1 | package agents.anac.y2014.Gangster;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.HashMap;
|
---|
5 | import java.util.PriorityQueue;
|
---|
6 | import java.util.Random;
|
---|
7 |
|
---|
8 | import genius.core.Bid;
|
---|
9 | import genius.core.bidding.BidDetails;
|
---|
10 | import genius.core.issue.IssueInteger;
|
---|
11 | import genius.core.issue.Value;
|
---|
12 | import genius.core.issue.ValueInteger;
|
---|
13 | import genius.core.utility.NonlinearUtilitySpace;
|
---|
14 |
|
---|
15 | class GenAlg {
|
---|
16 |
|
---|
17 | NonlinearUtilitySpace utilitySpace;
|
---|
18 | int numIssues;
|
---|
19 |
|
---|
20 | int initialGenerationSize;
|
---|
21 | int numSurvivors;
|
---|
22 | int numGenerations;
|
---|
23 | int minDistance; // the minimum distance between any pair of elements in a
|
---|
24 | // survivor set.
|
---|
25 |
|
---|
26 | PriorityQueue<BidDetails> generation;
|
---|
27 | ArrayList<BidDetails> newGeneration;
|
---|
28 | ArrayList<BidDetails> survivors;
|
---|
29 | ArrayList<BidDetails> newSurvivors;
|
---|
30 |
|
---|
31 | ArrayList<ArrayList<ValueInteger>> genesTable1;
|
---|
32 | ArrayList<ArrayList<ValueInteger>> genesTable2;
|
---|
33 | boolean useTable1 = true;
|
---|
34 |
|
---|
35 | Random random = new Random();
|
---|
36 |
|
---|
37 | GenAlg(NonlinearUtilitySpace utilitySpace, int initialGenerationSize,
|
---|
38 | int numSurvivors, int numGenerations, int minDistance) {
|
---|
39 |
|
---|
40 | this.utilitySpace = utilitySpace;
|
---|
41 | this.numIssues = utilitySpace.getDomain().getIssues().size();
|
---|
42 |
|
---|
43 | this.initialGenerationSize = initialGenerationSize;
|
---|
44 | this.numSurvivors = numSurvivors;
|
---|
45 | this.numGenerations = numGenerations;
|
---|
46 | this.minDistance = minDistance;
|
---|
47 |
|
---|
48 | generation = new PriorityQueue<BidDetails>(initialGenerationSize);
|
---|
49 | newGeneration = new ArrayList(initialGenerationSize);
|
---|
50 | survivors = new ArrayList<BidDetails>(numSurvivors);
|
---|
51 | newSurvivors = new ArrayList<BidDetails>(numSurvivors);
|
---|
52 |
|
---|
53 | genesTable1 = new ArrayList<ArrayList<ValueInteger>>(numIssues + 1);
|
---|
54 | genesTable2 = new ArrayList<ArrayList<ValueInteger>>(numIssues + 1);
|
---|
55 |
|
---|
56 | // Fill the table
|
---|
57 | genesTable1.add(null);
|
---|
58 | genesTable2.add(null);
|
---|
59 | for (int i = 1; i <= numIssues; i++) {
|
---|
60 |
|
---|
61 | int highestVal = ((IssueInteger) utilitySpace.getDomain()
|
---|
62 | .getIssues().get(i - 1)).getUpperBound();
|
---|
63 | int lowestVal = ((IssueInteger) utilitySpace.getDomain()
|
---|
64 | .getIssues().get(i - 1)).getLowerBound();
|
---|
65 |
|
---|
66 | ArrayList<ValueInteger> list1 = new ArrayList<ValueInteger>(
|
---|
67 | highestVal + 1);
|
---|
68 | ArrayList<ValueInteger> list2 = new ArrayList<ValueInteger>(
|
---|
69 | highestVal + 1);
|
---|
70 |
|
---|
71 | for (int j = lowestVal; j <= highestVal; j++) {
|
---|
72 | list1.add(new ValueInteger(j));
|
---|
73 | }
|
---|
74 |
|
---|
75 | genesTable1.add(list1);
|
---|
76 | genesTable2.add(list2);
|
---|
77 | }
|
---|
78 |
|
---|
79 | }
|
---|
80 |
|
---|
81 | ArrayList<BidDetails> globalSearch() throws Exception {
|
---|
82 | return go(null, -1);
|
---|
83 | }
|
---|
84 |
|
---|
85 | ArrayList<BidDetails> localSearch(Bid latestBid, int maxDistance)
|
---|
86 | throws Exception {
|
---|
87 | return go(latestBid, maxDistance);
|
---|
88 | }
|
---|
89 |
|
---|
90 | private ArrayList<BidDetails> go(Bid latestBid, int maxDistance)
|
---|
91 | throws Exception {
|
---|
92 |
|
---|
93 | generation.clear();
|
---|
94 |
|
---|
95 | // generate initial generation and request their utilities.
