[1] | 1 | package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
|
---|
| 2 | * http://github.com/renzodenardi/jgpml
|
---|
| 3 | *
|
---|
| 4 | * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
|
---|
| 5 | *
|
---|
| 6 | * Permission is hereby granted, free of charge, to any person
|
---|
| 7 | * obtaining a copy of this software and associated documentation
|
---|
| 8 | * files (the "Software"), to deal in the Software without
|
---|
| 9 | * restriction, including without limitation the rights to use,
|
---|
| 10 | * copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
| 11 | * copies of the Software, and to permit persons to whom the
|
---|
| 12 | * Software is furnished to do so, subject to the following
|
---|
| 13 | * conditions:
|
---|
| 14 | *
|
---|
| 15 | * The above copyright notice and this permission notice shall be
|
---|
| 16 | * included in all copies or substantial portions of the Software.
|
---|
| 17 | *
|
---|
| 18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
---|
| 19 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
---|
| 21 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
---|
| 22 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
---|
| 23 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
---|
| 24 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
---|
| 25 | * OTHER DEALINGS IN THE SOFTWARE.
|
---|
| 26 | */
|
---|
| 27 |
|
---|
| 28 | import agents.Jama.Matrix;
|
---|
| 29 |
|
---|
| 30 | /**
|
---|
| 31 | * Neural network covariance function with a single parameter for the distance
|
---|
| 32 | * measure and white noise. The covariance function is parameterized as:
|
---|
| 33 | * <P>
|
---|
| 34 | * k(x^p,x^q) = sf2 * asin(x^p'*P*x^q / sqrt[(1+x^p'*P*x^p)*(1+x^q'*P*x^q)]) + s2 * \delta(p,q)
|
---|
| 35 | * <P>
|
---|
| 36 | * where the x^p and x^q vectors on the right hand side have an added extra bias
|
---|
| 37 | * entry with unit value. P is ell^-2 times the unit matrix and sf2 controls the
|
---|
| 38 | * signal variance. The hyperparameters are:
|
---|
| 39 | * <P>
|
---|
| 40 | * [ log(ell)
|
---|
| 41 | * log(sqrt(sf2)
|
---|
| 42 | * log(s2)]
|
---|
| 43 | *
|
---|
| 44 | * <P>
|
---|
| 45 | * For reson of speed consider to use this covariance function instead of <code>PhoenixAlpha.CovSum(PhoenixAlpha.CovNNone,PhoenixAlpha.CovNoise)</code>
|
---|
| 46 | *
|
---|
| 47 | */
|
---|
| 48 |
|
---|
| 49 | public class CovNNoneNoise implements CovarianceFunction{
|
---|
| 50 |
|
---|
| 51 | double[][] k;
|
---|
| 52 | double[][] q;
|
---|
| 53 |
|
---|
| 54 | public CovNNoneNoise(){}
|
---|
| 55 |
|
---|
| 56 |
|
---|
| 57 | /**
|
---|
| 58 | * Returns the number of hyperparameters of this<code>PhoenixAlpha.CovarianceFunction</code>
|
---|
| 59 | *
|
---|
| 60 | * @return number of hyperparameters
|
---|
| 61 | */
|
---|
| 62 | public int numParameters() {
|
---|
| 63 | return 3;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | /**
