source: src/main/java/agents/anac/y2015/Phoenix/GP/CovSEiso.java@ 346

Last change on this file since 346 was 1, checked in by Wouter Pasman, 6 years ago

Initial import : Genius 9.0.0

File size: 6.9 KB
Line 
1package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
2 * http://github.com/renzodenardi/jgpml
3 *
4 * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
5 *
6 * Permission is hereby granted, free of charge, to any person
7 * obtaining a copy of this software and associated documentation
8 * files (the "Software"), to deal in the Software without
9 * restriction, including without limitation the rights to use,
10 * copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following
13 * conditions:
14 *
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
22 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
23 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25 * OTHER DEALINGS IN THE SOFTWARE.
26 */
27
28import static agents.anac.y2015.Phoenix.GP.MatrixOperations.*;
29
30import java.util.Arrays;
31
32import agents.Jama.Matrix;
33
34/**
35 * Squared Exponential covariance function with isotropic distance measure. The
36 * covariance function is parameterized as:
37 * <P><DD>
38 * k(x^p,x^q) = sf2 * exp(-(x^p - x^q)'*inv(P)*(x^p - x^q)/2)
39 * </DD>
40 * where the P matrix is ell^2 times the unit matrix and sf2 is the signal
41 * variance. The hyperparameters are:
42 * <P>
43 * [ log(ell)
44 * log(sqrt(sf2)) ]
45 */
46
47public class CovSEiso implements CovarianceFunction{
48
49 public CovSEiso(){}
50
51
52 /**
53 * Returns the number of hyperparameters of this<code>PhoenixAlpha.CovarianceFunction</code>
54 *
55 * @return number of hyperparameters
56 */
57 public int numParameters() {
58 return 2;
59 }
60
61 /**
62 * Compute covariance matrix of a dataset X
63 *
64 * @param loghyper column <code>Matrix</code> of hyperparameters
65 * @param X input dataset
66 * @return K covariance <code>Matrix</code>
67 */
68 public Matrix compute(Matrix loghyper, Matrix X) {
69
70 if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
71 throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
72
73 double ell = Math.exp(loghyper.get(0,0));
74 double sf2 = Math.exp(2*loghyper.get(1,0));
75
76 Matrix K = exp(squareDist(X.transpose().times(1/ell)).times(-0.5)).times(sf2);
77
78 return K;
79 }
80
81 /**
82 * Compute compute test set covariances
83 *
84 * @param loghyper column <code>Matrix</code> of hyperparameters
85 * @param X input dataset
86 * @param Xstar test set
87 * @return [K(Xstar,Xstar) K(X,Xstar)]
88 */
89 public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
90
91 if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
92 throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
93
94
95 double ell = Math.exp(loghyper.get(0,0));
96 double sf2 = Math.exp(2*loghyper.get(1,0));
97 double[] a = new double[Xstar.getRowDimension()];
98 Arrays.fill(a,sf2);
99 Matrix A = new Matrix(a,a.length);
100
101 Matrix B = exp(squareDist(X.transpose().times(1/ell),Xstar.transpose().times(1/ell)).times(-0.5)).times(sf2);
102
103 return new Matrix[]{A,B};
104 }
105
106 /**
107 * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
108 * to the hyperparameter with index <code>idx</code>
109 *
110 * @param loghyper hyperparameters
111 * @param X input dataset
112 * @param index hyperparameter index
113 * @return <code>Matrix</code> of derivatives
114 */
115 public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) {
116
117 if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
118 throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
119 if(index>numParameters()-1)
120 throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
121
122 double ell = Math.exp(loghyper.get(0,0));
123 double sf2 = Math.exp(2*loghyper.get(1,0));
124
125 Matrix tmp = squareDist(X.transpose().times(1/ell));
126 Matrix A = null;
127 if(index==0){
128 A = exp(tmp.times(-0.5)).arrayTimes(tmp).times(sf2);
129 } else {
130 A = exp(tmp.times(-0.5)).times(2*sf2);
131 }
132
133 return A;
134 }
135
136
137 private static Matrix squareDist(Matrix a){
138 return squareDist(a,a);
139 }
140
141 private static Matrix squareDist(Matrix a, Matrix b){
142 Matrix C = new Matrix(a.getColumnDimension(),b.getColumnDimension());
143 final int m = a.getColumnDimension();
144 final int n = b.getColumnDimension();
145 final int d = a.getRowDimension();
146
147 for (int i=0; i<m; i++){
148 for (int j=0; j<n; j++) {
149 double z = 0.0;
150 for (int k=0; k<d; k++) { double t = a.get(k,i) - b.get(k,j); z += t*t; }
151 C.set(i,j,z);
152 }
153 }
154
155 return C;
156 }
157
158 public static void main(String[] args) {
159
160 CovSEiso cf = new CovSEiso();
161
162 Matrix X = Matrix.identity(6,6);
163 Matrix logtheta = new Matrix(new double[][]{{0.1},{0.2}});
164
165// Matrix z = new Matrix(new double[][]{{1,2,3,4,5,6},{1,2,3,4,5,6}});
166//
167// System.out.println("");
168// Matrix K = cf.compute(logtheta,X);
169// K.print(K.getColumnDimension(), 8);
170//
171// Matrix[] res = cf.compute(logtheta,X,z);
172//
173// res[0].print(res[0].getColumnDimension(), 20);
174// res[1].print(res[1].getColumnDimension(), 20);
175
176 Matrix d = cf.computeDerivatives(logtheta,X,1);
177
178 d.print(d.getColumnDimension(), 8);
179 }
180}
181
182// private static Matrix squareDist(Matrix a, Matrix b, Matrix Q){
183//
184// if(a.getColumnDimension()!=Q.getRowDimension() || b.getColumnDimension()!=Q.getColumnDimension())
185// throw new IllegalArgumentException("Wrong size of for Q "+Q.getRowDimension()+"x"+Q.getColumnDimension()+" instead of "+a.getColumnDimension()+"x"+b.getColumnDimension());
186//
187// Matrix C = new Matrix(D,1);
188//
189// for (int i=0; i<b.getColumnDimension(); i++) {
190// for (int j=0; j<a.getColumnDimension(); j++) {
191// double t = Q.get(i,j);
192// for (int k=0; k<D; k++) {
193// double z = a.get(i,k) - b.get(j,k);
194// C.set(k,0,C.get(k,0)+ t*z*z);
195// }
196// }
197// }
198//
199// return C;
200// }
201
202
Note: See TracBrowser for help on using the repository browser.