1 | package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
|
---|
2 | * http://github.com/renzodenardi/jgpml
|
---|
3 | *
|
---|
4 | * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
|
---|
5 | *
|
---|
6 | * Permission is hereby granted, free of charge, to any person
|
---|
7 | * obtaining a copy of this software and associated documentation
|
---|
8 | * files (the "Software"), to deal in the Software without
|
---|
9 | * restriction, including without limitation the rights to use,
|
---|
10 | * copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
11 | * copies of the Software, and to permit persons to whom the
|
---|
12 | * Software is furnished to do so, subject to the following
|
---|
13 | * conditions:
|
---|
14 | *
|
---|
15 | * The above copyright notice and this permission notice shall be
|
---|
16 | * included in all copies or substantial portions of the Software.
|
---|
17 | *
|
---|
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
---|
19 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
---|
20 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
---|
21 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
---|
22 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
---|
23 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
---|
24 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
---|
25 | * OTHER DEALINGS IN THE SOFTWARE.
|
---|
26 | */
|
---|
27 |
|
---|
28 | import static agents.anac.y2015.Phoenix.GP.MatrixOperations.*;
|
---|
29 |
|
---|
30 | import java.util.Arrays;
|
---|
31 |
|
---|
32 | import agents.Jama.Matrix;
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * Squared Exponential covariance function with isotropic distance measure. The
|
---|
36 | * covariance function is parameterized as:
|
---|
37 | * <P><DD>
|
---|
38 | * k(x^p,x^q) = sf2 * exp(-(x^p - x^q)'*inv(P)*(x^p - x^q)/2)
|
---|
39 | * </DD>
|
---|
40 | * where the P matrix is ell^2 times the unit matrix and sf2 is the signal
|
---|
41 | * variance. The hyperparameters are:
|
---|
42 | * <P>
|
---|
43 | * [ log(ell)
|
---|
44 | * log(sqrt(sf2)) ]
|
---|
45 | */
|
---|
46 |
|
---|
47 | public class CovSEiso implements CovarianceFunction{
|
---|
48 |
|
---|
49 | public CovSEiso(){}
|
---|
50 |
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * Returns the number of hyperparameters of this<code>PhoenixAlpha.CovarianceFunction</code>
|
---|
54 | *
|
---|
55 | * @return number of hyperparameters
|
---|
56 | */
|
---|
57 | public int numParameters() {
|
---|
58 | return 2;
|
---|
59 | }
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * Compute covariance matrix of a dataset X
|
---|
63 | *
|
---|
64 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
65 | * @param X input dataset
|
---|
66 | * @return K covariance <code>Matrix</code>
|
---|
67 | */
|
---|
68 | public Matrix compute(Matrix loghyper, Matrix X) {
|
---|
69 |
|
---|
70 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
71 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
72 |
|
---|
73 | double ell = Math.exp(loghyper.get(0,0));
|
---|
74 | double sf2 = Math.exp(2*loghyper.get(1,0));
|
---|
75 |
|
---|
76 | Matrix K = exp(squareDist(X.transpose().times(1/ell)).times(-0.5)).times(sf2);
|
---|
77 |
|
---|
78 | return K;
|
---|
79 | }
|
---|
80 |
|
---|
81 | /**
|
---|
82 | * Compute compute test set covariances
|
---|
83 | *
|
---|
84 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
85 | * @param X input dataset
|
---|
86 | * @param Xstar test set
|
---|
87 | * @return [K(Xstar,Xstar) K(X,Xstar)]
|
---|
88 | */
|
---|
89 | public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
|
---|
90 |
|
---|
91 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
92 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
93 |
|
---|
94 |
|
---|
95 | double ell = Math.exp(loghyper.get(0,0));
|
---|
96 | double sf2 = Math.exp(2*loghyper.get(1,0));
|
---|
97 | double[] a = new double[Xstar.getRowDimension()];
|
---|