|
---|
| 67 | * Compute covariance matrix of a dataset X
|
---|
| 68 | *
|
---|
| 69 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
| 70 | * @param X input dataset
|
---|
| 71 | * @return K covariance <code>Matrix</code>
|
---|
| 72 | */
|
---|
| 73 | public Matrix compute(Matrix loghyper, Matrix X) {
|
---|
| 74 |
|
---|
| 75 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
| 76 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
| 77 |
|
---|
| 78 | final double ell = Math.exp(loghyper.get(0,0));
|
---|
| 79 | final double em2 = 1/(ell*ell);
|
---|
| 80 | final double oneplusem2 = 1+em2;
|
---|
| 81 | final double sf2 = Math.exp(2*loghyper.get(1,0));
|
---|
| 82 | final double s2 = Math.exp(2*loghyper.get(2,0));
|
---|
| 83 |
|
---|
| 84 | final int m = X.getRowDimension();
|
---|
| 85 | final int n = X.getColumnDimension();
|
---|
| 86 | double[][] x= X.getArray();
|
---|
| 87 |
|
---|
| 88 | // Matrix Xc= X.times(1/ell);
|
---|
| 89 | //
|
---|
| 90 | // Q = Xc.times(Xc.transpose());
|
---|
| 91 | // System.out.print("Q=");Q.print(Q.getColumnDimension(), 8);
|
---|
| 92 |
|
---|
| 93 | // Q = new Matrix(m,m);
|
---|
| 94 | // double[][] q = Q.getArray();
|
---|
| 95 | // double[][] q;
|
---|
| 96 | q = new double[m][m];
|
---|
| 97 |
|
---|
| 98 | for(int i=0;i<m;i++){
|
---|
| 99 | for(int j=0;j<m;j++){
|
---|
| 100 | double t = 0;
|
---|
| 101 | for(int k=0;k<n;k++){
|
---|
| 102 | t+=x[i][k]*x[j][k]*em2;
|
---|
| 103 | }
|
---|
| 104 | q[i][j]=t;
|
---|
| 105 | }
|
---|
| 106 | }
|
---|
| 107 | // System.out.print("q=");Q.print(Q.getColumnDimension(), 8);
|
---|
| 108 |
|
---|
| 109 | // Matrix dQ = diag(Q);
|
---|
| 110 | // Matrix dQT = dQ.transpose();
|
---|
| 111 | // Matrix Qc = Q.copy();
|
---|
| 112 | // K = addValue(Qc,em2).arrayRightDivide(sqrt(addValue(dQ,1+em2)).times(sqrt(addValue(dQT,1+em2))));
|
---|
| 113 | // System.out.print("K=");K.print(K.getColumnDimension(), 8);
|
---|
| 114 |
|
---|
| 115 | double[] dq = new double[m];
|
---|
| 116 | for(int i=0;i<m;i++){
|
---|
| 117 | dq[i]=Math.sqrt(oneplusem2+q[i][i]);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | //K = new Matrix(m,m);
|
---|
| 121 | Matrix A = new Matrix(m,m);
|
---|
| 122 | //double[][] k;
|
---|
| 123 | k = new double[m][m];//K.getArray();
|
---|
| 124 | double[][] a =A.getArray();
|
---|
| 125 | for(int i=0;i<m;i++){
|
---|
| 126 | final double dqi = dq[i];
|
---|
| 127 | for(int j=0;j<m;j++){
|
---|
| 128 | final double t = (em2+q[i][j])/(dqi*dq[j]);
|
---|
| 129 | k[i][j]=t;
|
---|
| 130 | a[i][j]=sf2*Math.asin(t);
|
---|
| 131 | }
|
---|
| 132 | a[i][i]+=s2;
|
---|
| 133 | }
|
---|
| 134 | // System.out.print("k=");K.print(K.getColumnDimension(), 8);
|
---|
| 135 | // System.out.println("");
|
---|
| 136 |
|
---|
| 137 | // Matrix A = asin(K).times(sf2);
|
---|
| 138 | return A;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | /**
|
---|
