1 | package agents.anac.y2015.Phoenix.GP;/* This file is part of the jgpml Project.
|
---|
2 | * http://github.com/renzodenardi/jgpml
|
---|
3 | *
|
---|
4 | * Copyright (c) 2011 Renzo De Nardi and Hugo Gravato-Marques
|
---|
5 | *
|
---|
6 | * Permission is hereby granted, free of charge, to any person
|
---|
7 | * obtaining a copy of this software and associated documentation
|
---|
8 | * files (the "Software"), to deal in the Software without
|
---|
9 | * restriction, including without limitation the rights to use,
|
---|
10 | * copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
11 | * copies of the Software, and to permit persons to whom the
|
---|
12 | * Software is furnished to do so, subject to the following
|
---|
13 | * conditions:
|
---|
14 | *
|
---|
15 | * The above copyright notice and this permission notice shall be
|
---|
16 | * included in all copies or substantial portions of the Software.
|
---|
17 | *
|
---|
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
---|
19 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
---|
20 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
---|
21 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
---|
22 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
---|
23 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
---|
24 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
---|
25 | * OTHER DEALINGS IN THE SOFTWARE.
|
---|
26 | */
|
---|
27 |
|
---|
28 | import static agents.anac.y2015.Phoenix.GP.MatrixOperations.*;
|
---|
29 |
|
---|
30 | import agents.Jama.Matrix;
|
---|
31 |
|
---|
32 | /** Linear covariance function with Automatic Relevance Determination (ARD). The
|
---|
33 | * covariance function is parameterized as:
|
---|
34 | * <p>
|
---|
35 | * k(x^p,x^q) = x^p'*inv(P)*x^q
|
---|
36 | * <p>
|
---|
37 | * where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where
|
---|
38 | * D is the dimension of the input space. The hyperparameters are:
|
---|
39 | * <p>
|
---|
40 | * [ log(ell_1) <br>
|
---|
41 | * log(ell_2) <br>
|
---|
42 | * . <br>
|
---|
43 | * log(ell_D) ] <br>
|
---|
44 | * <p>
|
---|
45 | * Note that there is no bias term; use covConst to add a bias.
|
---|
46 | *
|
---|
47 | */
|
---|
48 |
|
---|
49 | public class CovLINard implements CovarianceFunction{
|
---|
50 |
|
---|
51 | private int D;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Creates a new <code>PhoenixAlpha.CovSEard PhoenixAlpha.CovarianceFunction<code>
|
---|
55 | * @param inputDimension muber of dimension of the input
|
---|
56 | */
|
---|
57 | public CovLINard(int inputDimension){
|
---|
58 | this.D = inputDimension;
|
---|
59 | }
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * Returns the number of hyperparameters of this<code>PhoenixAlpha.CovarianceFunction</code>
|
---|
63 | *
|
---|
64 | * @return number of hyperparameters
|
---|
65 | */
|
---|
66 | public int numParameters() {
|
---|
67 | return D;
|
---|
68 | }
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Compute covariance matrix of a dataset X
|
---|
72 | *
|
---|
73 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
74 | * @param X input dataset
|
---|
75 | * @return K covariance <code>Matrix</code>
|
---|
76 | */
|
---|
77 | public Matrix compute(Matrix loghyper, Matrix X) {
|
---|
78 |
|
---|
79 | if(X.getColumnDimension()!=D)
|
---|
80 | throw new IllegalArgumentException("The number of dimensions specified on the covariance function "+D+" must agree with the size of the input vector"+X.getColumnDimension());
|
---|
81 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
82 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
83 |
|
---|
84 | final Matrix ell = exp(loghyper.getMatrix(0,D-1,0,0)); // characteristic length scales
|
---|
85 | Matrix diag = new Matrix(D,D);
|
---|
