1 | package agents.anac.y2012.IAMhaggler2012.agents2011;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 |
|
---|
5 | import agents.Jama.Matrix;
|
---|
6 | import agents.anac.y2012.IAMhaggler2012.agents2011.southampton.utils.BidCreator;
|
---|
7 | import agents.anac.y2012.IAMhaggler2012.agents2011.southampton.utils.Pair;
|
---|
8 | import agents.anac.y2012.IAMhaggler2012.agents2011.southampton.utils.RandomBidCreator;
|
---|
9 | import agents.org.apache.commons.math.MathException;
|
---|
10 | import agents.org.apache.commons.math.MaxIterationsExceededException;
|
---|
11 | import agents.org.apache.commons.math.special.Erf;
|
---|
12 | import agents.uk.ac.soton.ecs.gp4j.bmc.BasicPrior;
|
---|
13 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixture;
|
---|
14 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixturePrediction;
|
---|
15 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessRegressionBMC;
|
---|
16 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.CovarianceFunction;
|
---|
17 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.Matern3CovarianceFunction;
|
---|
18 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.NoiseCovarianceFunction;
|
---|
19 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.SumCovarianceFunction;
|
---|
20 | import genius.core.Bid;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * @author Colin Williams
|
---|
24 | *
|
---|
25 | * The IAMhaggler Agent, created for ANAC 2011. Designed by C. R.
|
---|
26 | * Williams, V. Robu, E. H. Gerding and N. R. Jennings.
|
---|
27 | *
|
---|
28 | */
|
---|
29 | public class IAMhaggler2011 extends SouthamptonAgent {
|
---|
30 |
|
---|
31 | protected double RISK_PARAMETER = 1;
|
---|
32 |
|
---|
33 | private Matrix utilitySamples;
|
---|
34 | private Matrix timeSamples;
|
---|
35 | private Matrix utility;
|
---|
36 | private GaussianProcessRegressionBMC regression;
|
---|
37 | private double lastRegressionTime = 0;
|
---|
38 | private double lastRegressionUtility = 1;
|
---|
39 | private ArrayList<Double> opponentTimes = new ArrayList<Double>();
|
---|
40 | private ArrayList<Double> opponentUtilities = new ArrayList<Double>();
|
---|
41 |
|
---|
42 | private double maxUtilityInTimeSlot;
|
---|
43 | private int lastTimeSlot = -1;
|
---|
44 | private Matrix means;
|
---|
45 | private Matrix variances;
|
---|
46 |
|
---|
47 | private double maxUtility;
|
---|
48 |
|
---|
49 | private Bid bestReceivedBid;
|
---|
50 |
|
---|
51 | private double previousTargetUtility;
|
---|
52 |
|
---|
53 | protected BidCreator bidCreator;
|
---|
54 |
|
---|
55 | private double intercept;
|
---|
56 |
|
---|
57 | private Matrix matrixTimeSamplesAdjust;
|
---|
58 |
|
---|
59 | private double maxOfferedUtility = Double.MIN_VALUE;
|
---|
60 | private double minOfferedUtility = Double.MAX_VALUE;
|
---|
61 |
|
---|
62 | public IAMhaggler2011() {
|
---|
63 | debug = true;
|
---|
64 | }
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * (non-Javadoc)
|
---|
68 | *
|
---|
69 | * @see agents.southampton.SouthamptonAgent#init()
|
---|
70 | */
|
---|
71 | @Override
|
---|
72 | public void init() {
|
---|
73 | log("Run init...");
|
---|
74 | try{
|
---|
75 | super.init();
|
---|
76 | } catch (Exception ex) {
|
---|
77 | ex.printStackTrace();
|
---|
78 | }
|
---|
79 | double discountingFactor = 0.5;
|
---|
80 | try
|
---|
81 | {
|
---|
82 | discountingFactor = adjustDiscountFactor(utilitySpace
|
---|
83 | .getDiscountFactor());
|
---|
84 | }
|
---|
85 | catch(Exception ex)
|
---|
86 | {
|
---|
87 | logError("Unable to get discounting factor, assuming 0.5");
|
---|
88 | ex.printStackTrace();
|
---|
89 | }
|
---|
90 | if(discountingFactor == 0)
|
---|
91 | discountingFactor = 1;
|
---|
92 | log("Discounting factor is " + discountingFactor);
|
---|
93 | makeUtilitySamples(100);
|
---|
94 | makeTimeSamples(100);
|
---|
95 | Matrix discounting = generateDiscountingFunction(discountingFactor);
|
---|