|
---|
96 | for (int i = 0; i < initialGenerationSize; i++) {
|
---|
97 | generation.add(getSample(latestBid, maxDistance));
|
---|
98 | }
|
---|
99 |
|
---|
100 | for (int k = 1; k < numGenerations; k++) {
|
---|
101 |
|
---|
102 | // get the survivors of the generation.
|
---|
103 | fillSurvivorList(generation);
|
---|
104 |
|
---|
105 | // if the survivors are not diverse enough the algorithm has
|
---|
106 | // converged and we return the previous generation
|
---|
107 | if (newSurvivors.size() < numSurvivors) {
|
---|
108 | return survivors;
|
---|
109 | }
|
---|
110 | survivors.clear();
|
---|
111 | survivors.addAll(newSurvivors);
|
---|
112 |
|
---|
113 | newGeneration.clear();
|
---|
114 |
|
---|
115 | // recombine the best ones, to create babies.
|
---|
116 | for (int i = 0; i < numSurvivors; i++) {
|
---|
117 | for (int j = i + 1; j < numSurvivors; j++) {
|
---|
118 |
|
---|
119 | // 45 pairs, for each pair generate 2 babies.
|
---|
120 | if (latestBid == null) { // global search
|
---|
121 | newGeneration.addAll(crossOver(survivors.get(i),
|
---|
122 | survivors.get(j), 2));
|
---|
123 | } else { // local search
|
---|
124 | newGeneration.addAll(crossOver(latestBid, maxDistance,
|
---|
125 | survivors.get(i), survivors.get(j)));
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }// size = n*(n-1)
|
---|
129 |
|
---|
130 | // create a new random sample.
|
---|
131 | BidDetails randomSample = getSample(latestBid, maxDistance);
|
---|
132 | for (int j = 0; j < numSurvivors; j++) {
|
---|
133 |
|
---|
134 | // 10 pairs, for each pair generate 2 babies.
|
---|
135 | if (latestBid == null) { // global search
|
---|
136 | newGeneration.addAll(crossOver(survivors.get(j),
|
---|
137 | randomSample, 2));
|
---|
138 | } else { // local search
|
---|
139 | newGeneration.addAll(crossOver(latestBid, maxDistance,
|
---|
140 | survivors.get(j), randomSample));
|
---|
141 | }
|
---|
142 | }// size = n*(n-1) + 2n = n^2 + n
|
---|
143 |
|
---|
144 | // add the survivors from the previous generation.
|
---|
145 | for (int i = 0; i < numSurvivors; i++) {
|
---|
146 | newGeneration.add(survivors.get(i));
|
---|
147 | }// size n^2 + 2n
|
---|
148 |
|
---|
149 | generation.clear();
|
---|
150 | generation.addAll(newGeneration);
|
---|
151 |
|
---|
152 | }
|
---|
153 |
|
---|
154 | fillSurvivorList(generation);
|
---|
155 |
|
---|
156 | // if the survivors are not diverse enough the algorithm has converged
|
---|
157 | // and we return the previous generation
|
---|
158 | if (newSurvivors.size() < numSurvivors) {
|
---|
159 | return survivors;
|
---|
160 | }
|
---|
161 |
|
---|
162 | return newSurvivors;
|
---|
163 |
|
---|
164 | }
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Clears the list of survivors, sorts the given generation, and fills the
|
---|
168 | * list of survivors again with the best n samples from the given
|
---|
169 | * generation. If this is not possible it means that we have converged, so
|
---|
170 | * we should return the list.
