1 | package agents.anac.y2011.IAMhaggler2011;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 |
|
---|
5 | import agents.Jama.Matrix;
|
---|
6 | import agents.org.apache.commons.math.MathException;
|
---|
7 | import agents.org.apache.commons.math.MaxIterationsExceededException;
|
---|
8 | import agents.org.apache.commons.math.special.Erf;
|
---|
9 | import agents.uk.ac.soton.ecs.gp4j.bmc.BasicPrior;
|
---|
10 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixture;
|
---|
11 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessMixturePrediction;
|
---|
12 | import agents.uk.ac.soton.ecs.gp4j.bmc.GaussianProcessRegressionBMC;
|
---|
13 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.CovarianceFunction;
|
---|
14 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.Matern3CovarianceFunction;
|
---|
15 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.NoiseCovarianceFunction;
|
---|
16 | import agents.uk.ac.soton.ecs.gp4j.gp.covariancefunctions.SumCovarianceFunction;
|
---|
17 | import genius.core.Agent;
|
---|
18 | import genius.core.Bid;
|
---|
19 | import genius.core.SupportedNegotiationSetting;
|
---|
20 | import genius.core.actions.Accept;
|
---|
21 | import genius.core.actions.Action;
|
---|
22 | import genius.core.actions.EndNegotiation;
|
---|
23 | import genius.core.actions.Offer;
|
---|
24 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * @author Colin Williams
|
---|
28 | *
|
---|
29 | * The IAMhaggler Agent, created for ANAC 2011. Designed by C. R.
|
---|
30 | * Williams, V. Robu, E. H. Gerding and N. R. Jennings.
|
---|
31 | *
|
---|
32 | */
|
---|
33 | public class IAMhaggler2011 extends Agent {
|
---|
34 |
|
---|
35 | protected double RISK_PARAMETER = 3.0;
|
---|
36 | private Matrix utilitySamples;
|
---|
37 | private Matrix timeSamples;
|
---|
38 | private Matrix utility;
|
---|
39 | private GaussianProcessRegressionBMC regression;
|
---|
40 | private double lastRegressionTime = 0;
|
---|
41 | private double lastRegressionUtility = 1;
|
---|
42 | private ArrayList<Double> opponentTimes = new ArrayList<Double>();
|
---|
43 | private ArrayList<Double> opponentUtilities = new ArrayList<Double>();
|
---|
44 | private double maxUtilityInTimeSlot;
|
---|
45 | private int lastTimeSlot = -1;
|
---|
46 | private Matrix means;
|
---|
47 | private Matrix variances;
|
---|
48 | private double maxUtility;
|
---|
49 | private Bid bestReceivedBid;
|
---|
50 | private double previousTargetUtility;
|
---|
51 | protected BidCreator bidCreator;
|
---|
52 |
|
---|
53 | private static enum ActionType {
|
---|
54 | ACCEPT, BREAKOFF, OFFER, START;
|
---|
55 | }
|
---|
56 |
|
---|
57 | protected double MAXIMUM_ASPIRATION = 0.9;
|
---|
58 | private Action messageOpponent;
|
---|
59 | protected Action myLastAction = null;
|
---|
60 | protected Bid myLastBid = null;
|
---|
61 | protected double acceptMultiplier = 1.02;
|
---|
62 | private ArrayList<Bid> opponentBids;
|
---|
63 |
|
---|
64 | public IAMhaggler2011() {
|
---|
65 | }
|
---|
66 |
|
---|
67 | /*
|
---|
68 | * (non-Javadoc)
|
---|
69 | *
|
---|
70 | * @see agents.southampton.SouthamptonAgent#init()
|
---|
71 | */
|
---|
72 | @Override
|
---|
73 | public void init() {
|
---|
74 | myLastBid = null;
|
---|
75 | myLastAction = null;
|
---|
76 |
|
---|
77 | opponentBids = new ArrayList<Bid>();
|
---|
78 |
|
---|
79 | double discountingFactor = 0.5;
|
---|
80 | try {
|
---|
81 | discountingFactor = utilitySpace.getDiscountFactor();
|
---|
82 | } catch (Exception ex) {
|
---|
83 | ex.printStackTrace();
|
---|
84 | }
|
---|
85 | if (discountingFactor == 0)
|
---|
86 | discountingFactor = 1;