96 | Matrix risk = generateRiskFunction(RISK_PARAMETER);
|
---|
97 | utility = risk.arrayTimes(discounting);
|
---|
98 |
|
---|
99 | log(utility);
|
---|
100 |
|
---|
101 | log("Setting up GP");
|
---|
102 | flushLog();
|
---|
103 |
|
---|
104 | BasicPrior[] bps = { new BasicPrior(11, 0.252, 0.5),
|
---|
105 | new BasicPrior(11, 0.166, 0.5), new BasicPrior(1, .01, 1.0) };
|
---|
106 | CovarianceFunction cf = new SumCovarianceFunction(
|
---|
107 | Matern3CovarianceFunction.getInstance(),
|
---|
108 | NoiseCovarianceFunction.getInstance());
|
---|
109 |
|
---|
110 | regression = new GaussianProcessRegressionBMC();
|
---|
111 | regression.setCovarianceFunction(cf);
|
---|
112 | regression.setPriors(bps);
|
---|
113 |
|
---|
114 | //regression.calculateRegression(new Matrix(new double[] {}, 0), new Matrix(new double[] {}, 0));
|
---|
115 |
|
---|
116 | maxUtility = 0;
|
---|
117 | previousTargetUtility = 1;
|
---|
118 |
|
---|
119 | bidCreator = new RandomBidCreator();
|
---|
120 |
|
---|
121 | log("init complete.");
|
---|
122 | flushLog();
|
---|
123 | }
|
---|
124 |
|
---|
125 | @Override
|
---|
126 | public String getName() {
|
---|
127 | return "IAMhaggler2012";
|
---|
128 | }
|
---|
129 |
|
---|
130 | /**
|
---|
131 | * Create an m-by-1 matrix of utility samples.
|
---|
132 | *
|
---|
133 | * @param m
|
---|
134 | * The sample size.
|
---|
135 | */
|
---|
136 | private void makeUtilitySamples(int m) {
|
---|
137 | double[] utilitySamplesArray = new double[m];
|
---|
138 | {
|
---|
139 | for (int i = 0; i < utilitySamplesArray.length; i++) {
|
---|
140 | utilitySamplesArray[i] = 1.0 - ((double) i + 0.5) / ((double) m + 1.0);
|
---|
141 | }
|
---|
142 | }
|
---|
143 | utilitySamples = new Matrix(utilitySamplesArray,
|
---|
144 | utilitySamplesArray.length);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | * Create a 1-by-n matrix of time samples.
|
---|
149 | *
|
---|
150 | * @param n
|
---|
151 | * The sample size.
|
---|
152 | */
|
---|
153 | private void makeTimeSamples(int n) {
|
---|
154 | double[] timeSamplesArray = new double[n + 1];
|
---|
155 | {
|
---|
156 | for (int i = 0; i < timeSamplesArray.length; i++) {
|
---|
157 | timeSamplesArray[i] = ((double) i) / ((double) n);
|
---|
158 | }
|
---|
159 | }
|
---|
160 | timeSamples = new Matrix(timeSamplesArray, 1);
|
---|
161 | }
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * (non-Javadoc)
|
---|
165 | *
|
---|
166 | * @see agents.southampton.SouthamptonAgent#proposeInitialBid()
|
---|
167 | */
|
---|
168 | @Override
|
---|
169 | protected Bid proposeInitialBid() throws Exception {
|
---|
170 | return utilitySpace.getMaxUtilityBid();
|
---|
171 | }
|
---|
172 |
|
---|
173 | /*
|
---|
174 | * (non-Javadoc)
|
---|
175 | *
|
---|
176 | * @see agents.southampton.SouthamptonAgent#proposeNextBid(negotiator.Bid)
|
---|
177 | */
|
---|
178 | @Override
|
---|
179 | protected Bid proposeNextBid(Bid opponentBid) throws Exception {
|
---|
180 | double opponentUtility = utilitySpace.getUtility(opponentBid);
|
---|
181 |
|
---|
182 | if(opponentUtility > maxUtility)
|
---|
183 | {
|
---|
184 | bestReceivedBid = opponentBid;
|
---|
185 | maxUtility = opponentUtility;
|
---|
186 | }
|
---|
187 |
|
---|
188 | log("Opponent utility is " + opponentUtility);
|
---|
189 |
|
---|
190 | double targetUtility = getTarget(opponentUtility, getTime());
|
---|
191 |
|
---|
192 | log("Target utility is " + targetUtility);
|
---|
193 |
|
---|
194 | if(targetUtility <= maxUtility && previousTargetUtility > maxUtility)
|
---|
195 | return bestReceivedBid;
|
---|
196 | previousTargetUtility = targetUtility;
|
---|
197 |
|
---|
198 | flushLog();
|
---|
199 |
|
---|
200 | // Now get a random bid in the range targetUtility � 0.025
|
---|
201 | return bidCreator.getBid(utilitySpace, targetUtility - 0.025,
|
---|
202 | targetUtility + 0.025);
|
---|
203 | }
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * Get the target at a given time, recording the opponent's utility.
