1 | package agents.anac.y2010.Southampton.utils;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import agents.anac.y2010.Southampton.utils.concession.TimeConcessionFunction;
|
---|
5 | import genius.core.Bid;
|
---|
6 | import genius.core.issue.IssueDiscrete;
|
---|
7 | import genius.core.issue.IssueInteger;
|
---|
8 | import genius.core.issue.IssueReal;
|
---|
9 | import genius.core.issue.ValueDiscrete;
|
---|
10 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
11 | import genius.core.utility.EVALFUNCTYPE;
|
---|
12 | import genius.core.utility.Evaluator;
|
---|
13 | import genius.core.utility.EvaluatorDiscrete;
|
---|
14 | import genius.core.utility.EvaluatorInteger;
|
---|
15 | import genius.core.utility.EvaluatorReal;
|
---|
16 |
|
---|
17 | /**
|
---|
18 | * @author Colin Williams
|
---|
19 | *
|
---|
20 | */
|
---|
21 | public class OpponentModel extends agents.bayesianopponentmodel.OpponentModel{
|
---|
22 |
|
---|
23 | private AdditiveUtilitySpace utilitySpace;
|
---|
24 |
|
---|
25 | private ArrayList<Bid> biddingHistory;
|
---|
26 | private ArrayList<ArrayList<EvaluatorHypothesis>> evaluatorHypotheses;
|
---|
27 | private ArrayList<ArrayList<WeightHypothesis>> weightHypotheses;
|
---|
28 | private double previousBidUtility;
|
---|
29 | private Double maxUtility;
|
---|
30 | private Double minUtility;
|
---|
31 | private double[] expectedWeights;
|
---|
32 | private double SIGMA = 0.25;
|
---|
33 | private final int totalTriangularFunctions = 4;
|
---|
34 | private TimeConcessionFunction opponentConcessionFunction;
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Default constructor.
|
---|
38 | * @param utilitySpace The utility space of the agent.
|
---|
39 | * @param agent The agent (used only for logging purposes).
|
---|
40 | */
|
---|
41 | public OpponentModel(AdditiveUtilitySpace utilitySpace) {
|
---|
42 | opponentConcessionFunction = new TimeConcessionFunction(TimeConcessionFunction.Beta.LINEAR, TimeConcessionFunction.BREAKOFF);
|
---|
43 | this.utilitySpace = utilitySpace;
|
---|
44 |
|
---|
45 | previousBidUtility = 1;
|
---|
46 |
|
---|
47 | biddingHistory = new ArrayList<Bid>();
|
---|
48 | weightHypotheses = new ArrayList<ArrayList<WeightHypothesis>>();
|
---|
49 | evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
50 | expectedWeights = new double[utilitySpace.getDomain().getIssues().size()];
|
---|
51 |
|
---|
52 | initWeightHypotheses();
|
---|
53 |
|
---|
54 | initEvaluatorHypotheses();
|
---|
55 | }
|
---|
56 |
|
---|
57 | /**
|
---|
58 | * Initialise the weight hypotheses.
|
---|
59 | */
|
---|
60 | private void initWeightHypotheses() {
|
---|
61 | int weightHypothesesNumber = 11;
|
---|
62 | for (int i = 0; i < utilitySpace.getDomain().getIssues().size(); ++i) {
|
---|
63 | ArrayList<WeightHypothesis> weightHypothesis = new ArrayList<WeightHypothesis>();
|
---|
64 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
65 | WeightHypothesis weight = new WeightHypothesis();
|
---|
66 | weight.setProbability((1.0 - (((double) j + 1.0) / weightHypothesesNumber)) * (1.0 - (((double) j + 1.0) / weightHypothesesNumber))
|
---|
67 | * (1.0 - (((double) j + 1.0D) / weightHypothesesNumber)));
|
---|
68 | weight.setWeight((double) j / (weightHypothesesNumber - 1));
|
---|
69 | weightHypothesis.add(weight);
|
---|
70 | }
|
---|
71 |
|
---|
72 | // Normalization
|
---|
73 | double n = 0.0D;
|
---|
74 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
75 | n += weightHypothesis.get(j).getProbability();
|
---|
76 | }
|
---|
77 | for (int j = 0; j < weightHypothesesNumber; ++j) {
|
---|
78 | weightHypothesis.get(j).setProbability(weightHypothesis.get(j).getProbability() / n);
|
---|
79 | }
|
---|
80 |
|
---|
81 | weightHypotheses.add(weightHypothesis);
|
---|
82 | }
|
---|
83 | }
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Initialise the evaluator hypotheses.