|
---|
87 | makeUtilitySamples(100);
|
---|
88 | makeTimeSamples(100);
|
---|
89 | Matrix discounting = generateDiscountingFunction(discountingFactor);
|
---|
90 | Matrix risk = generateRiskFunction(RISK_PARAMETER);
|
---|
91 | utility = risk.arrayTimes(discounting);
|
---|
92 |
|
---|
93 | BasicPrior[] bps = { new BasicPrior(11, 0.252, 0.5),
|
---|
94 | new BasicPrior(11, 0.166, 0.5), new BasicPrior(1, .01, 1.0) };
|
---|
95 | CovarianceFunction cf = new SumCovarianceFunction(
|
---|
96 | Matern3CovarianceFunction.getInstance(),
|
---|
97 | NoiseCovarianceFunction.getInstance());
|
---|
98 |
|
---|
99 | regression = new GaussianProcessRegressionBMC();
|
---|
100 | regression.setCovarianceFunction(cf);
|
---|
101 | regression.setPriors(bps);
|
---|
102 |
|
---|
103 | maxUtility = 0;
|
---|
104 | previousTargetUtility = 1;
|
---|
105 |
|
---|
106 | bidCreator = new RandomBidCreator();
|
---|
107 | }
|
---|
108 |
|
---|
109 | @Override
|
---|
110 | public String getName() {
|
---|
111 | return "IAMhaggler2011";
|
---|
112 | }
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * Create an m-by-1 matrix of utility samples.
|
---|
116 | *
|
---|
117 | * @param m
|
---|
118 | * The sample size.
|
---|
119 | */
|
---|
120 | private void makeUtilitySamples(int m) {
|
---|
121 | double[] utilitySamplesArray = new double[m];
|
---|
122 | {
|
---|
123 | for (int i = 0; i < utilitySamplesArray.length; i++) {
|
---|
124 | utilitySamplesArray[i] = 1.0 - (i + 0.5) / (m + 1.0);
|
---|
125 | }
|
---|
126 | }
|
---|
127 | utilitySamples = new Matrix(utilitySamplesArray,
|
---|
128 | utilitySamplesArray.length);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * Create a 1-by-n matrix of time samples.
|
---|
133 | *
|
---|
134 | * @param n
|
---|
135 | * The sample size.
|
---|
136 | */
|
---|
137 | private void makeTimeSamples(int n) {
|
---|
138 | double[] timeSamplesArray = new double[n + 1];
|
---|
139 | {
|
---|
140 | for (int i = 0; i < timeSamplesArray.length; i++) {
|
---|
141 | timeSamplesArray[i] = ((double) i) / ((double) n);
|
---|
142 | }
|
---|
143 | }
|
---|
144 | timeSamples = new Matrix(timeSamplesArray, 1);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /*
|
---|
148 | * (non-Javadoc)
|
---|
149 | *
|
---|
150 | * @see agents.southampton.SouthamptonAgent#proposeInitialBid()
|
---|
151 | */
|
---|
152 | protected Bid proposeInitialBid() throws Exception {
|
---|
153 | return utilitySpace.getMaxUtilityBid();
|
---|
154 | }
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * (non-Javadoc)
|
---|
158 | *
|
---|
159 | * @see agents.southampton.SouthamptonAgent#proposeNextBid(negotiator.Bid)
|
---|
160 | */
|
---|
161 | protected Bid proposeNextBid(Bid opponentBid) throws Exception {
|
---|
162 | double opponentUtility = utilitySpace.getUtility(opponentBid);
|
---|
163 |
|
---|
164 | if (opponentUtility > maxUtility) {
|
---|
165 | bestReceivedBid = opponentBid;
|
---|
166 | maxUtility = opponentUtility;
|
---|
167 | }
|
---|
168 |
|
---|
169 | double targetUtility = getTarget(opponentUtility, timeline.getTime());
|
---|
170 |
|
---|
171 | if (targetUtility <= maxUtility && previousTargetUtility > maxUtility)
|
---|
172 | return bestReceivedBid;
|
---|
173 | previousTargetUtility = targetUtility;
|
---|
174 | // Now get a random bid in the range targetUtility � 0.025
|
---|
175 | return bidCreator.getBid((AdditiveUtilitySpace) utilitySpace,
|
---|
176 | targetUtility - 0.025, targetUtility + 0.025);
|
---|
177 | }
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * Get the target at a given time, recording the opponent's utility.