|
---|
207 | *
|
---|
208 | * @param opponentUtility
|
---|
209 | * The utility of the most recent offer made by the opponent.
|
---|
210 | * @param time
|
---|
211 | * The current time.
|
---|
212 | * @return the target.
|
---|
213 | */
|
---|
214 | protected double getTarget(double opponentUtility, double time) {
|
---|
215 | log("++>>> IAMhaggler 2011 <<<++");
|
---|
216 |
|
---|
217 | log("getTarget: " + opponentUtility);
|
---|
218 |
|
---|
219 | maxOfferedUtility = Math.max(maxOfferedUtility, opponentUtility);
|
---|
220 | minOfferedUtility = Math.min(minOfferedUtility, opponentUtility);
|
---|
221 |
|
---|
222 | // Calculate the current time slot
|
---|
223 | int timeSlot = (int) Math.floor(time * 36);
|
---|
224 |
|
---|
225 | boolean regressionUpdateRequired = false;
|
---|
226 | if (lastTimeSlot == -1) {
|
---|
227 | regressionUpdateRequired = true;
|
---|
228 | }
|
---|
229 |
|
---|
230 | // If the time slot has changed
|
---|
231 | if (timeSlot != lastTimeSlot) {
|
---|
232 | if (lastTimeSlot != -1) {
|
---|
233 | // Store the data from the time slot
|
---|
234 | opponentTimes.add((lastTimeSlot + 0.5) / 36.0);
|
---|
235 | if(opponentUtilities.size() == 0)
|
---|
236 | {
|
---|
237 | intercept = Math.max(0.5, maxUtilityInTimeSlot);
|
---|
238 | double[] timeSamplesAdjust = new double[timeSamples.getColumnDimension()];
|
---|
239 | int i = 0;
|
---|
240 | double gradient = 0.9 - intercept;
|
---|
241 | for (double d : timeSamples.getRowPackedCopy()) {
|
---|
242 | timeSamplesAdjust[i++] = intercept + (gradient * d);
|
---|
243 | }
|
---|
244 | matrixTimeSamplesAdjust = new Matrix(timeSamplesAdjust, timeSamplesAdjust.length);
|
---|
245 | }
|
---|
246 | opponentUtilities.add(maxUtilityInTimeSlot);
|
---|
247 | // Flag regression receiveMessage required
|
---|
248 | regressionUpdateRequired = true;
|
---|
249 | }
|
---|
250 | // Update the time slot
|
---|
251 | lastTimeSlot = timeSlot;
|
---|
252 | // Reset the max utility
|
---|
253 | maxUtilityInTimeSlot = 0;
|
---|
254 | }
|
---|
255 |
|
---|
256 | log("intercept: " + intercept);
|
---|
257 |
|
---|
258 | // Calculate the maximum utility observed in the current time slot
|
---|
259 | maxUtilityInTimeSlot = Math.max(maxUtilityInTimeSlot, opponentUtility);
|
---|
260 |
|
---|
261 | if (timeSlot == 0) {
|
---|
262 | return 1.0 - time / 2.0;
|
---|
263 | }
|
---|
264 |
|
---|
265 | if (regressionUpdateRequired) {
|
---|
266 | double gradient = 0.9 - intercept;
|
---|
267 | /*
|
---|
268 | double[] x = new double[opponentTimes.size()];
|
---|
269 | double[] yAdjust = new double[opponentTimes.size()];
|
---|
270 | double[] y = new double[opponentUtilities.size()];
|
---|
271 |
|
---|
272 | int i;
|
---|
273 | i = 0;
|
---|
274 | for (double d : opponentTimes) {
|
---|
275 | x[i++] = d;
|
---|
276 | }
|
---|
277 | i = 0;
|
---|
278 | for (double d : opponentTimes) {
|
---|
279 | yAdjust[i++] = intercept + (gradient * d);
|
---|
280 | }
|
---|
281 | i = 0;
|
---|
282 | for (double d : opponentUtilities) {
|
---|
283 | y[i++] = d;
|
---|
284 | }
|
---|
285 |
|
---|
286 | Matrix matrixX = new Matrix(x, x.length);
|
---|
287 | Matrix matrixYAdjust = new Matrix(yAdjust, yAdjust.length);
|
---|
288 | Matrix matrixY = new Matrix(y, y.length);
|
---|
289 |
|
---|
290 | matrixY.minusEquals(matrixYAdjust);
|
---|
291 |
|
---|
292 | //GaussianProcessMixture predictor = regression.calculateRegression(matrixX, matrixY);
|
---|
293 | */
|
---|
294 |
|
---|
295 | GaussianProcessMixture predictor;
|
---|
296 |
|
---|