|
---|
87 | */
|
---|
88 | private void initEvaluatorHypotheses() {
|
---|
89 | evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
90 | for (int i = 0; i < utilitySpace.getNrOfEvaluators(); ++i) {
|
---|
91 | ArrayList<EvaluatorHypothesis> lEvalHyps;
|
---|
92 | EvaluatorReal lHypEvalReal;
|
---|
93 | EvaluatorInteger lHypEvalInteger;
|
---|
94 | EvaluatorHypothesis lEvaluatorHypothesis;
|
---|
95 | switch (utilitySpace.getEvaluator(utilitySpace.getIssue(i).getNumber()).getType()) {
|
---|
96 |
|
---|
97 | case REAL:
|
---|
98 | {
|
---|
99 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
100 | evaluatorHypotheses.add(lEvalHyps);
|
---|
101 |
|
---|
102 | IssueReal lIssue = (IssueReal) utilitySpace.getIssue(i);
|
---|
103 |
|
---|
104 | /* Uphill */
|
---|
105 | lHypEvalReal = new EvaluatorReal();
|
---|
106 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
107 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
108 | lHypEvalReal.setType(EVALFUNCTYPE.LINEAR);
|
---|
109 | lHypEvalReal.addParam(1, 1.0 / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
110 | lHypEvalReal.addParam(0, -lHypEvalReal.getLowerBound() / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
111 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
112 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
113 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
114 |
|
---|
115 | /* Triangular */
|
---|
116 | for (int k = 1; k <= totalTriangularFunctions; ++k) {
|
---|
117 | lHypEvalReal = new EvaluatorReal();
|
---|
118 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
119 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
120 | lHypEvalReal.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
121 | lHypEvalReal.addParam(0, lHypEvalReal.getLowerBound());
|
---|
122 | lHypEvalReal.addParam(1, lHypEvalReal.getUpperBound());
|
---|
123 | double lMaxPoint = lHypEvalReal.getLowerBound() + (double) k * (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound())
|
---|
124 | / (totalTriangularFunctions + 1);
|
---|
125 | lHypEvalReal.addParam(2, lMaxPoint);
|
---|
126 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
127 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
128 | lEvaluatorHypothesis.setDesc("triangular " + String.format("%1.2f", lMaxPoint));
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* Downhill */
|
---|
132 | lHypEvalReal = new EvaluatorReal();
|
---|
133 | lHypEvalReal.setUpperBound(lIssue.getUpperBound());
|
---|
134 | lHypEvalReal.setLowerBound(lIssue.getLowerBound());
|
---|
135 | lHypEvalReal.setType(EVALFUNCTYPE.LINEAR);
|
---|
136 | lHypEvalReal.addParam(1, -1.0 / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
137 | lHypEvalReal.addParam(0, 1.0 + lHypEvalReal.getLowerBound() / (lHypEvalReal.getUpperBound() - lHypEvalReal.getLowerBound()));
|
---|
138 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalReal);
|
---|
139 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
140 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
141 |
|
---|
142 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
143 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
144 | }
|
---|
145 |
|
---|
146 | break;
|
---|
147 | }
|
---|
148 | case INTEGER:
|
---|
149 | {
|
---|
150 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
151 | evaluatorHypotheses.add(lEvalHyps);
|
---|
152 |
|
---|
153 | IssueInteger lIssue = (IssueInteger) utilitySpace.getIssue(i);
|
---|
154 |
|
---|
155 | /* Uphill */
|
---|
156 | lHypEvalInteger = new EvaluatorInteger();
|
---|
157 | lHypEvalInteger.setUpperBound(lIssue.getUpperBound());
|
---|
158 | lHypEvalInteger.setLowerBound(lIssue.getLowerBound());
|
---|