| 142 | * Compute compute test set covariances
|
---|
| 143 | *
|
---|
| 144 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
| 145 | * @param X input dataset
|
---|
| 146 | * @param Xstar test set
|
---|
| 147 | * @return [K(Xstar,Xstar) K(X,Xstar)]
|
---|
| 148 | */
|
---|
| 149 | public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
|
---|
| 150 |
|
---|
| 151 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
| 152 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
| 153 |
|
---|
| 154 | final double ell = Math.exp(loghyper.get(0,0));
|
---|
| 155 | final double em2 = 1/(ell*ell);
|
---|
| 156 | final double oneplusem2 = 1+em2;
|
---|
| 157 | final double sf2 = Math.exp(2*loghyper.get(1,0));
|
---|
| 158 | final double s2 = Math.exp(2*loghyper.get(2,0));
|
---|
| 159 |
|
---|
| 160 |
|
---|
| 161 | final int m = X.getRowDimension();
|
---|
| 162 | final int n = X.getColumnDimension();
|
---|
| 163 | double[][] x= X.getArray();
|
---|
| 164 | final int mstar = Xstar.getRowDimension();
|
---|
| 165 | final int nstar = Xstar.getColumnDimension();
|
---|
| 166 | double[][] xstar= Xstar.getArray();
|
---|
| 167 |
|
---|
| 168 |
|
---|
| 169 | double[] sumxstardotTimesxstar = new double[mstar];
|
---|
| 170 | for(int i=0; i<mstar; i++){
|
---|
| 171 | double t =0;
|
---|
| 172 | for(int j=0; j<nstar; j++){
|
---|
| 173 | final double tt = xstar[i][j];
|
---|
| 174 | t+=tt*tt*em2;
|
---|
| 175 | }
|
---|
| 176 | sumxstardotTimesxstar[i]=t;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | Matrix A = new Matrix(mstar,1);
|
---|
| 180 | double[][] a = A.getArray();
|
---|
| 181 | for(int i=0; i<mstar; i++){
|
---|
| 182 | a[i][0]=sf2*Math.asin((em2+sumxstardotTimesxstar[i])/(oneplusem2+sumxstardotTimesxstar[i]))+s2;
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 |
|
---|
| 186 |
|
---|
| 187 | // X = X.times(1/ell);
|
---|
| 188 | // Xstar = Xstar.times(1/ell);
|
---|
| 189 | // Matrix tmp = sumRows(Xstar.arrayTimes(Xstar));
|
---|
| 190 | //
|
---|
| 191 | // Matrix tmp2 = tmp.copy();
|
---|
| 192 | // addValue(tmp,em2);
|
---|
| 193 | // addValue(tmp2,oneplusem2);
|
---|
| 194 | // Matrix A = asin(tmp.arrayRightDivide(tmp2)).times(sf2);
|
---|
| 195 |
|
---|
| 196 |
|
---|
| 197 | double[] sumxdotTimesx = new double[m];
|
---|
| 198 | for(int i=0; i<m; i++){
|
---|
| 199 | double t =0;
|
---|
| 200 | for(int j=0; j<n; j++){
|
---|
| 201 | final double tt = x[i][j];
|
---|
| 202 | t+=tt*tt*em2;
|
---|
| 203 | }
|
---|
| 204 | sumxdotTimesx[i]=t+oneplusem2;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | Matrix B = new Matrix(m,mstar);
|
---|
| 208 | double[][] b = B.getArray();
|
---|
| 209 | for(int i=0; i<m; i++){
|
---|
| 210 | final double[] xi = x[i];
|
---|
| 211 | for(int j=0; j<mstar; j++){
|
---|
| 212 | double t=0;
|
---|
| 213 | final double[] xstarj = xstar[j];
|
---|
| 214 | for(int k=0; k<n; k++){
|
---|
| 215 | t+=xi[k]*xstarj[k]*em2;
|
---|
