1 | package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
|
---|
2 | * http://github.com/renzodenardi/jgpml
|
---|
3 | *
|
---|
4 | * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
|
---|
5 | *
|
---|
6 | * Permission is hereby granted, free of charge, to any person
|
---|
7 | * obtaining a copy of this software and associated documentation
|
---|
8 | * files (the "Software"), to deal in the Software without
|
---|
9 | * restriction, including without limitation the rights to use,
|
---|
10 | * copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
11 | * copies of the Software, and to permit persons to whom the
|
---|
12 | * Software is furnished to do so, subject to the following
|
---|
13 | * conditions:
|
---|
14 | *
|
---|
15 | * The above copyright notice and this permission notice shall be
|
---|
16 | * included in all copies or substantial portions of the Software.
|
---|
17 | *
|
---|
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
---|
19 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
---|
20 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
---|
21 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
---|
22 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
---|
23 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
---|
24 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
---|
25 | * OTHER DEALINGS IN THE SOFTWARE.
|
---|
26 | */
|
---|
27 |
|
---|
28 | import java.util.Arrays;
|
---|
29 |
|
---|
30 | import agents.Jama.Matrix;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Independent covariance function, ie "white noise", with specified variance.
|
---|
34 | * The covariance function is specified as:
|
---|
35 | * <p>
|
---|
36 | * k(x^p,x^q) = s2 * \delta(p,q)
|
---|
37 | * <p>
|
---|
38 | * where s2 is the noise variance and \delta(p,q) is a Kronecker delta function
|
---|
39 | * which is 1 iff p=q and zero otherwise. The hyperparameter is
|
---|
40 | * <p>
|
---|
41 | * [ log(sqrt(s2)) ]
|
---|
42 | */
|
---|
43 | public class CovNoise implements CovarianceFunction {
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * Creates a new <code>PhoenixAlpha.CovNoise PhoenixAlpha.CovarianceFunction<code>
|
---|
47 | */
|
---|
48 | public CovNoise(){
|
---|
49 | }
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * Returns the number of hyperparameters of <code>PhoenixAlpha.CovSEard</code>
|
---|
53 | * @return number of hyperparameters
|
---|
54 | */
|
---|
55 | public int numParameters() {
|
---|
56 | return 1;
|
---|
57 | }
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Compute covariance matrix of a dataset X
|
---|
61 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
62 | * @param X input dataset
|
---|
63 | * @return K covariance <code>Matrix</code>
|
---|
64 | */
|
---|
65 | public Matrix compute(Matrix loghyper, Matrix X) {
|
---|
66 |
|
---|
67 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
68 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
69 |
|
---|
70 | final double s2 = Math.exp(2*loghyper.get(0,0)); // noise variance
|
---|
71 |
|
---|
72 | Matrix K = Matrix.identity(X.getRowDimension(),X.getRowDimension()).times(s2);
|
---|
73 |
|
---|
74 | return K;
|
---|
75 |
|
---|
76 | }
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * Compute compute test set covariances
|
---|
80 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
81 | * @param X input dataset
|
---|
82 | * @param Xstar test set
|
---|
83 | * @return [K(Xstar,Xstar) K(X,Xstar)]
|
---|
84 | */
|
---|
85 | public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
|
---|
86 |
|
---|
87 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
88 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
89 |
|
---|
90 | final double s2 = Math.exp(2*loghyper.get(0,0)); // noise variance
|
---|
91 |
|
---|
92 | double[]a = new double[Xstar.getRowDimension()];
|
---|
93 | Arrays.fill(a,s2);
|
---|
94 | Matrix A =new Matrix(a,Xstar.getRowDimension()); // adding Gaussian
|
---|
95 |
|
---|
96 | Matrix B = new Matrix(X.getRowDimension(),Xstar.getRowDimension());
|
---|
97 |
|
---|
98 | return new Matrix[]{A,B};
|
---|
99 | }
|
---|
100 |
|
---|
101 | /**
|
---|
102 | * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
|
---|
103 | * to the hyperparameter with index <code>idx</code>
|
---|
104 | *
|
---|
105 | * @param loghyper hyperparameters
|
---|
106 | * @param X input dataset
|
---|
107 | * @param index hyperparameter index
|
---|
108 | * @return <code>Matrix</code> of derivatives
|
---|
109 | */
|
---|
110 | public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index){
|
---|
111 |
|
---|
112 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
113 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
114 | if(index>numParameters()-1)
|
---|
115 | throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
|
---|
116 |
|
---|
117 | //noise parameter
|
---|
118 | final double s2 = Math.exp(2*loghyper.get(0,0));
|
---|
119 | Matrix A = Matrix.identity(X.getRowDimension(),X.getRowDimension()).times(2*s2);
|
---|
120 |
|
---|
121 | return A;
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|