159 | lHypEvalInteger.setOffset(-lHypEvalInteger.getLowerBound() / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
160 | lHypEvalInteger.setSlope(1.0 / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
161 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalInteger);
|
---|
162 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
163 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
164 |
|
---|
165 | /* Downhill */
|
---|
166 | lHypEvalInteger = new EvaluatorInteger();
|
---|
167 | lHypEvalInteger.setUpperBound(lIssue.getUpperBound());
|
---|
168 | lHypEvalInteger.setLowerBound(lIssue.getLowerBound());
|
---|
169 | lHypEvalInteger.setOffset(1.0 + lHypEvalInteger.getLowerBound() / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
170 | lHypEvalInteger.setSlope(-1.0 / (lHypEvalInteger.getUpperBound() - lHypEvalInteger.getLowerBound()));
|
---|
171 | lEvaluatorHypothesis = new EvaluatorHypothesis(lHypEvalInteger);
|
---|
172 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
173 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
174 |
|
---|
175 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
176 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
177 | }
|
---|
178 |
|
---|
179 | break;
|
---|
180 | }
|
---|
181 | case DISCRETE:
|
---|
182 | {
|
---|
183 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
184 | evaluatorHypotheses.add(lEvalHyps);
|
---|
185 |
|
---|
186 | IssueDiscrete lDiscIssue = (IssueDiscrete) utilitySpace.getIssue(i);
|
---|
187 |
|
---|
188 | /* Uphill */
|
---|
189 | EvaluatorDiscrete lDiscreteEval = new EvaluatorDiscrete();
|
---|
190 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j)
|
---|
191 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), Integer.valueOf(1000 * j + 1));
|
---|
192 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
193 | lEvaluatorHypothesis.setDesc("uphill");
|
---|
194 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
195 |
|
---|
196 | /* Triangular */
|
---|
197 | if (lDiscIssue.getNumberOfValues() > 2) {
|
---|
198 | for (int k = 1; k < lDiscIssue.getNumberOfValues() - 1; ++k) {
|
---|
199 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
200 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j) {
|
---|
201 | if (j < k) {
|
---|
202 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000 * j / k);
|
---|
203 | } else
|
---|
204 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), 1000 * (lDiscIssue.getNumberOfValues() - j - 1
|
---|
205 | / (lDiscIssue.getNumberOfValues() - k - 1) + 1));
|
---|
206 | }
|
---|
207 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
208 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
209 | lEvaluatorHypothesis.setDesc("triangular " + String.valueOf(k));
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | /* Downhill */
|
---|
214 | lDiscreteEval = new EvaluatorDiscrete();
|
---|
215 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); ++j)
|
---|
216 | lDiscreteEval.addEvaluation(lDiscIssue.getValue(j), Integer.valueOf(1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1));
|
---|
217 | lEvaluatorHypothesis = new EvaluatorHypothesis(lDiscreteEval);
|
---|
218 | lEvaluatorHypothesis.setDesc("downhill");
|
---|
219 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
220 |
|
---|
221 | for (int k = 0; k < lEvalHyps.size(); ++k) {
|
---|
222 | lEvalHyps.get(k).setProbability(1.0 / lEvalHyps.size());
|
---|
223 | }
|
---|
224 |
|
---|
225 | break;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | for (int i = 0; i < expectedWeights.length; ++i)
|
---|
231 | expectedWeights[i] = getExpectedWeight(i);
|
---|
232 |
|
---|
233 | normalize(expectedWeights);
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * Get the normalised utility of a bid.