| 216 | }
|
---|
| 217 | b[i][j]=t+em2;
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | for(int i=0; i<m; i++){
|
---|
| 222 | for(int j=0; j<mstar; j++){
|
---|
| 223 | b[i][j] = sf2*Math.asin(b[i][j]/Math.sqrt((sumxstardotTimesxstar[j]+oneplusem2)*sumxdotTimesx[i]));
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 |
|
---|
| 228 |
|
---|
| 229 | // tmp = sumRows(X.arrayTimes(X));
|
---|
| 230 | // addValue(tmp,oneplusem2);
|
---|
| 231 | //
|
---|
| 232 | // tmp2=tmp2.transpose();
|
---|
| 233 | //
|
---|
| 234 | // tmp = addValue(X.times(Xstar.transpose()),em2).arrayRightDivide(sqrt(tmp.times(tmp2)));
|
---|
| 235 | // Matrix B = asin(tmp).times(sf2);
|
---|
| 236 |
|
---|
| 237 | //System.out.println("");
|
---|
| 238 | return new Matrix[]{A,B};
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | /**
|
---|
| 242 | * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
|
---|
| 243 | * to the hyperparameter with index <code>idx</code>
|
---|
| 244 | *
|
---|
| 245 | * @param loghyper hyperparameters
|
---|
| 246 | * @param X input dataset
|
---|
| 247 | * @param index hyperparameter index
|
---|
| 248 | * @return <code>Matrix</code> of derivatives
|
---|
| 249 | */
|
---|
| 250 | public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) {
|
---|
| 251 |
|
---|
| 252 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
| 253 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
| 254 | if(index>numParameters()-1)
|
---|
| 255 | throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
|
---|
| 256 |
|
---|
| 257 | final double ell = Math.exp(loghyper.get(0,0));
|
---|
| 258 | final double em2 = 1/(ell*ell);
|
---|
| 259 | final double oneplusem2 = 1+em2;
|
---|
| 260 | final double twosf2 = 2*Math.exp(2*loghyper.get(1,0));
|
---|
| 261 | final double twos2 = 2*Math.exp(2*loghyper.get(2,0));
|
---|
| 262 |
|
---|
| 263 | final int m = X.getRowDimension();
|
---|
| 264 | final int n = X.getColumnDimension();
|
---|
| 265 | double[][] x= X.getArray();
|
---|
| 266 |
|
---|
| 267 | // Matrix X = XX.times(1/ell);
|
---|
| 268 | // double[][] q=null;
|
---|
| 269 | if(q==null || q.length!=m || q[0].length!=m) {
|
---|
| 270 | q = new double[m][m];
|
---|
| 271 |
|
---|
| 272 | for(int i=0;i<m;i++){
|
---|
| 273 | for(int j=0;j<m;j++){
|
---|
| 274 | double t = 0;
|
---|
| 275 | for(int k=0;k<n;k++){
|
---|
| 276 | t+=x[i][k]*x[j][k]*em2;
|
---|
| 277 | }
|
---|
| 278 | q[i][j]=t;
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | double[] dq = new double[m];
|
---|
| 284 | for(int i=0;i<m;i++){
|
---|
| 285 | dq[i]=Math.sqrt(oneplusem2+q[i][i]);
|
---|
| 286 | }
|
---|
| 287 | // double[][] k=null;
|
---|
| 288 | if(k==null || k.length!=m || k[0].length!=m) {
|
---|
| 289 | k = new double[m][m];
|
---|
| 290 | for(int i=0;i<m;i++){
|
---|
| 291 | final double dqi = dq[i];
|
---|
| 292 | for(int j=0;j<m;j++){
|
---|
| 293 | final double t = (em2+q[i][j])/(dqi*dq[j]);
|