|
---|
181 | *
|
---|
182 | * @param opponentUtility
|
---|
183 | * The utility of the most recent offer made by the opponent.
|
---|
184 | * @param time
|
---|
185 | * The current time.
|
---|
186 | * @return the target.
|
---|
187 | */
|
---|
188 | protected double getTarget(double opponentUtility, double time) {
|
---|
189 | // Calculate the current time slot
|
---|
190 | int timeSlot = (int) Math.floor(time * 36);
|
---|
191 |
|
---|
192 | boolean regressionUpdateRequired = false;
|
---|
193 | if (lastTimeSlot == -1) {
|
---|
194 | regressionUpdateRequired = true;
|
---|
195 | }
|
---|
196 |
|
---|
197 | // If the time slot has changed
|
---|
198 | if (timeSlot != lastTimeSlot) {
|
---|
199 | if (lastTimeSlot != -1) {
|
---|
200 | // Store the data from the time slot
|
---|
201 | opponentTimes.add((lastTimeSlot + 0.5) / 36.0);
|
---|
202 | opponentUtilities.add(maxUtilityInTimeSlot);
|
---|
203 | // Flag regression receiveMessage required
|
---|
204 | regressionUpdateRequired = true;
|
---|
205 | }
|
---|
206 | // Update the time slot
|
---|
207 | lastTimeSlot = timeSlot;
|
---|
208 | // Reset the max utility
|
---|
209 | maxUtilityInTimeSlot = 0;
|
---|
210 | }
|
---|
211 |
|
---|
212 | // Calculate the maximum utility observed in the current time slot
|
---|
213 | maxUtilityInTimeSlot = Math.max(maxUtilityInTimeSlot, opponentUtility);
|
---|
214 |
|
---|
215 | if (timeSlot == 0) {
|
---|
216 | return 1.0 - time / 2.0;
|
---|
217 | }
|
---|
218 |
|
---|
219 | if (regressionUpdateRequired) {
|
---|
220 | double[] x = new double[opponentTimes.size()];
|
---|
221 | double[] xAdjust = new double[opponentTimes.size()];
|
---|
222 | double[] y = new double[opponentUtilities.size()];
|
---|
223 | double[] timeSamplesAdjust = new double[timeSamples
|
---|
224 | .getColumnDimension()];
|
---|
225 |
|
---|
226 | int i;
|
---|
227 | i = 0;
|
---|
228 | for (double d : opponentTimes) {
|
---|
229 | x[i++] = d;
|
---|
230 | }
|
---|
231 | i = 0;
|
---|
232 | double intercept = opponentUtilities.get(0);
|
---|
233 | double gradient = 0.9 - intercept;
|
---|
234 | for (double d : opponentTimes) {
|
---|
235 | xAdjust[i++] = intercept + (gradient * d);
|
---|
236 | }
|
---|
237 | i = 0;
|
---|
238 | for (double d : timeSamples.getRowPackedCopy()) {
|
---|
239 | timeSamplesAdjust[i++] = intercept + (gradient * d);
|
---|
240 | }
|
---|
241 | i = 0;
|
---|
242 | for (double d : opponentUtilities) {
|
---|
243 | y[i++] = d;
|
---|
244 | }
|
---|
245 |
|
---|
246 | Matrix matrixX = new Matrix(x, x.length);
|
---|
247 | Matrix matrixXAdjust = new Matrix(xAdjust, xAdjust.length);
|
---|
248 | Matrix matrixY = new Matrix(y, y.length);
|
---|
249 | Matrix matrixTimeSamplesAdjust = new Matrix(timeSamplesAdjust,
|
---|
250 | timeSamplesAdjust.length);
|
---|
251 |
|
---|
252 | matrixY.minusEquals(matrixXAdjust);
|
---|
253 |
|
---|
254 | GaussianProcessMixture predictor = regression
|
---|
255 | .calculateRegression(matrixX, matrixY);
|
---|
256 |
|
---|
257 | GaussianProcessMixturePrediction prediction = predictor
|
---|
258 | .calculatePrediction(timeSamples.transpose());