|
---|
238 | * @param bid The bid to get the normalised utility of.
|
---|
239 | * @return the normalised utility of a bid.
|
---|
240 | * @throws Exception
|
---|
241 | */
|
---|
242 | public double getNormalizedUtility(Bid bid) throws Exception {
|
---|
243 | return getNormalizedUtility(bid, false);
|
---|
244 | }
|
---|
245 |
|
---|
246 | /**
|
---|
247 | * Get the normalised utility of a bid.
|
---|
248 | * @param bid The bid to get the normalised utility of.
|
---|
249 | * @param debug Whether or not to output debugging information
|
---|
250 | * @return the normalised utility of a bid.
|
---|
251 | * @throws Exception
|
---|
252 | */
|
---|
253 | public double getNormalizedUtility(Bid bid, boolean debug) throws Exception {
|
---|
254 | double u = getExpectedUtility(bid);
|
---|
255 | if (minUtility == null || maxUtility == null)
|
---|
256 | findMinMaxUtility();
|
---|
257 | return (u - minUtility) / (maxUtility - minUtility);
|
---|
258 | }
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * Get the expected utility of a bid.
|
---|
262 | * @param bid The bid to get the expected utility of.
|
---|
263 | * @return the expected utility of the bid.
|
---|
264 | * @throws Exception
|
---|
265 | */
|
---|
266 | public double getExpectedUtility(Bid bid) throws Exception {
|
---|
267 | double u = 0;
|
---|
268 | for (int i = 0; i < utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
269 | u += expectedWeights[i] * getExpectedEvaluationValue(bid, i);
|
---|
270 | }
|
---|
271 | return u;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /**
|
---|
275 | * Update the beliefs about the opponent, based on an observation.
|
---|
276 | * @param opponentBid The opponent's bid that was observed.
|
---|
277 | * @throws Exception
|
---|
278 | */
|
---|
279 | public void updateBeliefs(Bid opponentBid, long currentTime, double totalTime) throws Exception {
|
---|
280 | if (biddingHistory.contains(opponentBid))
|
---|
281 | return;
|
---|
282 | biddingHistory.add(opponentBid);
|
---|
283 |
|
---|
284 | if (biddingHistory.size() > 1) {
|
---|
285 | updateWeights();
|
---|
286 | }
|
---|
287 | updateEvaluationFunctions();
|
---|
288 |
|
---|
289 | previousBidUtility = opponentConcessionFunction.getConcession(1, currentTime, totalTime);
|
---|
290 | for (int i = 0; i < expectedWeights.length; ++i)
|
---|
291 | expectedWeights[i] = getExpectedWeight(i);
|
---|
292 |
|
---|
293 | normalize(expectedWeights);
|
---|
294 |
|
---|
295 | findMinMaxUtility();
|
---|
296 | }
|
---|
297 |
|
---|
298 | /**
|
---|
299 | * Normalise the values in an array so that they sum to 1.
|
---|
300 | * @param array The array to normalise;
|
---|
301 | */
|
---|
302 | private void normalize(double[] array) {
|
---|
303 | double n = 0;
|
---|
304 | for (int i = 0; i < array.length; ++i) {
|
---|
305 | n += array[i];
|
---|
306 | }
|
---|
307 | if(n == 0)
|
---|
308 | {
|
---|
309 | for (int i = 0; i < array.length; ++i) {
|
---|
310 | array[i] = 1.0/array.length;
|
---|
311 | }
|
---|
312 | return;
|
---|
313 | }
|
---|
314 |
|
---|
315 | for (int i = 0; i < array.length; ++i) {
|
---|
316 | array[i] = array[i] / n;
|
---|
317 | }
|
---|
318 | }
|
---|
319 |
|
---|
320 | /**
|
---|
321 | * Find the minimum and maximum utilities of the bids in the utility space.
