
---|
1558 | fout.println("Program executed at " + tim + " on " + day);
|
---|
1559 | fout.println();
|
---|
1560 | if(this.covRhoOption){
|
---|
1561 | fout.println("Covariance matrix used");
|
---|
1562 | }
|
---|
1563 | else{
|
---|
1564 | fout.println("Correlation matrix used");
|
---|
1565 | }
|
---|
1566 | fout.println();
|
---|
1567 |
|
---|
1568 | // output eigenvalue table
|
---|
1569 | fout.println("ALL EIGENVALUES");
|
---|
1570 |
|
---|
1571 | fout.printtab("Component ");
|
---|
1572 | fout.printtab("Unordered ");
|
---|
1573 | fout.printtab("Eigenvalue ");
|
---|
1574 | fout.printtab("Proportion ");
|
---|
1575 | fout.printtab("Cumulative ");
|
---|
1576 | fout.println("Difference ");
|
---|
1577 |
|
---|
1578 | fout.printtab(" ");
|
---|
1579 | fout.printtab("index");
|
---|
1580 | fout.printtab(" ");
|
---|
1581 | fout.printtab("as % ");
|
---|
1582 | fout.printtab("percentage ");
|
---|
1583 | fout.println(" ");
|
---|
1584 |
|
---|
1585 |
|
---|
1586 |
|
---|
1587 | for(int i=0; i<this.nItems; i++){
|
---|
1588 | fout.printtab(i+1);
|
---|
1589 | fout.printtab((this.eigenValueIndices[i]+1));
|
---|
1590 | fout.printtab(Fmath.truncate(this.orderedEigenValues[i], this.trunc));
|
---|
1591 | fout.printtab(Fmath.truncate(this.proportionPercentage[i], this.trunc));
|
---|
1592 | fout.printtab(Fmath.truncate(this.cumulativePercentage[i], this.trunc));
|
---|
1593 | if(i<this.nItems-1){
|
---|
1594 | fout.printtab(Fmath.truncate((this.orderedEigenValues[i] - this.orderedEigenValues[i+1]), this.trunc));
|
---|
1595 | }
|
---|
1596 | else{
|
---|
1597 | fout.printtab(" ");
|
---|
1598 | }
|
---|
1599 | fout.printtab(" ");
|
---|
1600 |
|
---|
1601 | fout.println();
|
---|
1602 | }
|
---|
1603 | fout.println();
|
---|
1604 |
|
---|
1605 |
|
---|
1606 | // Extracted components
|
---|
1607 | int nMax = this.greaterThanOneLimit;
|
---|
1608 | if(nMax<this.meanCrossover)nMax=this.meanCrossover;
|
---|
1609 | if(nMax<this.percentileCrossover)nMax=this.percentileCrossover;
|
---|
1610 | fout.println("EXTRACTED EIGENVALUES");
|
---|
1611 | fout.printtab(" ");
|
---|
1612 | fout.printtab("Greater than unity");
|
---|
1613 | fout.printtab(" ");fout.printtab(" ");fout.printtab(" ");
|
---|
1614 | fout.printtab("Greater than Monte Carlo Mean ");
|
---|
1615 | fout.printtab(" ");fout.printtab(" ");fout.printtab(" ");
|
---|
1616 | fout.println("Greater than Monte Carlo Percentile");
|
---|
1617 |
|
---|
1618 | fout.printtab("Component ");
|
---|
1619 | fout.printtab("Eigenvalue ");
|
---|
1620 | fout.printtab("Proportion ");
|
---|
1621 | fout.printtab("Cumulative ");
|
---|
1622 | fout.printtab(" ");
|
---|
1623 |
|
---|
1624 | fout.printtab("Eigenvalue ");
|
---|
1625 | fout.printtab("Proportion ");
|
---|
1626 | fout.printtab("Cumulative ");
|
---|
1627 | fout.printtab(" ");
|
---|
1628 |
|
---|
1629 | fout.printtab("Eigenvalue ");
|
---|
1630 | fout.printtab("Proportion ");
|
---|
1631 | fout.printtab("Cumulative ");
|
---|
1632 | fout.println(" ");
|
---|
1633 |