297 | if(lastTimeSlot == -1)
|
---|
298 | {
|
---|
299 | predictor = regression.calculateRegression(new double[] {}, new double[] {});
|
---|
300 | }
|
---|
301 | else
|
---|
302 | {
|
---|
303 | double x;
|
---|
304 | double y;
|
---|
305 | try {
|
---|
306 | x = opponentTimes.get(opponentTimes.size() - 1);
|
---|
307 | y = opponentUtilities.get(opponentUtilities.size() - 1);
|
---|
308 | } catch(Exception ex) {
|
---|
309 | System.err.println("Error getting x or y. Aiming for previous target utility of " + previousTargetUtility);
|
---|
310 | return previousTargetUtility;
|
---|
311 | // throw new Error(ex);
|
---|
312 | }
|
---|
313 |
|
---|
314 | predictor = regression.updateRegression(
|
---|
315 | new Matrix(new double[] {x}, 1),
|
---|
316 | new Matrix(new double[] {y - intercept - (gradient * x)}, 1));
|
---|
317 | }
|
---|
318 |
|
---|
319 | GaussianProcessMixturePrediction prediction = predictor
|
---|
320 | .calculatePrediction(timeSamples.transpose());
|
---|
321 |
|
---|
322 | // Store the means and variances
|
---|
323 | means = prediction.getMean().plus(matrixTimeSamplesAdjust);
|
---|
324 | variances = prediction.getVariance();
|
---|
325 |
|
---|
326 | log(means.transpose());
|
---|
327 | log(variances.transpose());
|
---|
328 | }
|
---|
329 |
|
---|
330 | Pair<Matrix, Matrix> acceptMatrices = generateProbabilityAccept(means, variances,
|
---|
331 | time);
|
---|
332 | Matrix probabilityAccept = acceptMatrices.fst;
|
---|
333 | Matrix cumulativeAccept = acceptMatrices.snd;
|
---|
334 |
|
---|
335 | Matrix probabilityExpectedUtility = probabilityAccept.arrayTimes(utility);
|
---|
336 | Matrix cumulativeExpectedUtility = cumulativeAccept.arrayTimes(utility);
|
---|
337 |
|
---|
338 | if(regressionUpdateRequired) {
|
---|
339 | log(probabilityAccept);
|
---|
340 | log(cumulativeAccept);
|
---|
341 | log(probabilityExpectedUtility);
|
---|
342 | log(cumulativeExpectedUtility);
|
---|
343 | }
|
---|
344 |
|
---|
345 | Pair<Double, Double> bestAgreement = getExpectedBestAgreement(
|
---|
346 | probabilityExpectedUtility, cumulativeExpectedUtility, time);
|
---|
347 | double bestTime = bestAgreement.fst;
|
---|
348 | double bestUtility = bestAgreement.snd;
|
---|
349 |
|
---|
350 | double targetUtility = lastRegressionUtility
|
---|
351 | + ((time - lastRegressionTime)
|
---|
352 | * (bestUtility - lastRegressionUtility) / (bestTime - lastRegressionTime));
|
---|
353 |
|
---|
354 | log(time + "," + bestTime + "," + bestUtility + "," + lastRegressionTime + "," + lastRegressionUtility + "," + targetUtility);
|
---|
355 |
|
---|
356 | // Store the target utility and time
|
---|
357 | lastRegressionUtility = targetUtility;
|
---|
358 | lastRegressionTime = time;
|
---|
359 |
|
---|
360 | log("-->>> IAMhaggler 2011 <<<--");
|
---|
361 |
|
---|
362 | return limitConcession(targetUtility);
|
---|
363 | }
|
---|
364 |
|
---|
365 | private double limitConcession(double targetUtility) {
|
---|
366 | double limit = 1.0 - ((maxOfferedUtility - minOfferedUtility) + 0.1);
|
---|
367 | if(limit > targetUtility)
|
---|
368 | {
|
---|
369 | log("Limiting concession to " + limit);
|
---|
370 | return limit;
|
---|
371 | }
|
---|
372 | return targetUtility;
|
---|
373 | }
|
---|
374 |
|
---|
375 | /**
|
---|
376 | * Generate an n-by-m matrix representing the effect of the discounting
|
---|
377 | * factor for a given utility-time combination. The combinations are given
|
---|
378 | * by the time and utility samples stored in timeSamples and utilitySamples
|
---|
379 | * respectively.