|
---|
322 | * @throws Exception
|
---|
323 | */
|
---|
324 | protected void findMinMaxUtility() throws Exception {
|
---|
325 | maxUtility = getExtremeUtility(Extreme.MAX);
|
---|
326 | minUtility = getExtremeUtility(Extreme.MIN);
|
---|
327 | }
|
---|
328 |
|
---|
329 | public enum Extreme { MIN, MAX }
|
---|
330 |
|
---|
331 | private double getExtremeUtility(Extreme extreme) {
|
---|
332 | double u = 0;
|
---|
333 | for (int i = 0; i < utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
334 | u += expectedWeights[i] * getExtremeEvaluationValue(i, extreme);
|
---|
335 | }
|
---|
336 | return u;
|
---|
337 | }
|
---|
338 |
|
---|
339 | private double getExtremeEvaluationValue(int number, Extreme extreme) {
|
---|
340 | double expectedEval = 0;
|
---|
341 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(number)) {
|
---|
342 | expectedEval += evaluatorHypothesis.getProbability()
|
---|
343 | * getExtremeEvaluation(evaluatorHypothesis.getEvaluator(), extreme);
|
---|
344 | }
|
---|
345 | return expectedEval;
|
---|
346 | }
|
---|
347 |
|
---|
348 | public double getExtremeEvaluation(Evaluator evaluator, Extreme extreme) {
|
---|
349 | double extremeEval = initExtreme(extreme);
|
---|
350 | switch(evaluator.getType())
|
---|
351 | {
|
---|
352 | case DISCRETE:
|
---|
353 | EvaluatorDiscrete discreteEvaluator = (EvaluatorDiscrete)evaluator;
|
---|
354 | for(ValueDiscrete value : discreteEvaluator.getValues())
|
---|
355 | {
|
---|
356 | try {
|
---|
357 | switch(extreme)
|
---|
358 | {
|
---|
359 | case MAX:
|
---|
360 | extremeEval = Math.max(extremeEval, discreteEvaluator.getEvaluation(value));
|
---|
361 | break;
|
---|
362 | case MIN:
|
---|
363 | extremeEval = Math.min(extremeEval, discreteEvaluator.getEvaluation(value));
|
---|
364 | break;
|
---|
365 | }
|
---|
366 | } catch (Exception e) {
|
---|
367 | e.printStackTrace();
|
---|
368 | }
|
---|
369 | }
|
---|
370 | break;
|
---|
371 | case INTEGER:
|
---|
372 | EvaluatorInteger integerEvaluator = (EvaluatorInteger)evaluator;
|
---|
373 | switch(extreme)
|
---|
374 | {
|
---|
375 | case MAX:
|
---|
376 | extremeEval = Math.max(integerEvaluator.getEvaluation(integerEvaluator.getUpperBound()), integerEvaluator.getEvaluation(integerEvaluator.getLowerBound()));
|
---|
377 | //if(integerEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
378 | //{
|
---|
379 | // extremeEval = Math.max(extremeEval, integerEvaluator.getEvaluation(integerEvaluator.getTopParam()));
|
---|
380 | //}
|
---|
381 | break;
|
---|
382 | case MIN:
|
---|
383 | extremeEval = Math.min(integerEvaluator.getEvaluation(integerEvaluator.getUpperBound()), integerEvaluator.getEvaluation(integerEvaluator.getLowerBound()));
|
---|
384 | //if(integerEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
385 | //{
|
---|
386 | // extremeEval = Math.min(extremeEval, integerEvaluator.getEvaluation(integerEvaluator.getTopParam()));
|
---|
387 | //}
|
---|
388 | break;
|
---|
389 | }
|
---|
390 | break;
|
---|
391 | case REAL:
|
---|
392 | EvaluatorReal realEvaluator = (EvaluatorReal)evaluator;
|
---|
393 | switch(extreme)
|
---|
394 | {
|
---|
395 | case MAX:
|
---|
396 | extremeEval = Math.max(realEvaluator.getEvaluation(realEvaluator.getUpperBound()), realEvaluator.getEvaluation(realEvaluator.getLowerBound()));
|
---|