|
---|
1634 | fout.printtab(" ");
|
---|
1635 | fout.printtab(" ");
|
---|
1636 | fout.printtab("as % ");
|
---|
1637 | fout.printtab("percentage ");
|
---|
1638 | fout.printtab(" ");
|
---|
1639 |
|
---|
1640 | fout.printtab(" ");
|
---|
1641 | fout.printtab("as % ");
|
---|
1642 | fout.printtab("percentage ");
|
---|
1643 | fout.printtab(" ");
|
---|
1644 |
|
---|
1645 | fout.printtab(" ");
|
---|
1646 | fout.printtab("as % ");
|
---|
1647 | fout.printtab("percentage ");
|
---|
1648 | fout.println(" ");
|
---|
1649 |
|
---|
1650 | int ii=0;
|
---|
1651 | while(ii<nMax){
|
---|
1652 | fout.printtab(ii+1);
|
---|
1653 |
|
---|
1654 | if(ii<this.greaterThanOneLimit){
|
---|
1655 | fout.printtab(Fmath.truncate(this.orderedEigenValues[ii], this.trunc));
|
---|
1656 | fout.printtab(Fmath.truncate(this.proportionPercentage[ii], this.trunc));
|
---|
1657 | fout.printtab(Fmath.truncate(this.cumulativePercentage[ii], this.trunc));
|
---|
1658 | fout.printtab(" ");
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | if(ii<this.meanCrossover){
|
---|
1662 | fout.printtab(Fmath.truncate(this.orderedEigenValues[ii], this.trunc));
|
---|
1663 | fout.printtab(Fmath.truncate(this.proportionPercentage[ii], this.trunc));
|
---|
1664 | fout.printtab(Fmath.truncate(this.cumulativePercentage[ii], this.trunc));
|
---|
1665 | fout.printtab(" ");
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 | if(ii<this.percentileCrossover){
|
---|
1669 | fout.printtab(Fmath.truncate(this.orderedEigenValues[ii], this.trunc));
|
---|
1670 | fout.printtab(Fmath.truncate(this.proportionPercentage[ii], this.trunc));
|
---|
1671 | fout.printtab(Fmath.truncate(this.cumulativePercentage[ii], this.trunc));
|
---|
1672 | }
|
---|
1673 | fout.println();
|
---|
1674 | ii++;
|
---|
1675 | }
|
---|
1676 | fout.println();
|
---|
1677 |
|
---|
1678 |
|
---|
1679 | fout.println("PARALLEL ANALYSIS");
|
---|
1680 | fout.println("Number of simulations = " + this.nMonteCarlo);
|
---|
1681 | if(this.gaussianDeviates){
|
---|
1682 | fout.println("Gaussian random deviates used");
|
---|
1683 | }
|
---|
1684 | else{
|
---|
1685 | fout.println("Uniform random deviates used");
|
---|
1686 | }
|
---|
1687 | fout.println("Percentile value used = " + this.percentile + " %");
|
---|
1688 |
|
---|
1689 | fout.println();
|
---|
1690 | fout.printtab("Component ");
|
---|
1691 | fout.printtab("Data ");
|
---|
1692 | fout.printtab("Proportion ");
|
---|
1693 | fout.printtab("Cumulative ");
|
---|
1694 | fout.printtab(" ");
|
---|
1695 | fout.printtab("Data ");
|
---|
1696 | fout.printtab("Monte Carlo ");
|
---|
1697 | fout.printtab("Monte Carlo ");
|
---|
1698 | fout.println("Monte Carlo ");
|
---|
1699 |
|
---|
1700 | fout.printtab(" ");
|
---|
1701 | fout.printtab("Eigenvalue ");
|
---|
1702 | fout.printtab("as % ");
|
---|
1703 | fout.printtab("percentage ");
|
---|
1704 | fout.printtab(" ");
|
---|
1705 | fout.printtab("Eigenvalue ");
|
---|
1706 | fout.printtab("Eigenvalue ");
|
---|
1707 | fout.printtab("Eigenvalue ");