---|
| 294 | k[i][j]=t;
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 | // Matrix Xc= XX.times(1/ell);
|
---|
| 300 | // Matrix Q = Xc.times(Xc.transpose());
|
---|
| 301 | //
|
---|
| 302 | // Matrix dQ = diag(Q);
|
---|
| 303 | // Matrix dQT = dQ.transpose();
|
---|
| 304 | // Matrix K = addValue(Q.copy(),em2).arrayRightDivide(sqrt(addValue(dQ.copy(),1+em2)).times(sqrt(addValue(dQT,1+em2))));
|
---|
| 305 | // Matrix dQc = dQ.copy();
|
---|
| 306 |
|
---|
| 307 | Matrix A = null;
|
---|
| 308 | switch(index){
|
---|
| 309 | case 0:
|
---|
| 310 | for(int i=0;i<m;i++){
|
---|
| 311 | dq[i]=oneplusem2+q[i][i];
|
---|
| 312 | }
|
---|
| 313 | double[] v = new double[m];
|
---|
| 314 | for(int i=0; i<m; i++){
|
---|
| 315 | double t =0;
|
---|
| 316 | for(int j=0; j<n; j++){
|
---|
| 317 | final double xij = x[i][j];
|
---|
| 318 | t+=xij*xij*em2;
|
---|
| 319 | }
|
---|
| 320 | v[i]=(t+em2)/(dq[i]);
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | // Matrix test = addValue(sumRows(X.arrayTimes(X)),em2);
|
---|
| 324 | // Matrix tmp = addValue(dQc,1+em2);
|
---|
| 325 | // Matrix V = addValue(sumRows(X.arrayTimes(X)),em2).arrayRightDivide(tmp);
|
---|
| 326 | //
|
---|
| 327 | // tmp = sqrt(tmp);
|
---|
| 328 | // tmp = addValue(Q.copy(),em2).arrayRightDivide(tmp.times(tmp.transpose()));
|
---|
| 329 |
|
---|
| 330 | for(int i=0; i<m; i++){
|
---|
| 331 | final double vi = v[i];
|
---|
| 332 | for(int j=0; j<m; j++){
|
---|
| 333 | double t =(q[i][j]+em2)/(Math.sqrt(dq[i])*Math.sqrt(dq[j]));
|
---|
| 334 | final double kij = k[i][j];
|
---|
| 335 | q[i][j]=-twosf2*((t-(0.5*kij*(vi+v[j])))/Math.sqrt(1-kij*kij));
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | // Matrix tmp2 = new Matrix(m,m);
|
---|
| 340 | // for(int j=0; j<m; j++)
|
---|
| 341 | // tmp2.setMatrix(0,m-1,j,j,V);
|
---|
| 342 | //
|
---|
| 343 | // tmp = tmp.minus(K.arrayTimes(tmp2.plus(tmp2.transpose())).times(0.5));
|
---|
| 344 | //
|
---|
| 345 | // A = tmp.arrayRightDivide(sqrtOneMinusSqr(K)).times(-twosf2);
|
---|
| 346 |
|
---|
| 347 | A = new Matrix(q);
|
---|
| 348 | // System.out.println("");
|
---|
| 349 | q=null;
|
---|
| 350 | break;
|
---|
| 351 | case 1:
|
---|
| 352 | for(int i=0; i<m; i++){
|
---|
| 353 | for(int j=0; j<m; j++){
|
---|
| 354 | k[i][j]=Math.asin(k[i][j])*twosf2;
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 | // A = asin(K).times(twosf2);
|
---|
| 358 | // K=null;
|
---|
| 359 | A = new Matrix(k);
|
---|
| 360 | k=null;
|
---|
| 361 |
|
---|
| 362 | break;
|
---|
| 363 |
|
---|
| 364 | case 2:
|
---|
| 365 | double[][] a = new double[m][m];
|
---|
| 366 | for(int i=0; i<m;i++) a[i][i]=twos2;
|
---|
| 367 |
|
---|
| 368 | A = new Matrix(a);
|
---|
| 369 |
|
---|
| 370 | break;
|
---|
| 371 | default:
|
---|
| 372 | throw new IllegalArgumentException("the covariance function PhoenixAlpha.CovNNoneNoise alllows for a maximum of 3 parameters!!");
|
---|
| 373 | }
|
---|