397 | if(realEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
398 | {
|
---|
399 | extremeEval = Math.max(extremeEval, realEvaluator.getEvaluation(realEvaluator.getTopParam()));
|
---|
400 | }
|
---|
401 | break;
|
---|
402 | case MIN:
|
---|
403 | extremeEval = Math.min(realEvaluator.getEvaluation(realEvaluator.getUpperBound()), realEvaluator.getEvaluation(realEvaluator.getLowerBound()));
|
---|
404 | if(realEvaluator.getFuncType() == EVALFUNCTYPE.TRIANGULAR)
|
---|
405 | {
|
---|
406 | extremeEval = Math.min(extremeEval, realEvaluator.getEvaluation(realEvaluator.getTopParam()));
|
---|
407 | }
|
---|
408 | break;
|
---|
409 | }
|
---|
410 | break;
|
---|
411 | }
|
---|
412 | return extremeEval;
|
---|
413 | }
|
---|
414 |
|
---|
415 | private double initExtreme(Extreme extreme) {
|
---|
416 | switch(extreme)
|
---|
417 | {
|
---|
418 | case MAX:
|
---|
419 | return Double.MIN_VALUE;
|
---|
420 | case MIN:
|
---|
421 | return Double.MAX_VALUE;
|
---|
422 | }
|
---|
423 | return 0;
|
---|
424 | }
|
---|
425 |
|
---|
426 | /**
|
---|
427 | * Update the evaluation functions.
|
---|
428 | * @throws Exception
|
---|
429 | */
|
---|
430 | private void updateEvaluationFunctions() throws Exception {
|
---|
431 | maxUtility = null;
|
---|
432 | minUtility = null;
|
---|
433 |
|
---|
434 | Bid bid = biddingHistory.get(biddingHistory.size() - 1);
|
---|
435 | ArrayList<ArrayList<EvaluatorHypothesis>> evaluatorHypotheses = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
436 |
|
---|
437 | for (int i = 0; i < this.evaluatorHypotheses.size(); ++i) {
|
---|
438 | ArrayList<EvaluatorHypothesis> tmp = new ArrayList<EvaluatorHypothesis>();
|
---|
439 | for (int j = 0; j < this.evaluatorHypotheses.get(i).size(); ++j) {
|
---|
440 | EvaluatorHypothesis evaluatorHypothesis = new EvaluatorHypothesis(this.evaluatorHypotheses.get(i).get(j).getEvaluator());
|
---|
441 | evaluatorHypothesis.setDesc(this.evaluatorHypotheses.get(i).get(j).getDesc());
|
---|
442 | evaluatorHypothesis.setProbability(this.evaluatorHypotheses.get(i).get(j).getProbability());
|
---|
443 | tmp.add(evaluatorHypothesis);
|
---|
444 | }
|
---|
445 | evaluatorHypotheses.add(tmp);
|
---|
446 | }
|
---|
447 |
|
---|
448 | for (int i = 0; i < this.utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
449 | double n = 0.0D;
|
---|
450 | double utility = 0.0D;
|
---|
451 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(i)) {
|
---|
452 | utility = getPartialUtility(bid, i) +
|
---|
453 | getExpectedWeight(i) * evaluatorHypothesis.getEvaluator().getEvaluation(utilitySpace, bid, utilitySpace.getIssue(i).getNumber());
|
---|
454 | n += evaluatorHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility);
|
---|
455 | }
|
---|
456 |
|
---|
457 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(i)) {
|
---|
458 | utility = getPartialUtility(bid, i) +
|
---|
459 | getExpectedWeight(i) * evaluatorHypothesis.getEvaluator().getEvaluation(utilitySpace, bid, utilitySpace.getIssue(i).getNumber());
|
---|
460 | evaluatorHypothesis.setProbability(evaluatorHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility) / n);
|
---|
461 | }
|
---|
462 | }
|
---|
463 |
|
---|
464 | this.evaluatorHypotheses = evaluatorHypotheses;
|
---|
465 | }
|
---|
466 |
|
---|
467 | /**
|
---|
468 | * Update the weights.