|
---|
171 | *
|
---|
172 | * @param generation
|
---|
173 | * @throws Exception
|
---|
174 | */
|
---|
175 | void fillSurvivorList(PriorityQueue<BidDetails> generation)
|
---|
176 | throws Exception {
|
---|
177 |
|
---|
178 | newSurvivors.clear();
|
---|
179 | newSurvivors.add(generation.poll());
|
---|
180 | int l = 1;
|
---|
181 | while (newSurvivors.size() < numSurvivors && l < generation.size()) {
|
---|
182 |
|
---|
183 | // get the next best sample from the generation
|
---|
184 | BidDetails samp = generation.poll();
|
---|
185 | l++;
|
---|
186 |
|
---|
187 | // test if it isn't too close to any other survivor.
|
---|
188 | boolean shouldBeAdded = true;
|
---|
189 | for (BidDetails survivor : newSurvivors) {
|
---|
190 | int dist = Utils.calculateManhattanDistance(samp.getBid(),
|
---|
191 | survivor.getBid());
|
---|
192 | if (dist < minDistance) {
|
---|
193 | shouldBeAdded = false;
|
---|
194 | break;
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | if (shouldBeAdded) {
|
---|
199 | newSurvivors.add(samp);
|
---|
200 | }
|
---|
201 |
|
---|
202 | }
|
---|
203 |
|
---|
204 | }
|
---|
205 |
|
---|
206 | Bid getRandomBid() throws Exception {
|
---|
207 |
|
---|
208 | HashMap<Integer, Value> newValues = new HashMap<Integer, Value>(
|
---|
209 | numIssues, 2);
|
---|
210 |
|
---|
211 | ArrayList<ArrayList<ValueInteger>> table;
|
---|
212 | ArrayList<ArrayList<ValueInteger>> bin;
|
---|
213 | if (useTable1) {
|
---|
214 | table = genesTable1;
|
---|
215 | bin = genesTable2;
|
---|
216 | } else {
|
---|
217 | table = genesTable2;
|
---|
218 | bin = genesTable1;
|
---|
219 | }
|
---|
220 |
|
---|
221 | for (int i = 1; i <= numIssues; i++) {
|
---|
222 |
|
---|
223 | int r = random.nextInt(table.get(i).size());
|
---|
224 | ValueInteger val = table.get(i).remove(r);
|
---|
225 | bin.get(i).add(val);
|
---|
226 |
|
---|
227 | newValues.put(new Integer(i), val);
|
---|
228 | }
|
---|
229 |
|
---|
230 | if (table.get(1).size() == 0) { // table.get(0) is null.
|
---|
231 | useTable1 = !useTable1;
|
---|
232 | }
|
---|
233 |
|
---|
234 | Bid newBid = new Bid(utilitySpace.getDomain(), newValues);
|
---|
235 | return newBid;
|
---|
236 | }
|
---|
237 |
|
---|
238 | BidDetails getSample(Bid latestBid, int maxDistance) throws Exception {
|
---|
239 |
|
---|
240 | Bid bid;
|
---|
241 | if (latestBid != null) {
|
---|
242 | bid = getRandomBid(latestBid, maxDistance);
|
---|
243 | } else {
|
---|
244 | // bid = utilitySpace.getDomain().getRandomBid();
|
---|
245 | bid = getRandomBid();
|
---|
246 | }
|
---|
247 |
|
---|
248 | double val = utilitySpace.getUtility(bid);
|
---|
249 |
|
---|
250 | return new BidDetails(bid, val);
|
---|
251 | }
|
---|
252 |
|
---|
253 | /**
|
---|
254 | * Returns a bid with distance smaller than or equal to maxDistance from the
|
---|
255 | * reference bid.
|
---|
256 | *
|
---|
257 | *
|
---|
258 | * @param utilitySpace
|
---|
259 | * @param referencebid
|
---|
260 | * @param maxDistance
|
---|
261 | * @return
|
---|
262 | * @throws Exception
|
---|
263 | */
|
---|
264 | Bid getRandomBid(Bid referencebid, int maxDistance) throws Exception {
|
---|
265 |
|
---|
266 | // the direction in which we make the random step.
|
---|
267 | int[] directions = new int[numIssues + 1];
|
---|
268 |
|
---|
269 | // make a copy of the reference bid.
|
---|
270 | HashMap<Integer, Value> oldValues = referencebid.getValues();
|
---|
271 | HashMap<Integer, Value> newValues = new HashMap<Integer, Value>(
|
---|
272 | oldValues); // Do NOT move this variable to outside the method,
|
---|
273 | // cause this will lead to problems!!