86 | for(int i=0; i<D; i++)
|
---|
87 | diag.set(i,i,1/ell.get(i,0));
|
---|
88 |
|
---|
89 | X = X.times(diag);
|
---|
90 |
|
---|
91 | return X.times(X.transpose());
|
---|
92 | }
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Compute compute test set covariances
|
---|
96 | *
|
---|
97 | * @param loghyper column <code>Matrix</code> of hyperparameters
|
---|
98 | * @param X input dataset
|
---|
99 | * @param Xstar test set
|
---|
100 | * @return [K(Xstar,Xstar) K(X,Xstar)]
|
---|
101 | */
|
---|
102 | public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
|
---|
103 |
|
---|
104 | if(X.getColumnDimension()!=D)
|
---|
105 | throw new IllegalArgumentException("The number of dimensions specified on the covariance function "+D+" must agree with the size of the input vector"+X.getColumnDimension());
|
---|
106 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
107 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
108 |
|
---|
109 | final Matrix ell = exp(loghyper.getMatrix(0,D-1,0,0)); // characteristic length scales
|
---|
110 | Matrix diag = new Matrix(D,D);
|
---|
111 | for(int i=0; i<D; i++)
|
---|
112 | diag.set(i,i,1/ell.get(i,0));
|
---|
113 |
|
---|
114 | X = X.times(diag);
|
---|
115 |
|
---|
116 | Xstar = Xstar.times(diag);
|
---|
117 | Matrix A = sumRows(Xstar.arrayTimes(Xstar));
|
---|
118 |
|
---|
119 | Matrix B = X.times(Xstar.transpose());
|
---|
120 | return new Matrix[]{A,B};
|
---|
121 | }
|
---|
122 |
|
---|
123 | /**
|
---|
124 | * Coompute the derivatives of this <code>PhoenixAlpha.CovarianceFunction</code> with respect
|
---|
125 | * to the hyperparameter with index <code>idx</code>
|
---|
126 | *
|
---|
127 | * @param loghyper hyperparameters
|
---|
128 | * @param X input dataset
|
---|
129 | * @param index hyperparameter index
|
---|
130 | * @return <code>Matrix</code> of derivatives
|
---|
131 | */
|
---|
132 | public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) {
|
---|
133 | if(X.getColumnDimension()!=D)
|
---|
134 | throw new IllegalArgumentException("The number of dimensions specified on the covariance function "+D+" must agree with the size of the input vector"+X.getColumnDimension());
|
---|
135 | if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
|
---|
136 | throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
|
---|
137 | if(index>numParameters()-1)
|
---|
138 | throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
|
---|
139 |
|
---|
140 | final Matrix ell = exp(loghyper.getMatrix(0,D-1,0,0)); // characteristic length scales
|
---|
141 | Matrix diag = new Matrix(D,D);
|
---|
142 | for(int i=0; i<D; i++)
|
---|
143 | diag.set(i,i,1/ell.get(i,0));
|
---|
144 |
|
---|
145 | X = X.times(diag);
|
---|
146 |
|
---|
147 | Matrix tmp = X.getMatrix(0,X.getRowDimension()-1,index,index);
|
---|
148 | return tmp.times(tmp.transpose()).times(-2);
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 |
|
---|
153 | public static void main(String[] args) {
|
---|
154 |
|
---|
155 | CovLINard cf = new CovLINard(6);
|
---|
156 |
|
---|
157 | Matrix X = Matrix.identity(6,6);
|
---|
158 | Matrix logtheta = new Matrix(new double[][]{{0.1},{0.2},{0.3},{0.4},{0.5},{0.6}});
|
---|
159 |
|
---|
160 | Matrix z = new Matrix(new double[][]{{1,2,3,4,5,6},{1,2,3,4,5,6}});
|
---|
161 |
|
---|
162 | System.out.println("");
|
---|
163 | //Matrix K = cf.compute(logtheta,X);
|
---|
164 | //K.print(K.getColumnDimension(), 8);
|
---|
165 |
|
---|
166 | //Matrix[] res = cf.compute(logtheta,X,z);
|
---|
167 |
|
---|
168 | //res[0].print(res[0].getColumnDimension(), 8);
|
---|
169 | //res[1].print(res[1].getColumnDimension(), 8);
|
---|
170 |
|
---|
171 | Matrix d = cf.computeDerivatives(logtheta,X,5);
|
---|
172 |
|
---|
173 | d.print(d.getColumnDimension(), 8);
|
---|
174 |
|
---|
175 | }
|
---|
176 | }
|
---|