|
---|
259 |
|
---|
260 | // Store the means and variances
|
---|
261 | means = prediction.getMean().plus(matrixTimeSamplesAdjust);
|
---|
262 | variances = prediction.getVariance();
|
---|
263 | }
|
---|
264 |
|
---|
265 | Pair<Matrix, Matrix> acceptMatrices = generateProbabilityAccept(means,
|
---|
266 | variances, time);
|
---|
267 | Matrix probabilityAccept = acceptMatrices.fst;
|
---|
268 | Matrix cumulativeAccept = acceptMatrices.snd;
|
---|
269 |
|
---|
270 | Matrix probabilityExpectedUtility = probabilityAccept
|
---|
271 | .arrayTimes(utility);
|
---|
272 | Matrix cumulativeExpectedUtility = cumulativeAccept.arrayTimes(utility);
|
---|
273 |
|
---|
274 | Pair<Double, Double> bestAgreement = getExpectedBestAgreement(
|
---|
275 | probabilityExpectedUtility, cumulativeExpectedUtility, time);
|
---|
276 | double bestTime = bestAgreement.fst;
|
---|
277 | double bestUtility = bestAgreement.snd;
|
---|
278 |
|
---|
279 | double targetUtility = lastRegressionUtility
|
---|
280 | + ((time - lastRegressionTime)
|
---|
281 | * (bestUtility - lastRegressionUtility)
|
---|
282 | / (bestTime - lastRegressionTime));
|
---|
283 |
|
---|
284 | // Store the target utility and time
|
---|
285 | lastRegressionUtility = targetUtility;
|
---|
286 | lastRegressionTime = time;
|
---|
287 |
|
---|
288 | return targetUtility;
|
---|
289 | }
|
---|
290 |
|
---|
291 | /**
|
---|
292 | * Generate an n-by-m matrix representing the effect of the discounting
|
---|
293 | * factor for a given utility-time combination. The combinations are given
|
---|
294 | * by the time and utility samples stored in timeSamples and utilitySamples
|
---|
295 | * respectively.
|
---|
296 | *
|
---|
297 | * @param discountingFactor
|
---|
298 | * The discounting factor, in the range (0, 1].
|
---|
299 | * @return An n-by-m matrix representing the discounted utilities.
|
---|
300 | */
|
---|
301 | private Matrix generateDiscountingFunction(double discountingFactor) {
|
---|
302 | double[] discountingSamples = timeSamples.getRowPackedCopy();
|
---|
303 | double[][] m = new double[utilitySamples.getRowDimension()][timeSamples
|
---|
304 | .getColumnDimension()];
|
---|
305 | for (int i = 0; i < m.length; i++) {
|
---|
306 | for (int j = 0; j < m[i].length; j++) {
|
---|
307 | m[i][j] = Math.pow(discountingFactor, discountingSamples[j]);
|
---|
308 | }
|
---|
309 | }
|
---|
310 | return new Matrix(m);
|
---|
311 | }
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * Generate an (n-1)-by-m matrix representing the probability of acceptance
|
---|
315 | * for a given utility-time combination. The combinations are given by the
|
---|
316 | * time and utility samples stored in timeSamples and utilitySamples
|
---|
317 | * respectively.
|
---|
318 | *
|
---|
319 | * @param mean
|
---|
320 | * The means, at each of the sample time points.
|
---|
321 | * @param variance
|
---|
322 | * The variances, at each of the sample time points.
|
---|
323 | * @param time
|
---|
324 | * The current time, in the range [0, 1].
|
---|
325 | * @return An (n-1)-by-m matrix representing the probability of acceptance.