98 | Arrays.fill(a,sf2);
|
---|
99 | Matrix A = new Matrix(a,a.length);
|
---|
100 |
|
---|
101 | Matrix B = exp(squareDist(X.transpose().times(1/ell),Xstar.transpose().times(1/ell)).times(-0.5)).times(sf2);
|
---|
102 |
|
---|
103 | return new Matrix[]{A,B};
|
---|
104 | }
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
|
---|
108 | * to the hyperparameter with index <code>idx</code>
|
---|
109 | *
|
---|
110 | * @param loghyper hyperparameters
|
---|
111 | * @param X input dataset
|
---|
112 | * @param index hyperparameter index
|
---|
113 | * @return <code>Matrix</code> of derivatives
|
---|
114 | */
|
---|
115 | public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) {
|
---|
116 |
|
---|
117 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
118 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
119 | if(index>numParameters()-1)
|
---|
120 | throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
|
---|
121 |
|
---|
122 | double ell = Math.exp(loghyper.get(0,0));
|
---|
123 | double sf2 = Math.exp(2*loghyper.get(1,0));
|
---|
124 |
|
---|
125 | Matrix tmp = squareDist(X.transpose().times(1/ell));
|
---|
126 | Matrix A = null;
|
---|
127 | if(index==0){
|
---|
128 | A = exp(tmp.times(-0.5)).arrayTimes(tmp).times(sf2);
|
---|
129 | } else {
|
---|
130 | A = exp(tmp.times(-0.5)).times(2*sf2);
|
---|
131 | }
|
---|
132 |
|
---|
133 | return A;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | private static Matrix squareDist(Matrix a){
|
---|
138 | return squareDist(a,a);
|
---|
139 | }
|
---|
140 |
|
---|
141 | private static Matrix squareDist(Matrix a, Matrix b){
|
---|
142 | Matrix C = new Matrix(a.getColumnDimension(),b.getColumnDimension());
|
---|
143 | final int m = a.getColumnDimension();
|
---|
144 | final int n = b.getColumnDimension();
|
---|
145 | final int d = a.getRowDimension();
|
---|
146 |
|
---|
147 | for (int i=0; i<m; i++){
|
---|
148 | for (int j=0; j<n; j++) {
|
---|
149 | double z = 0.0;
|
---|
150 | for (int k=0; k<d; k++) { double t = a.get(k,i) - b.get(k,j); z += t*t; }
|
---|
151 | C.set(i,j,z);
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | return C;
|
---|
156 | }
|
---|
157 |
|
---|
158 | public static void main(String[] args) {
|
---|
159 |
|
---|
160 | CovSEiso cf = new CovSEiso();
|
---|
161 |
|
---|
162 | Matrix X = Matrix.identity(6,6);
|
---|
163 | Matrix logtheta = new Matrix(new double[][]{{0.1},{0.2}});
|
---|
164 |
|
---|
165 | // Matrix z = new Matrix(new double[][]{{1,2,3,4,5,6},{1,2,3,4,5,6}});
|
---|
166 | //
|
---|
167 | // System.out.println("");
|
---|
168 | // Matrix K = cf.compute(logtheta,X);
|
---|
169 | // K.print(K.getColumnDimension(), 8);
|
---|
170 | //
|
---|
171 | // Matrix[] res = cf.compute(logtheta,X,z);
|
---|
172 | //
|
---|
173 | // res[0].print(res[0].getColumnDimension(), 20);
|
---|
174 | // res[1].print(res[1].getColumnDimension(), 20);
|
---|
175 |
|
---|
176 | Matrix d = cf.computeDerivatives(logtheta,X,1);
|
---|
177 |
|
---|
178 | d.print(d.getColumnDimension(), 8);
|
---|
179 | }
|
---|
180 | }
|
---|
181 |
|
---|
182 | // private static Matrix squareDist(Matrix a, Matrix b, Matrix Q){
|
---|
183 | //
|
---|
184 | // if(a.getColumnDimension()!=Q.getRowDimension() || b.getColumnDimension()!=Q.getColumnDimension())
|
---|
185 | // throw new IllegalArgumentException("Wrong size of for Q "+Q.getRowDimension()+"x"+Q.getColumnDimension()+" instead of "+a.getColumnDimension()+"x"+b.getColumnDimension());
|
---|
186 | //
|
---|
187 | // Matrix C = new Matrix(D,1);
|
---|
188 | //
|
---|
189 | // for (int i=0; i<b.getColumnDimension(); i++) {
|
---|
190 | // for (int j=0; j<a.getColumnDimension(); j++) {
|
---|
191 | // double t = Q.get(i,j);
|
---|
192 | // for (int k=0; k<D; k++) {
|
---|
193 | // double z = a.get(i,k) - b.get(j,k);
|
---|
194 | // C.set(k,0,C.get(k,0)+ t*z*z);
|
---|
195 | // }
|
---|
196 | // }
|
---|
197 | // }
|
---|
198 | //
|
---|
199 | // return C;
|
---|
200 | // }
|
---|
201 |
|
---|
202 |
|
---|