|
---|
1708 | fout.println("Eigenvalue ");
|
---|
1709 |
|
---|
1710 | fout.printtab(" ");
|
---|
1711 | fout.printtab(" ");
|
---|
1712 | fout.printtab(" ");
|
---|
1713 | fout.printtab(" ");
|
---|
1714 | fout.printtab(" ");
|
---|
1715 | fout.printtab(" ");
|
---|
1716 | fout.printtab("Percentile ");
|
---|
1717 | fout.printtab("Mean ");
|
---|
1718 | fout.println("Standard Deviation ");
|
---|
1719 |
|
---|
1720 | for(int i=0; i<this.nItems; i++){
|
---|
1721 | fout.printtab(i+1);
|
---|
1722 | fout.printtab(Fmath.truncate(this.orderedEigenValues[i], this.trunc));
|
---|
1723 | fout.printtab(Fmath.truncate(this.proportionPercentage[i], this.trunc));
|
---|
1724 | fout.printtab(Fmath.truncate(this.cumulativePercentage[i], this.trunc));
|
---|
1725 | fout.printtab(" ");
|
---|
1726 | fout.printtab(Fmath.truncate(this.orderedEigenValues[i], this.trunc));
|
---|
1727 | fout.printtab(Fmath.truncate(this.randomEigenValuesPercentiles[i], this.trunc));
|
---|
1728 | fout.printtab(Fmath.truncate(this.randomEigenValuesMeans[i], this.trunc));
|
---|
1729 | fout.println(Fmath.truncate(this.randomEigenValuesSDs[i], this.trunc));
|
---|
1730 | }
|
---|
1731 | fout.println();
|
---|
1732 |
|
---|
1733 | // Correlation Matrix
|
---|
1734 | fout.println("CORRELATION MATRIX");
|
---|
1735 | fout.println("Original component indices in parenthesis");
|
---|
1736 | fout.println();
|
---|
1737 | fout.printtab(" ");
|
---|
1738 | fout.printtab("component");
|
---|
1739 | for(int i=0; i<this.nItems; i++)fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1740 | fout.println();
|
---|
1741 | fout.println("component");
|
---|
1742 | for(int i=0; i<this.nItems; i++){
|
---|
1743 | fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1744 | fout.printtab(" ");
|
---|
1745 | for(int j=0; j<this.nItems; j++)fout.printtab(Fmath.truncate(this.correlationMatrix.getElement(j,i), this.trunc));
|
---|
1746 | fout.println();
|
---|
1747 | }
|
---|
1748 | fout.println();
|
---|
1749 |
|
---|
1750 | // Covariance Matrix
|
---|
1751 | fout.println("COVARIANCE MATRIX");
|
---|
1752 | fout.println("Original component indices in parenthesis");
|
---|
1753 | fout.println();
|
---|
1754 | fout.printtab(" ");
|
---|
1755 | fout.printtab("component");
|
---|
1756 | for(int i=0; i<this.nItems; i++)fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1757 | fout.println();
|
---|
1758 | fout.println("component");
|
---|
1759 | for(int i=0; i<this.nItems; i++){
|
---|
1760 | fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1761 | fout.printtab(" ");
|
---|
1762 | for(int j=0; j<this.nItems; j++)fout.printtab(Fmath.truncate(this.covarianceMatrix.getElement(j,i), this.trunc));
|
---|
1763 | fout.println();
|
---|
1764 | }
|
---|
1765 | fout.println();
|
---|
1766 |
|
---|
1767 | // Eigenvectors
|
---|
1768 | fout.println("EIGENVECTORS");
|
---|
1769 | fout.println("Original component indices in parenthesis");
|
---|
1770 | fout.println("Vector corresponding to an ordered eigenvalues in each row");
|