|
---|
274 |
|
---|
275 | int distance = random.nextInt(maxDistance) + 1;
|
---|
276 |
|
---|
277 | for (int i = 0; i < distance; i++) {
|
---|
278 |
|
---|
279 | // pick a random index to increase or decrease:
|
---|
280 | int issue = random.nextInt(numIssues) + 1;
|
---|
281 |
|
---|
282 | // we will increase or decrease this issue by 1
|
---|
283 |
|
---|
284 | // first determine the direction:
|
---|
285 | if (directions[issue] == 0) { // we have to remain consistent. if
|
---|
286 | // one time we increase a value, we
|
---|
287 | // cannot decrease it the next time.
|
---|
288 | // Therefore we store the direction
|
---|
289 | // and re-use it.
|
---|
290 | directions[issue] = 2 * random.nextInt(2) - 1; // set direction
|
---|
291 | // to 1 or -1.
|
---|
292 | }
|
---|
293 |
|
---|
294 | int lowestVal = ((IssueInteger) utilitySpace.getDomain()
|
---|
295 | .getIssues().get(issue - 1)).getLowerBound(); // WARNING:
|
---|
296 | // the
|
---|
297 | // issues
|
---|
298 | // are
|
---|
299 | // numbered
|
---|
300 | // 1 to 30,
|
---|
301 | // but
|
---|
302 | // when
|
---|
303 | // calling
|
---|
304 | // getIssue,
|
---|
305 | // they are
|
---|
306 | // indexed
|
---|
307 | // with the
|
---|
308 | // values 0
|
---|
309 | // to 29
|
---|
310 | int highestVal = ((IssueInteger) utilitySpace.getDomain()
|
---|
311 | .getIssues().get(issue - 1)).getUpperBound();
|
---|
312 |
|
---|
313 | int oldValue = ((ValueInteger) oldValues.get(new Integer(issue)))
|
---|
314 | .getValue();
|
---|
315 | if (oldValue == highestVal && directions[issue] == 1
|
---|
316 | || oldValue == lowestVal && directions[issue] == -1) {
|
---|
317 | i--;
|
---|
318 | continue;
|
---|
319 | }
|
---|
320 | newValues.put(new Integer(issue), new ValueInteger(oldValue
|
---|
321 | + directions[issue]));
|
---|
322 |
|
---|
323 | }
|
---|
324 |
|
---|
325 | Bid newBid = new Bid(utilitySpace.getDomain(), newValues);
|
---|
326 | return newBid;
|
---|
327 | }
|
---|
328 |
|
---|
329 | /**
|
---|
330 | * Creates two children from bid1 and bid2, and repeats this until
|
---|
331 | * numChildren children have been created.
|
---|
332 | *
|
---|
333 | * @param bid1
|
---|
334 | * @param bid2
|
---|
335 | * @param numChildren
|
---|
336 | * @return
|
---|
337 | * @throws Exception
|
---|
338 | */
|
---|
339 | ArrayList<BidDetails> crossOver(BidDetails bid1, BidDetails bid2,
|
---|
340 | int numChildren) throws Exception {
|
---|
341 |
|
---|
342 | HashMap<Integer, Value> vals1 = bid1.getBid().getValues();
|
---|
343 | HashMap<Integer, Value> vals2 = bid2.getBid().getValues();
|
---|
344 |
|
---|
345 | // Note: we can set the load factor as high as we want because we are
|
---|
346 | // sure that the number of entries will never exceed the number of
|
---|
347 | // buckets, so re-hashing should never occur.