|
---|
380 | *
|
---|
381 | * @param discountingFactor
|
---|
382 | * The discounting factor, in the range (0, 1].
|
---|
383 | * @return An n-by-m matrix representing the discounted utilities.
|
---|
384 | */
|
---|
385 | private Matrix generateDiscountingFunction(double discountingFactor) {
|
---|
386 | double[] discountingSamples = timeSamples.getRowPackedCopy();
|
---|
387 | double[][] m = new double[utilitySamples.getRowDimension()][timeSamples
|
---|
388 | .getColumnDimension()];
|
---|
389 | for (int i = 0; i < m.length; i++) {
|
---|
390 | for (int j = 0; j < m[i].length; j++) {
|
---|
391 | m[i][j] = Math.pow(discountingFactor, discountingSamples[j]);
|
---|
392 | }
|
---|
393 | }
|
---|
394 | return new Matrix(m);
|
---|
395 | }
|
---|
396 |
|
---|
397 | /**
|
---|
398 | * Generate an (n-1)-by-m matrix representing the probability of acceptance for
|
---|
399 | * a given utility-time combination. The combinations are given by the time
|
---|
400 | * and utility samples stored in timeSamples and utilitySamples
|
---|
401 | * respectively.
|
---|
402 | *
|
---|
403 | * @param mean
|
---|
404 | * The means, at each of the sample time points.
|
---|
405 | * @param variance
|
---|
406 | * The variances, at each of the sample time points.
|
---|
407 | * @param time
|
---|
408 | * The current time, in the range [0, 1].
|
---|
409 | * @return An (n-1)-by-m matrix representing the probability of acceptance.
|
---|
410 | */
|
---|
411 | private Pair<Matrix, Matrix> generateProbabilityAccept(Matrix mean, Matrix variance,
|
---|
412 | double time) {
|
---|
413 | int i = 0;
|
---|
414 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
415 | if (timeSamples.get(0, i) > time)
|
---|
416 | break;
|
---|
417 | }
|
---|
418 | Matrix cumulativeAccept = new Matrix(utilitySamples.getRowDimension(),
|
---|
419 | timeSamples.getColumnDimension(), 0);
|
---|
420 | Matrix probabilityAccept = new Matrix(utilitySamples.getRowDimension(),
|
---|
421 | timeSamples.getColumnDimension(), 0);
|
---|
422 |
|
---|
423 | double interval = 1.0/utilitySamples.getRowDimension();
|
---|
424 |
|
---|
425 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
426 | double s = Math.sqrt(2 * variance.get(i, 0));
|
---|
427 | double m = mean.get(i, 0);
|
---|
428 |
|
---|
429 | double minp = (1.0 - (0.5 * (1 + erf((utilitySamples.get(0, 0) + (interval/2.0) - m)
|
---|
430 | / s))));
|
---|
431 | double maxp = (1.0 - (0.5 * (1 + erf((utilitySamples.get(utilitySamples.getRowDimension()-1, 0) - (interval/2.0) - m)
|
---|
432 | / s))));
|
---|
433 |
|
---|
434 | for (int j = 0; j < utilitySamples.getRowDimension(); j++) {
|
---|
435 | double utility = utilitySamples.get(j, 0);
|
---|
436 | double p = (1.0 - (0.5 * (1 + erf((utility - m)
|
---|
437 | / s))));
|
---|
438 | double p1 = (1.0 - (0.5 * (1 + erf((utility - (interval/2.0) - m)
|
---|
439 | / s))));
|
---|
440 | double p2 = (1.0 - (0.5 * (1 + erf((utility + (interval/2.0) - m)
|
---|
441 | / s))));
|
---|
442 |
|
---|
443 | cumulativeAccept.set(j, i, (p-minp)/(maxp-minp));
|
---|
444 | probabilityAccept.set(j, i, (p1-p2)/(maxp-minp));
|
---|
445 | }
|
---|
446 | }
|
---|
447 | return new Pair<Matrix, Matrix>(probabilityAccept, cumulativeAccept);
|
---|
448 | }
|
---|
449 |
|
---|
450 | /**
|
---|
451 | * Wrapper for the erf function.