---|
1771 | fout.println();
|
---|
1772 | fout.printtab(" ");
|
---|
1773 | fout.printtab("component");
|
---|
1774 | for(int i=0; i<this.nItems; i++)fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1775 | fout.println();
|
---|
1776 | fout.println("component");
|
---|
1777 |
|
---|
1778 | for(int i=0; i<this.nItems; i++){
|
---|
1779 | fout.printtab((i+1) + " (" + (this.eigenValueIndices[i]+1) + ")");
|
---|
1780 | fout.printtab(" ");
|
---|
1781 | for(int j=0; j<this.nItems; j++)fout.printtab(Fmath.truncate(this.orderedEigenVectorsAsRows[i][j], this.trunc));
|
---|
1782 | fout.println();
|
---|
1783 | }
|
---|
1784 | fout.println();
|
---|
1785 |
|
---|
1786 | // Loading factors
|
---|
1787 | fout.println("LOADING FACTORS");
|
---|
1788 | fout.println("Original indices in parenthesis");
|
---|
1789 | fout.println("Loading factors corresponding to an ordered eigenvalues in each row");
|
---|
1790 | fout.println();
|
---|
1791 | fout.printtab(" ");
|
---|
1792 | fout.printtab("component");
|
---|
1793 | for(int i=0; i<this.nItems; i++)fout.printtab((this.eigenValueIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1794 | fout.printtab(" ");
|
---|
1795 | fout.printtab("Eigenvalue");
|
---|
1796 | fout.printtab("% Proportion");
|
---|
1797 | fout.println("Cumulative %");
|
---|
1798 | fout.println("factor");
|
---|
1799 | for(int i=0; i<this.nItems; i++){
|
---|
1800 | fout.printtab((i+1) + " (" + (this.eigenValueIndices[i]+1) + ")");
|
---|
1801 | fout.printtab(" ");
|
---|
1802 | for(int j=0; j<this.nItems; j++)fout.printtab(Fmath.truncate(this.loadingFactorsAsRows[i][j], this.trunc));
|
---|
1803 | fout.printtab(" ");
|
---|
1804 | fout.printtab(Fmath.truncate(this.orderedEigenValues[i], this.trunc));
|
---|
1805 | fout.printtab(Fmath.truncate(proportionPercentage[i], this.trunc));
|
---|
1806 | fout.println(Fmath.truncate(cumulativePercentage[i], this.trunc));
|
---|
1807 | }
|
---|
1808 | fout.println();
|
---|
1809 |
|
---|
1810 | // Rotated loading factors
|
---|
1811 | fout.println("ROTATED LOADING FACTORS");
|
---|
1812 | if(this.varimaxOption){
|
---|
1813 | fout.println("NORMAL VARIMAX");
|
---|
1814 | }
|
---|
1815 | else{
|
---|
1816 | fout.println("RAW VARIMAX");
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | String message = "The ordered eigenvalues with Monte Carlo means and percentiles in parenthesis";
|
---|
1820 | message += "\n (Total number of eigenvalues = " + this.nItems + ")";
|
---|
1821 | int nDisplay = this.nItems;
|
---|
1822 | Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
|
---|
1823 | int screenHeight = screenSize.height;
|
---|
1824 | int nDisplayLimit = 20*screenHeight/800;
|
---|
1825 | if(nDisplay>nDisplay)nDisplay = nDisplayLimit;
|
---|
1826 | for(int i=0; i<nDisplay; i++){
|
---|
1827 | message += "\n " + Fmath.truncate(this.orderedEigenValues[i], 4) + " (" + Fmath.truncate(this.randomEigenValuesMeans[i], 4) + " " + Fmath.truncate(this.randomEigenValuesPercentiles[i], 4) + ")";
|
---|
1828 | }
|
---|