|
---|
348 | HashMap<Integer, Value> newVals1 = new HashMap<Integer, Value>(
|
---|
349 | numIssues, 2);
|
---|
350 | HashMap<Integer, Value> newVals2 = new HashMap<Integer, Value>(
|
---|
351 | numIssues, 2);
|
---|
352 |
|
---|
353 | ArrayList<BidDetails> children = new ArrayList(numChildren);
|
---|
354 |
|
---|
355 | for (int c = 0; c < numChildren / 2; c++) {
|
---|
356 | for (Integer i = 1; i <= numIssues; i++) {
|
---|
357 | if (random.nextBoolean()) {
|
---|
358 | newVals1.put(i, vals1.get(i));
|
---|
359 | newVals2.put(i, vals2.get(i));
|
---|
360 | } else {
|
---|
361 | newVals1.put(i, vals2.get(i));
|
---|
362 | newVals2.put(i, vals1.get(i));
|
---|
363 | }
|
---|
364 | }
|
---|
365 |
|
---|
366 | Bid _child1 = new Bid(utilitySpace.getDomain(), newVals1);
|
---|
367 | double value1 = utilitySpace.getUtility(_child1);
|
---|
368 | BidDetails child1 = new BidDetails(_child1, value1);
|
---|
369 | children.add(child1);
|
---|
370 |
|
---|
371 | Bid _child2 = new Bid(utilitySpace.getDomain(), newVals2);
|
---|
372 | double value2 = utilitySpace.getUtility(_child2);
|
---|
373 | BidDetails child2 = new BidDetails(_child2, value2);
|
---|
374 | children.add(child2);
|
---|
375 | }
|
---|
376 |
|
---|
377 | return children;
|
---|
378 | }
|
---|
379 |
|
---|
380 | /**
|
---|
381 | * Creates two babies that are close enough to the reference bid. Assumes
|
---|
382 | * that bid1 and bid2 are also close enough to the reference bid.
|
---|
383 | *
|
---|
384 | * First creates two children in the standard way, then calculates the
|
---|
385 | * distances of both if not both are close enough randomly swaps genes until
|
---|
386 | * it is achieved.
|
---|
387 | *
|
---|
388 | * @param refBid
|
---|
389 | * @param maxDistance
|
---|
390 | * @param bid1
|
---|
391 | * @param bid2
|
---|
392 | * @param numChildren
|
---|
393 | * @return
|
---|
394 | * @throws Exception
|
---|
395 | */
|
---|
396 | ArrayList<BidDetails> crossOver(Bid refBid, int maxDistance,
|
---|
397 | BidDetails bid1, BidDetails bid2) throws Exception {
|
---|
398 |
|
---|
399 | HashMap<Integer, Value> refVals = refBid.getValues();
|
---|
400 |
|
---|
401 | HashMap<Integer, Value> vals1 = bid1.getBid().getValues();
|
---|
402 | HashMap<Integer, Value> vals2 = bid2.getBid().getValues();
|
---|
403 |
|
---|
404 | // Note: we can set the load factor as high as we want because we are
|
---|
405 | // sure that the number of entries will never exceed the number of
|
---|
406 | // buckets, so re-hashing should never occur.
|
---|
407 | HashMap<Integer, Value> newVals1 = new HashMap<Integer, Value>(
|
---|
408 | numIssues, 2);
|
---|
409 | HashMap<Integer, Value> newVals2 = new HashMap<Integer, Value>(
|
---|
410 | numIssues, 2);
|
---|
411 |
|
---|
412 | ArrayList<BidDetails> children = new ArrayList(2);
|
---|
413 |
|
---|
414 | int totalDistance1 = 0; // the distance between child1 and the reference
|
---|
415 | // bid.
|
---|
416 | int totalDistance2 = 0; // the distance between child2 and the reference
|
---|
417 | // bid.
|
---|
418 | int[] distances1 = new int[numIssues + 1]; // the distance between
|
---|
419 | // child1 and the reference
|
---|
420 | // bid, for each issue.
|
---|
421 | int[] distances2 = new int[numIssues + 1]; // the distance between
|
---|
422 | // child1 and the reference
|
---|
423 | // bid, for each issue.
|
---|
424 |
|
---|
425 | for (Integer i = 1; i <= numIssues; i++) {
|
---|
426 |
|
---|
427 | if (random.nextBoolean()) {
|
---|
428 | newVals1.put(i, vals1.get(i));
|
---|
429 | newVals2.put(i, vals2.get(i));
|
---|
430 | } else {
|
---|
431 | newVals1.put(i, vals2.get(i));
|
---|
432 | newVals2.put(i, vals1.get(i));
|
---|
433 | }
|
---|
434 |
|
---|
435 | // iteratively calculate the distances between the new children and
|
---|
436 | // the reference bid.