|
---|
326 | */
|
---|
327 | private Pair<Matrix, Matrix> generateProbabilityAccept(Matrix mean,
|
---|
328 | Matrix variance, double time) {
|
---|
329 | int i = 0;
|
---|
330 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
331 | if (timeSamples.get(0, i) > time)
|
---|
332 | break;
|
---|
333 | }
|
---|
334 | Matrix cumulativeAccept = new Matrix(utilitySamples.getRowDimension(),
|
---|
335 | timeSamples.getColumnDimension(), 0);
|
---|
336 | Matrix probabilityAccept = new Matrix(utilitySamples.getRowDimension(),
|
---|
337 | timeSamples.getColumnDimension(), 0);
|
---|
338 |
|
---|
339 | double interval = 1.0 / utilitySamples.getRowDimension();
|
---|
340 |
|
---|
341 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
342 | double s = Math.sqrt(2 * variance.get(i, 0));
|
---|
343 | double m = mean.get(i, 0);
|
---|
344 |
|
---|
345 | double minp = (1.0 - (0.5 * (1 + erf(
|
---|
346 | (utilitySamples.get(0, 0) + (interval / 2.0) - m) / s))));
|
---|
347 | double maxp = (1.0 - (0.5 * (1 + erf(
|
---|
348 | (utilitySamples.get(utilitySamples.getRowDimension() - 1, 0)
|
---|
349 | - (interval / 2.0) - m) / s))));
|
---|
350 |
|
---|
351 | for (int j = 0; j < utilitySamples.getRowDimension(); j++) {
|
---|
352 | double utility = utilitySamples.get(j, 0);
|
---|
353 | double p = (1.0 - (0.5 * (1 + erf((utility - m) / s))));
|
---|
354 | double p1 = (1.0 - (0.5
|
---|
355 | * (1 + erf((utility - (interval / 2.0) - m) / s))));
|
---|
356 | double p2 = (1.0 - (0.5
|
---|
357 | * (1 + erf((utility + (interval / 2.0) - m) / s))));
|
---|
358 |
|
---|
359 | cumulativeAccept.set(j, i, (p - minp) / (maxp - minp));
|
---|
360 | probabilityAccept.set(j, i, (p1 - p2) / (maxp - minp));
|
---|
361 | }
|
---|
362 | }
|
---|
363 | return new Pair<Matrix, Matrix>(probabilityAccept, cumulativeAccept);
|
---|
364 | }
|
---|
365 |
|
---|
366 | /**
|
---|
367 | * Wrapper for the erf function.
|
---|
368 | *
|
---|
369 | * @param x
|
---|
370 | * @return
|
---|
371 | */
|
---|
372 | private double erf(double x) {
|
---|
373 | if (x > 6)
|
---|
374 | return 1;
|
---|
375 | if (x < -6)
|
---|
376 | return -1;
|
---|
377 | try {
|
---|
378 | double d = Erf.erf(x);
|
---|
379 | if (d > 1)
|
---|
380 | return 1;
|
---|
381 | if (d < -1)
|
---|
382 | return -1;
|
---|
383 | return d;
|
---|
384 | } catch (MaxIterationsExceededException e) {
|
---|
385 | if (x > 0)
|
---|
386 | return 1;
|
---|
387 | else
|
---|
388 | return -1;
|
---|
389 | } catch (MathException e) {
|
---|
390 | e.printStackTrace();
|
---|
391 | return 0;
|
---|
392 | }
|
---|
393 | }
|
---|
394 |
|
---|
395 | /**
|
---|
396 | * Generate an n-by-m matrix representing the risk based utility for a given
|
---|
397 | * utility-time combination. The combinations are given by the time and
|
---|
398 | * utility samples stored in timeSamples and utilitySamples
|
---|
399 | *
|
---|
400 | * @param riskParameter
|
---|
401 | * The risk parameter.
|
---|
402 | * @return an n-by-m matrix representing the risk based utility.