|
---|
452 | *
|
---|
453 | * @param x
|
---|
454 | * @return
|
---|
455 | */
|
---|
456 | private double erf(double x) {
|
---|
457 | if (x > 6)
|
---|
458 | return 1;
|
---|
459 | if (x < -6)
|
---|
460 | return -1;
|
---|
461 | try {
|
---|
462 | double d = Erf.erf(x);
|
---|
463 | if (d > 1)
|
---|
464 | return 1;
|
---|
465 | if (d < -1)
|
---|
466 | return -1;
|
---|
467 | return d;
|
---|
468 | } catch (MaxIterationsExceededException e) {
|
---|
469 | if (x > 0)
|
---|
470 | return 1;
|
---|
471 | else
|
---|
472 | return -1;
|
---|
473 | } catch (MathException e) {
|
---|
474 | e.printStackTrace();
|
---|
475 | return 0;
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 | /**
|
---|
480 | * Generate an n-by-m matrix representing the risk based utility for a given
|
---|
481 | * utility-time combination. The combinations are given by the time and
|
---|
482 | * utility samples stored in timeSamples and utilitySamples
|
---|
483 | *
|
---|
484 | * @param riskParameter
|
---|
485 | * The risk parameter.
|
---|
486 | * @return an n-by-m matrix representing the risk based utility.
|
---|
487 | */
|
---|
488 | protected Matrix generateRiskFunction(double riskParameter) {
|
---|
489 | double mmin = generateRiskFunction(riskParameter, 0.0);
|
---|
490 | double mmax = generateRiskFunction(riskParameter, 1.0);
|
---|
491 | double range = mmax - mmin;
|
---|
492 |
|
---|
493 | double[] riskSamples = utilitySamples.getColumnPackedCopy();
|
---|
494 | double[][] m = new double[utilitySamples.getRowDimension()][timeSamples
|
---|
495 | .getColumnDimension()];
|
---|
496 | for (int i = 0; i < m.length; i++) {
|
---|
497 | double val;
|
---|
498 | if (range == 0) {
|
---|
499 | val = riskSamples[i];
|
---|
500 | } else {
|
---|
501 | val = (generateRiskFunction(riskParameter, riskSamples[i]) - mmin)
|
---|
502 | / range;
|
---|
503 | }
|
---|
504 | for (int j = 0; j < m[i].length; j++) {
|
---|
505 | m[i][j] = val;
|
---|
506 | }
|
---|
507 | }
|
---|
508 | return new Matrix(m);
|
---|
509 | }
|
---|
510 |
|
---|
511 | /**
|
---|
512 | * Generate the risk based utility for a given actual utility.
|
---|
513 | *
|
---|
514 | * @param riskParameter
|
---|
515 | * The risk parameter.
|
---|
516 | * @param utility
|
---|
517 | * The actual utility to calculate the risk based utility from.
|
---|
518 | * @return the risk based utility.
|
---|
519 | */
|
---|
520 | protected double generateRiskFunction(double riskParameter, double utility) {
|
---|
521 | return Math.pow(utility, riskParameter);
|
---|
522 | }
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Get a pair representing the time and utility value of the expected best
|
---|
526 | * agreement.
|
---|
527 | *
|
---|
528 | * @param expectedValues
|
---|
529 | * A matrix of expected utility values at the sampled time and
|
---|
530 | * utilities given by timeSamples and utilitySamples
|
---|
531 | * respectively.
|
---|
532 | * @param time
|
---|
533 | * The current time.
|
---|
534 | * @return a pair representing the time and utility value of the expected
|
---|
535 | * best agreement.