|
---|
437 | distances1[i] = Math.abs(((ValueInteger) newVals1.get(i))
|
---|
438 | .getValue() - ((ValueInteger) refVals.get(i)).getValue());
|
---|
439 | distances2[i] = Math.abs(((ValueInteger) newVals2.get(i))
|
---|
440 | .getValue() - ((ValueInteger) refVals.get(i)).getValue());
|
---|
441 | totalDistance1 += distances1[i];
|
---|
442 | totalDistance2 += distances2[i];
|
---|
443 | }
|
---|
444 |
|
---|
445 | int counter = 0;
|
---|
446 | while (totalDistance1 > maxDistance || totalDistance2 > maxDistance) {
|
---|
447 |
|
---|
448 | int randomIndex = 0;
|
---|
449 |
|
---|
450 | if (totalDistance1 > totalDistance2) {
|
---|
451 |
|
---|
452 | do {
|
---|
453 | randomIndex = random.nextInt(numIssues) + 1;
|
---|
454 | } while (distances1[randomIndex] < distances2[randomIndex]); // search
|
---|
455 | // for
|
---|
456 | // an
|
---|
457 | // index
|
---|
458 | // for
|
---|
459 | // which
|
---|
460 | // child1
|
---|
461 | // is
|
---|
462 | // closer
|
---|
463 | // to
|
---|
464 | // ref
|
---|
465 | // than
|
---|
466 | // child2
|
---|
467 |
|
---|
468 | } else {
|
---|
469 | do {
|
---|
470 | randomIndex = random.nextInt(numIssues) + 1;
|
---|
471 | } while (distances1[randomIndex] > distances2[randomIndex]); // search
|
---|
472 | // for
|
---|
473 | // an
|
---|
474 | // index
|
---|
475 | // for
|
---|
476 | // which
|
---|
477 | // child2
|
---|
478 | // is
|
---|
479 | // closer
|
---|
480 | // to
|
---|
481 | // ref
|
---|
482 | // than
|
---|
483 | // child1
|
---|
484 | }
|
---|
485 |
|
---|
486 | // swap the two values.
|
---|
487 | Value temp = newVals1.get(randomIndex);
|
---|
488 | newVals1.put(randomIndex, newVals2.get(randomIndex));
|
---|
489 | newVals2.put(randomIndex, temp);
|
---|
490 |
|
---|
491 | // Recalculate the distances of the new children, in 3 steps
|
---|
492 |
|
---|
493 | // 1.subtract the issue distances for the swapped issue from the
|
---|
494 | // total distances
|
---|
495 | totalDistance1 -= distances1[randomIndex];
|
---|
496 | totalDistance2 -= distances2[randomIndex];
|
---|
497 |
|
---|
498 | // 2.swap the issue distances.
|
---|
499 | int tempp = distances1[randomIndex];
|
---|
500 | distances1[randomIndex] = distances2[randomIndex];
|
---|
501 | distances2[randomIndex] = tempp;
|
---|
502 |
|
---|
503 | // 3.add the issue swapped distances again to the total distances.
|
---|
504 | totalDistance1 += distances1[randomIndex];
|
---|
505 | totalDistance2 += distances2[randomIndex];
|
---|
506 |
|
---|
507 | // SECURITY MEASURE TO MAKE SURE THAT WE DON'T LOOP FOR EVER.
|
---|
508 | counter++;
|
---|
509 | if (counter > 500) {
|
---|
510 | System.out
|
---|
511 | .println("GenAlg.crossOver() WARNING!!! There seems to be an infinite loop in the genetic algorithm!!");
|
---|
512 | break;
|
---|
513 | }
|
---|
514 |
|
---|
515 | }
|
---|
516 |
|
---|
517 | Bid _child1 = new Bid(utilitySpace.getDomain(), newVals1);
|
---|
518 | double value1 = utilitySpace.getUtility(_child1);
|
---|
519 | BidDetails child1 = new BidDetails(_child1, value1);
|
---|
520 | children.add(child1);
|
---|
521 |
|
---|
522 | Bid _child2 = new Bid(utilitySpace.getDomain(), newVals2);
|
---|
523 | double value2 = utilitySpace.getUtility(_child2);
|
---|
524 | BidDetails child2 = new BidDetails(_child2, value2);
|
---|
525 | children.add(child2);
|
---|
526 |
|
---|
527 | return children;
|
---|
528 | }
|
---|
529 | }
|
---|