|
---|
403 | */
|
---|
404 | protected Matrix generateRiskFunction(double riskParameter) {
|
---|
405 | double mmin = generateRiskFunction(riskParameter, 0.0);
|
---|
406 | double mmax = generateRiskFunction(riskParameter, 1.0);
|
---|
407 | double range = mmax - mmin;
|
---|
408 |
|
---|
409 | double[] riskSamples = utilitySamples.getColumnPackedCopy();
|
---|
410 | double[][] m = new double[utilitySamples.getRowDimension()][timeSamples
|
---|
411 | .getColumnDimension()];
|
---|
412 | for (int i = 0; i < m.length; i++) {
|
---|
413 | double val;
|
---|
414 | if (range == 0) {
|
---|
415 | val = riskSamples[i];
|
---|
416 | } else {
|
---|
417 | val = (generateRiskFunction(riskParameter, riskSamples[i])
|
---|
418 | - mmin) / range;
|
---|
419 | }
|
---|
420 | for (int j = 0; j < m[i].length; j++) {
|
---|
421 | m[i][j] = val;
|
---|
422 | }
|
---|
423 | }
|
---|
424 | return new Matrix(m);
|
---|
425 | }
|
---|
426 |
|
---|
427 | /**
|
---|
428 | * Generate the risk based utility for a given actual utility.
|
---|
429 | *
|
---|
430 | * @param riskParameter
|
---|
431 | * The risk parameter.
|
---|
432 | * @param utility
|
---|
433 | * The actual utility to calculate the risk based utility from.
|
---|
434 | * @return the risk based utility.
|
---|
435 | */
|
---|
436 | protected double generateRiskFunction(double riskParameter,
|
---|
437 | double utility) {
|
---|
438 | return Math.pow(utility, riskParameter);
|
---|
439 | }
|
---|
440 |
|
---|
441 | /**
|
---|
442 | * Get a pair representing the time and utility value of the expected best
|
---|
443 | * agreement.
|
---|
444 | *
|
---|
445 | * @param expectedValues
|
---|
446 | * A matrix of expected utility values at the sampled time and
|
---|
447 | * utilities given by timeSamples and utilitySamples
|
---|
448 | * respectively.
|
---|
449 | * @param time
|
---|
450 | * The current time.
|
---|
451 | * @return a pair representing the time and utility value of the expected
|
---|
452 | * best agreement.
|
---|
453 | */
|
---|
454 | private Pair<Double, Double> getExpectedBestAgreement(
|
---|
455 | Matrix probabilityExpectedValues, Matrix cumulativeExpectedValues,
|
---|
456 | double time) {
|
---|
457 | Matrix probabilityFutureExpectedValues = getFutureExpectedValues(
|
---|
458 | probabilityExpectedValues, time);
|
---|
459 | Matrix cumulativeFutureExpectedValues = getFutureExpectedValues(
|
---|
460 | cumulativeExpectedValues, time);
|
---|
461 |
|
---|
462 | double[][] probabilityFutureExpectedValuesArray = probabilityFutureExpectedValues
|
---|
463 | .getArray();
|
---|
464 | double[][] cumulativeFutureExpectedValuesArray = cumulativeFutureExpectedValues
|
---|
465 | .getArray();
|
---|
466 |
|
---|
467 | Double bestX = null;
|
---|
468 | Double bestY = null;
|
---|
469 |
|
---|
470 | double[] colSums = new double[probabilityFutureExpectedValuesArray[0].length];
|
---|
471 | double bestColSum = 0;
|
---|
472 | int bestCol = 0;
|
---|
473 |
|
---|
474 | for (int x = 0; x < probabilityFutureExpectedValuesArray[0].length; x++) {
|
---|
475 | colSums[x] = 0;
|
---|
476 | for (int y = 0; y < probabilityFutureExpectedValuesArray.length; y++) {
|
---|
477 | colSums[x] += probabilityFutureExpectedValuesArray[y][x];
|
---|
478 | }
|
---|
479 |
|
---|
480 | if (colSums[x] >= bestColSum) {
|
---|
481 | bestColSum = colSums[x];
|
---|
482 | bestCol = x;
|
---|
483 | }
|
---|
484 | }
|
---|
485 |
|
---|
486 | int bestRow = 0;
|
---|
487 | double bestRowValue = 0;
|
---|
488 |
|
---|
489 | for (int y = 0; y < cumulativeFutureExpectedValuesArray.length; y++) {
|
---|
490 | double expectedValue = cumulativeFutureExpectedValuesArray[y][bestCol];
|
---|
491 | if (expectedValue > bestRowValue) {
|
---|
492 | bestRowValue = expectedValue;
|
---|
493 | bestRow = y;
|
---|
494 | }
|
---|
495 | }
|
---|
496 |
|
---|
497 | bestX = timeSamples.get(0,
|
---|
498 | bestCol + probabilityExpectedValues.getColumnDimension()
|
---|
499 | - probabilityFutureExpectedValues.getColumnDimension());
|
---|
500 | bestY = utilitySamples.get(bestRow, 0);
|
---|
501 |
|
---|
502 | return new Pair<Double, Double>(bestX, bestY);
|
---|
503 | }
|
---|
504 |
|
---|
505 | /**
|
---|
506 | * Get a matrix of expected utility values at the sampled time and utilities
|
---|
507 | * given by timeSamples and utilitySamples, for times in the future.
