package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project. * http://github.com/renzodenardi/jgpml * * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ import static agents.anac.y2015.Phoenix.GP.MatrixOperations.*; import agents.Jama.Matrix; /** Linear covariance function with a single hyperparameter. The covariance * function is parameterized as: *

* k(x^p,x^q) = x^p'*inv(P)*x^q + 1./t2; *

* where the P matrix is t2 times the unit matrix. The second term plays the * role of the bias. The hyperparameter is: *

* [ log(sqrt(t2)) ] */ public class CovLINone implements CovarianceFunction{ public CovLINone(){} /** * Returns the number of hyperparameters of thisPhoenixAlpha.CovarianceFunction * * @return number of hyperparameters */ public int numParameters() { return 1; } /** * Compute covariance matrix of a dataset X * * @param loghyper column Matrix of hyperparameters * @param X input dataset * @return K covariance Matrix */ public Matrix compute(Matrix loghyper, Matrix X) { if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters()) throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters()); final double it2 = Math.exp(-2*loghyper.get(0,0)); Matrix A = X.times(X.transpose()); return addValue(A,1).times(it2); } /** * Compute compute test set covariances * * @param loghyper column Matrix of hyperparameters * @param X input dataset * @param Xstar test set * @return [K(Xstar,Xstar) K(X,Xstar)] */ public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) { if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters()) throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters()); final double it2 = Math.exp(-2*loghyper.get(0,0)); Matrix A = sumRows(Xstar.arrayTimes(Xstar)); A= addValue(A,1).times(it2); Matrix B = X.times(Xstar.transpose()); B = addValue(B,1).times(it2); return new Matrix[]{A,B}; } /** * Coompute the derivatives of this PhoenixAlpha.CovarianceFunction with respect * to the hyperparameter with index idx * * @param loghyper hyperparameters * @param X input dataset * @param index hyperparameter index * @return Matrix of derivatives */ public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) { if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters()) throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters()); if(index>numParameters()-1) throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1)); final double it2 = Math.exp(-2*loghyper.get(0,0)); Matrix A = X.times(X.transpose()); return addValue(A,1).times(-2*it2); } public static void main(String[] args) { CovLINone cf = new CovLINone(); Matrix X = Matrix.identity(6,6); Matrix logtheta = new Matrix(new double[][]{{0.1}}); Matrix z = new Matrix(new double[][]{{1,2,3,4,5,6},{1,2,3,4,5,6}}); System.out.println(""); Matrix K = cf.compute(logtheta,X); K.print(K.getColumnDimension(), 8); Matrix[] res = cf.compute(logtheta,X,z); res[0].print(res[0].getColumnDimension(), 8); res[1].print(res[1].getColumnDimension(), 8); Matrix d = cf.computeDerivatives(logtheta,X,0); d.print(d.getColumnDimension(), 8); } }