|
---|
536 | */
|
---|
537 | private Pair<Double, Double> getExpectedBestAgreement(
|
---|
538 | Matrix probabilityExpectedValues, Matrix cumulativeExpectedValues, double time) {
|
---|
539 | log("probabilityExpectedValues is " + probabilityExpectedValues.getRowDimension() + "x" + probabilityExpectedValues.getColumnDimension());
|
---|
540 | log("time is " + time);
|
---|
541 | Matrix probabilityFutureExpectedValues = getFutureExpectedValues(probabilityExpectedValues, time);
|
---|
542 | Matrix cumulativeFutureExpectedValues = getFutureExpectedValues(cumulativeExpectedValues, time);
|
---|
543 |
|
---|
544 | log("probabilityFutureExpectedValues is " + probabilityFutureExpectedValues.getRowDimension() + "x" + probabilityFutureExpectedValues.getColumnDimension());
|
---|
545 |
|
---|
546 | double[][] probabilityFutureExpectedValuesArray = probabilityFutureExpectedValues.getArray();
|
---|
547 | double[][] cumulativeFutureExpectedValuesArray = cumulativeFutureExpectedValues.getArray();
|
---|
548 |
|
---|
549 | Double bestX = null;
|
---|
550 | Double bestY = null;
|
---|
551 |
|
---|
552 | double[] colSums = new double[probabilityFutureExpectedValuesArray[0].length];
|
---|
553 | double bestColSum = 0;
|
---|
554 | int bestCol = 0;
|
---|
555 |
|
---|
556 | for (int x = 0; x < probabilityFutureExpectedValuesArray[0].length; x++) {
|
---|
557 | colSums[x] = 0;
|
---|
558 | for (int y = 0; y < probabilityFutureExpectedValuesArray.length; y++) {
|
---|
559 | colSums[x] += probabilityFutureExpectedValuesArray[y][x];
|
---|
560 | }
|
---|
561 |
|
---|
562 | if (colSums[x] >= bestColSum) {
|
---|
563 | bestColSum = colSums[x];
|
---|
564 | bestCol = x;
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 | log(new Matrix(colSums, 1));
|
---|
569 |
|
---|
570 | int bestRow = 0;
|
---|
571 | double bestRowValue = 0;
|
---|
572 |
|
---|
573 | for (int y = 0; y < cumulativeFutureExpectedValuesArray.length; y++) {
|
---|
574 | double expectedValue = cumulativeFutureExpectedValuesArray[y][bestCol];
|
---|
575 | if(expectedValue > bestRowValue) {
|
---|
576 | bestRowValue = expectedValue;
|
---|
577 | bestRow = y;
|
---|
578 | }
|
---|
579 | }
|
---|
580 |
|
---|
581 | bestX = timeSamples.get(0, bestCol
|
---|
582 | + probabilityExpectedValues.getColumnDimension()
|
---|
583 | - probabilityFutureExpectedValues.getColumnDimension());
|
---|
584 | bestY = utilitySamples.get(bestRow, 0);
|
---|
585 |
|
---|
586 | log("About to return the best agreement at " + bestX + ", " + bestY);
|
---|
587 | return new Pair<Double, Double>(bestX, bestY);
|
---|
588 | }
|
---|
589 |
|
---|
590 | /**
|
---|
591 | * Get a matrix of expected utility values at the sampled time and utilities
|
---|
592 | * given by timeSamples and utilitySamples, for times in the future.
|
---|
593 | *
|
---|
594 | * @param expectedValues
|
---|
595 | * A matrix of expected utility values at the sampled time and
|
---|
596 | * utilities given by timeSamples and utilitySamples
|
---|
597 | * respectively.
|
---|
598 | * @param time
|
---|
599 | * The current time.
|
---|
600 | * @return a matrix of expected utility values for future time.
|
---|
601 | */
|
---|
602 | private Matrix getFutureExpectedValues(Matrix expectedValues, double time) {
|
---|
603 | int i = 0;
|
---|
604 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
605 | if (timeSamples.get(0, i) > time)
|
---|
606 | break;
|
---|
607 | }
|
---|
608 | return expectedValues.getMatrix(0,
|
---|
609 | expectedValues.getRowDimension() - 1, i, expectedValues
|
---|
610 | .getColumnDimension() - 1);
|
---|
611 | }
|
---|
612 | }
|
---|