|
---|
508 | *
|
---|
509 | * @param expectedValues
|
---|
510 | * A matrix of expected utility values at the sampled time and
|
---|
511 | * utilities given by timeSamples and utilitySamples
|
---|
512 | * respectively.
|
---|
513 | * @param time
|
---|
514 | * The current time.
|
---|
515 | * @return a matrix of expected utility values for future time.
|
---|
516 | */
|
---|
517 | private Matrix getFutureExpectedValues(Matrix expectedValues, double time) {
|
---|
518 | int i = 0;
|
---|
519 | for (; i < timeSamples.getColumnDimension(); i++) {
|
---|
520 | if (timeSamples.get(0, i) > time)
|
---|
521 | break;
|
---|
522 | }
|
---|
523 | return expectedValues.getMatrix(0, expectedValues.getRowDimension() - 1,
|
---|
524 | i, expectedValues.getColumnDimension() - 1);
|
---|
525 | }
|
---|
526 |
|
---|
527 | /*
|
---|
528 | * (non-Javadoc)
|
---|
529 | *
|
---|
530 | * @see negotiator.Agent#ReceiveMessage(negotiator.actions.Action)
|
---|
531 | */
|
---|
532 | @Override
|
---|
533 | public final void ReceiveMessage(Action opponentAction) {
|
---|
534 | // Store the received opponentAction
|
---|
535 | messageOpponent = opponentAction;
|
---|
536 | }
|
---|
537 |
|
---|
538 | /**
|
---|
539 | * Handle an opponent's offer.
|
---|
540 | *
|
---|
541 | * @param opponentBid
|
---|
542 | * The bid made by the opponent.
|
---|
543 | * @return the action that we should take in response to the opponent's
|
---|
544 | * offer.
|
---|
545 | * @throws Exception
|
---|
546 | */
|
---|
547 | private Action handleOffer(Bid opponentBid) throws Exception {
|
---|
548 | Action chosenAction = null;
|
---|
549 |
|
---|
550 | if (myLastAction == null) {
|
---|
551 | // Special case to handle first action
|
---|
552 | Bid b = proposeInitialBid();
|
---|
553 | myLastBid = b;
|
---|
554 | chosenAction = new Offer(this.getAgentID(), b);
|
---|
555 | } else if (utilitySpace.getUtility(opponentBid)
|
---|
556 | * acceptMultiplier >= utilitySpace.getUtility(myLastBid)) {
|
---|
557 | // Accept opponent's bid based on my previous bid.
|
---|
558 | chosenAction = new Accept(this.getAgentID(), opponentBid);
|
---|
559 | opponentBids.add(opponentBid);
|
---|
560 | } else if (utilitySpace.getUtility(opponentBid)
|
---|
561 | * acceptMultiplier >= MAXIMUM_ASPIRATION) {
|
---|
562 | // Accept opponent's bid based on my previous bid.