1829 | if(nDisplay<this.nItems)message += "\n . . . ";
|
---|
1830 | message += "\nEnter number of eigenvalues to be extracted";
|
---|
1831 | int nExtracted = this.greaterThanOneLimit;
|
---|
1832 | nExtracted = Db.readInt(message, nExtracted);
|
---|
1833 | this.varimaxRotation(nExtracted);
|
---|
1834 |
|
---|
1835 | fout.println("Varimax rotation for " + nExtracted + " extracted factors");
|
---|
1836 | fout.println("Rotated loading factors and eigenvalues scaled to ensure total 'rotated variance' matches unrotated variance for the extracted factors");
|
---|
1837 | fout.println("Original indices in parenthesis");
|
---|
1838 | fout.println();
|
---|
1839 | fout.printtab(" ");
|
---|
1840 | fout.printtab("component");
|
---|
1841 | for(int i=0; i<this.nItems; i++)fout.printtab((this.rotatedIndices[i]+1) + " (" + (i+1) + ")");
|
---|
1842 | fout.printtab(" ");
|
---|
1843 | fout.printtab("Eigenvalue");
|
---|
1844 | fout.printtab("% Proportion");
|
---|
1845 | fout.println("Cumulative %");
|
---|
1846 | fout.println("factor");
|
---|
1847 | for(int i=0; i<nExtracted; i++){
|
---|
1848 | fout.printtab((i+1) + " (" + (this.rotatedIndices[i]+1) + ")");
|
---|
1849 | fout.printtab(" ");
|
---|
1850 | for(int j=0; j<this.nItems; j++)fout.printtab(Fmath.truncate(this.rotatedLoadingFactorsAsRows[i][j], this.trunc));
|
---|
1851 | fout.printtab(" ");
|
---|
1852 | fout.printtab(Fmath.truncate(rotatedEigenValues[i], this.trunc));
|
---|
1853 | fout.printtab(Fmath.truncate(rotatedProportionPercentage[i], this.trunc));
|
---|
1854 | fout.println(Fmath.truncate(rotatedCumulativePercentage[i], this.trunc));
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 |
|
---|
1858 | fout.println();
|
---|
1859 |
|
---|
1860 |
|
---|
1861 | fout.println("DATA USED");
|
---|
1862 | fout.println("Number of items = " + this.nItems);
|
---|
1863 | fout.println("Number of persons = " + this.nPersons);
|
---|
1864 |
|
---|
1865 | if(this.originalDataType==0){
|
---|
1866 | fout.printtab("Item");
|
---|
1867 | for(int i=0; i<this.nPersons; i++){
|
---|
1868 | fout.printtab(i+1);
|
---|
1869 | }
|
---|
1870 | fout.println();
|
---|
1871 | for(int i=0; i<this.nItems; i++){
|
---|
1872 | fout.printtab(this.itemNames[i]);
|
---|
1873 | for(int j=0; j<this.nPersons; j++){
|
---|
1874 | fout.printtab(Fmath.truncate(this.scores0[i][j], this.trunc));
|
---|
1875 | }
|
---|
1876 | fout.println();
|
---|
1877 | }
|
---|
1878 | }
|
---|
1879 | else{
|
---|
1880 | fout.printtab("Person");
|
---|
1881 | for(int i=0; i<this.nItems; i++){
|
---|
1882 | fout.printtab(this.itemNames[i]);
|
---|
1883 | }
|
---|
1884 | fout.println();
|
---|
1885 | for(int i=0; i<this.nPersons; i++){
|
---|
1886 | fout.printtab(i+1);
|
---|
1887 | for(int j=0; j<this.nItems; j++){
|
---|
1888 | fout.printtab(Fmath.truncate(this.scores1[i][j], this.trunc));
|
---|
1889 | }
|
---|
1890 | fout.println();
|
---|
1891 | }
|
---|
1892 | }
|
---|
1893 |
|
---|
1894 | fout.close();
|
---|
1895 | }
|
---|
1896 | }
|
---|
1897 |
|
---|