| 374 | return A;
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | // private static Matrix sqrtOneMinusSqr(Matrix in){
|
---|
| 378 | // Matrix out = new Matrix(in.getRowDimension(),in.getColumnDimension());
|
---|
| 379 | // for(int i=0; i<in.getRowDimension(); i++)
|
---|
| 380 | // for(int j=0; j<in.getColumnDimension(); j++) {
|
---|
| 381 | // final double tmp = in.get(i,j);
|
---|
| 382 | // out.set(i,j,Math.sqrt(1-tmp*tmp));
|
---|
| 383 | // }
|
---|
| 384 | // return out;
|
---|
| 385 | // }
|
---|
| 386 |
|
---|
| 387 | public static void main(String[] args) {
|
---|
| 388 |
|
---|
| 389 | CovarianceFunction cf = new CovNNoneNoise();
|
---|
| 390 | CovarianceFunction cf2 = new CovSum(6,new CovNNone(), new CovNoise());
|
---|
| 391 |
|
---|
| 392 |
|
---|
| 393 | Matrix X = Matrix.identity(10,6);
|
---|
| 394 |
|
---|
| 395 | for(int i=0; i<X.getRowDimension(); i++)
|
---|
| 396 | for(int j=0; j<X.getColumnDimension(); j++)
|
---|
| 397 | X.set(i,j,Math.random());
|
---|
| 398 |
|
---|
| 399 | Matrix logtheta = new Matrix(new double[][]{{0.1},{0.2},{Math.log(0.1)}});
|
---|
| 400 |
|
---|
| 401 | Matrix z =new Matrix(new double[][]{{1,2,3,4,5,6},{1,2,3,4,5,6}});
|
---|
| 402 |
|
---|
| 403 | // long start = System.currentTimeMillis();
|
---|
| 404 | // Matrix K = cf.compute(logtheta,X);
|
---|
| 405 | // K.print(K.getColumnDimension(), 15);
|
---|
| 406 |
|
---|
| 407 | // long stop = System.currentTimeMillis();
|
---|
| 408 | // System.out.println(""+(stop-start));
|
---|
| 409 | //
|
---|
| 410 | // start = System.currentTimeMillis();
|
---|
| 411 | // K = cf2.compute(logtheta,X);
|
---|
| 412 | // K.print(K.getColumnDimension(), 15);
|
---|
| 413 | // stop = System.currentTimeMillis();
|
---|
| 414 | // System.out.println(""+(stop-start));
|
---|
| 415 |
|
---|
| 416 |
|
---|
| 417 |
|
---|
| 418 | // long start = System.currentTimeMillis();
|
---|
| 419 | // Matrix[] res = cf.compute(logtheta,X,z);
|
---|
| 420 | // res[0].print(res[0].getColumnDimension(), 8);
|
---|
| 421 | // res[1].print(res[1].getColumnDimension(), 8);
|
---|
| 422 |
|
---|
| 423 | // long stop = System.currentTimeMillis();
|
---|
| 424 | // System.out.println(""+(stop-start));
|
---|
| 425 |
|
---|
| 426 |
|
---|
| 427 |
|
---|
| 428 | // res = cf2.compute(logtheta,X,z);
|
---|
| 429 | // res[0].print(res[0].getColumnDimension(), 8);
|
---|
| 430 | // res[1].print(res[1].getColumnDimension(), 8);
|
---|
| 431 |
|
---|
| 432 | // long stop = System.currentTimeMillis();
|
---|
| 433 | // System.out.println(""+(stop-start));
|
---|
| 434 |
|
---|
| 435 |
|
---|
| 436 |
|
---|
| 437 |
|
---|
| 438 | // Matrix d = cf.computeDerivatives(logtheta,X,0);
|
---|
| 439 | // d.print(d.getColumnDimension(), 8);
|
---|
| 440 |
|
---|
| 441 | //d = cf2.computeDerivatives(logtheta,X,0);
|
---|
| 442 | //d.print(d.getColumnDimension(), 8);
|
---|
| 443 |
|
---|
| 444 |
|
---|
| 445 | }
|
---|
| 446 | }
|
---|