|
---|
563 | chosenAction = new Accept(this.getAgentID(), opponentBid);
|
---|
564 | opponentBids.add(opponentBid);
|
---|
565 | } else {
|
---|
566 | Bid plannedBid = proposeNextBid(opponentBid);
|
---|
567 | chosenAction = new Offer(this.getAgentID(), plannedBid);
|
---|
568 |
|
---|
569 | if (utilitySpace.getUtility(opponentBid)
|
---|
570 | * acceptMultiplier >= utilitySpace.getUtility(plannedBid)) {
|
---|
571 | // Accept opponent's bid based on my planned bid.
|
---|
572 | chosenAction = new Accept(this.getAgentID(), opponentBid);
|
---|
573 | }
|
---|
574 | opponentBids.add(opponentBid);
|
---|
575 | }
|
---|
576 |
|
---|
577 | return chosenAction;
|
---|
578 | }
|
---|
579 |
|
---|
580 | /**
|
---|
581 | * Gets the version number.
|
---|
582 | *
|
---|
583 | * @return the version number.
|
---|
584 | */
|
---|
585 | @Override
|
---|
586 | public String getVersion() {
|
---|
587 | return "2.0";
|
---|
588 | }
|
---|
589 |
|
---|
590 | /*
|
---|
591 | * (non-Javadoc)
|
---|
592 | *
|
---|
593 | * @see negotiator.Agent#chooseAction()
|
---|
594 | */
|
---|
595 | @Override
|
---|
596 | public final Action chooseAction() {
|
---|
597 | Action chosenAction = null;
|
---|
598 | Bid opponentBid = null;
|
---|
599 |
|
---|
600 | try {
|
---|
601 | switch (getActionType(this.messageOpponent)) {
|
---|
602 | case OFFER:
|
---|
603 | opponentBid = ((Offer) this.messageOpponent).getBid();
|
---|
604 | chosenAction = handleOffer(opponentBid);
|
---|
605 | break;
|
---|
606 | case ACCEPT:
|
---|
607 | case BREAKOFF:
|
---|
608 | break;
|
---|
609 | default:
|
---|
610 | if (this.myLastAction == null) {
|
---|
611 | chosenAction = new Offer(getAgentID(), proposeInitialBid());
|
---|
612 | } else {
|
---|
613 | chosenAction = this.myLastAction;
|
---|
614 | }
|
---|
615 | break;
|
---|
616 | }
|
---|
617 |
|
---|
618 | } catch (Exception e) {
|
---|
619 | e.printStackTrace();
|
---|
620 | chosenAction = new Offer(this.getAgentID(), myLastBid);
|
---|
621 | }
|
---|
622 | myLastAction = chosenAction;
|
---|
623 | if (myLastAction instanceof Offer) {
|
---|
624 | Bid b = ((Offer) myLastAction).getBid();
|
---|
625 | myLastBid = b;
|
---|
626 | }
|
---|
627 |
|
---|
628 | return chosenAction;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /**
|
---|
632 | * Get the action type of a given action.
|
---|
633 | *
|
---|
634 | * @param action
|
---|
635 | * The action.
|
---|
636 | * @return The action type of the action.
|
---|
637 | */
|
---|
638 | private ActionType getActionType(Action action) {
|
---|
639 | ActionType actionType = ActionType.START;
|
---|
640 | if (action instanceof Offer)
|
---|
641 | actionType = ActionType.OFFER;
|
---|
642 | else if (action instanceof Accept)
|
---|
643 | actionType = ActionType.ACCEPT;
|
---|
644 | else if (action instanceof EndNegotiation)
|
---|
645 | actionType = ActionType.BREAKOFF;
|
---|
646 | return actionType;
|
---|
647 | }
|
---|
648 |
|
---|
649 | @Override
|
---|
650 | public SupportedNegotiationSetting getSupportedNegotiationSetting() {
|
---|
651 | return SupportedNegotiationSetting.getLinearUtilitySpaceInstance();
|
---|
652 | }
|
---|
653 |
|
---|
654 | @Override
|
---|
655 | public String getDescription() {
|
---|
656 | return "ANAC2011";
|
---|
657 | }
|
---|
658 | } |
---|