|
---|
469 | * @throws Exception
|
---|
470 | */
|
---|
471 | private void updateWeights() throws Exception {
|
---|
472 | maxUtility = null;
|
---|
473 | minUtility = null;
|
---|
474 |
|
---|
475 | Bid bid = biddingHistory.get(biddingHistory.size() - 1);
|
---|
476 | ArrayList<ArrayList<WeightHypothesis>> weightHypotheses = new ArrayList<ArrayList<WeightHypothesis>>();
|
---|
477 |
|
---|
478 | for (int i = 0; i < this.weightHypotheses.size(); ++i) {
|
---|
479 | ArrayList<WeightHypothesis> tmp = new ArrayList<WeightHypothesis>();
|
---|
480 | for (int j = 0; j < this.weightHypotheses.get(i).size(); ++j) {
|
---|
481 | WeightHypothesis weightHypothesis = new WeightHypothesis();
|
---|
482 | weightHypothesis.setWeight(this.weightHypotheses.get(i).get(j).getWeight());
|
---|
483 | weightHypothesis.setProbability(this.weightHypotheses.get(i).get(j).getProbability());
|
---|
484 | tmp.add(weightHypothesis);
|
---|
485 | }
|
---|
486 | weightHypotheses.add(tmp);
|
---|
487 | }
|
---|
488 |
|
---|
489 | for (int i = 0; i < this.utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
490 | double n = 0.0D;
|
---|
491 | double utility = 0.0D;
|
---|
492 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i)) {
|
---|
493 | utility = getPartialUtility(bid, i) +
|
---|
494 | weightHypothesis.getWeight() * getExpectedEvaluationValue(bid, i);
|
---|
495 | n += weightHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility);
|
---|
496 | }
|
---|
497 |
|
---|
498 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i)) {
|
---|
499 | utility = getPartialUtility(bid, i) +
|
---|
500 | weightHypothesis.getWeight() * getExpectedEvaluationValue(bid, i);
|
---|
501 | weightHypothesis.setProbability(weightHypothesis.getProbability() * conditionalDistribution(utility, previousBidUtility) / n);
|
---|
502 | }
|
---|
503 | }
|
---|
504 |
|
---|
505 | this.weightHypotheses = weightHypotheses;
|
---|
506 |
|
---|
507 | }
|
---|
508 |
|
---|
509 | /**
|
---|
510 | * The conditional distribution function.
|
---|
511 | * @param utility The utility.
|
---|
512 | * @param previousBidUtility The utility of the previous bid.
|
---|
513 | * @return
|
---|
514 | */
|
---|
515 | private double conditionalDistribution(double utility, double previousBidUtility) {
|
---|
516 | double x = (previousBidUtility - utility) / previousBidUtility;
|
---|
517 | return (1.0 / (SIGMA * Math.sqrt(2 * Math.PI))) * Math.exp(-(x * x) / (2 * SIGMA * SIGMA));
|
---|
518 | }
|
---|
519 |
|
---|
520 | /**
|
---|
521 | * Get the expected evaluation value of a bid for a particular issue.
|
---|
522 | * @param bid The bid to get the expected evaluation value of.
|
---|
523 | * @param number The number of the issue to get the expected evaluation value of.
|
---|
524 | * @return the expected evaluation value of a bid for a particular issue.
|
---|
525 | * @throws Exception
|
---|
526 | */
|
---|
527 | private double getExpectedEvaluationValue(Bid bid, int number) throws Exception {
|
---|
528 | double expectedEval = 0;
|
---|
529 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(number)) {
|
---|
530 | expectedEval += evaluatorHypothesis.getProbability()
|
---|
531 | * evaluatorHypothesis.getEvaluator().getEvaluation(utilitySpace, bid, utilitySpace.getIssue(number).getNumber());
|
---|
532 | }
|
---|
533 | return expectedEval;
|
---|
534 | }
|
---|
535 |
|
---|
536 | /**
|
---|
537 | * Get the partial utility of a bid, excluding a specific issue.
|
---|
538 | * @param bid The bid to get the partial utility of.
|
---|
539 | * @param number The number of the issue to exclude.
|
---|
540 | * @return the partial utility of a bid, excluding a specific issue.
|
---|
541 | * @throws Exception
|
---|
542 | */
|
---|
543 | private double getPartialUtility(Bid bid, int number) throws Exception {
|
---|
544 | double u = 0;
|
---|
545 | for (int i = 0; i < utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
546 | if (number == i) {
|
---|
547 | continue;
|
---|
548 | }
|
---|
549 | double w = 0;
|
---|
550 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i))
|
---|
551 | w += weightHypothesis.getProbability() * weightHypothesis.getWeight();
|
---|
552 | u += w * getExpectedEvaluationValue(bid, i);
|
---|
553 | }
|
---|
554 | return u;
|
---|
555 | }
|
---|
556 |
|
---|
557 | /**
|
---|
558 | * Get the expected weight of a particular issue.
|
---|
559 | * @param number The issue number.
|
---|
560 | * @return the expected weight of a particular issue.
|
---|
561 | */
|
---|
562 | public double getExpectedWeight(int number) {
|
---|
563 | double expectedWeight = 0;
|
---|
564 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(number)) {
|
---|
565 | expectedWeight += weightHypothesis.getProbability() * weightHypothesis.getWeight();
|
---|
566 | }
|
---|
567 | return expectedWeight;
|
---|
568 | }
|
---|
569 |
|
---|
570 | /**
|
---|
571 | * Print the best hypothesis.
|
---|
572 | */
|
---|
573 | public void printBestHypothesis() {
|
---|
574 | double[] bestWeights = new double[utilitySpace.getDomain().getIssues().size()];
|
---|
575 | EvaluatorHypothesis[] bestEvaluatorHypotheses = new EvaluatorHypothesis[utilitySpace.getDomain().getIssues().size()];
|
---|
576 | for (int i = 0; i < this.utilitySpace.getDomain().getIssues().size(); i++) {
|
---|
577 | for (WeightHypothesis weightHypothesis : weightHypotheses.get(i)) {
|
---|
578 | bestWeights[i] += weightHypothesis.getWeight() * weightHypothesis.getProbability();
|
---|
579 | }
|
---|
580 |
|
---|
581 | bestEvaluatorHypotheses[i] = getBestHypothesis(i);
|
---|
582 | }
|
---|
583 |
|
---|
584 | normalize(bestWeights);
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | public EvaluatorHypothesis getBestHypothesis(int issue) {
|
---|
589 | double maxEvaluatorProbability = -1;
|
---|
590 | EvaluatorHypothesis bestEvaluatorHypothesis = null;
|
---|
591 | for (EvaluatorHypothesis evaluatorHypothesis : evaluatorHypotheses.get(issue)) {
|
---|
592 | if (evaluatorHypothesis.getProbability() > maxEvaluatorProbability) {
|
---|
593 | maxEvaluatorProbability = evaluatorHypothesis.getProbability();
|
---|
594 | bestEvaluatorHypothesis = evaluatorHypothesis;
|
---|
595 | }
|
---|
596 | }
|
---|
597 | return bestEvaluatorHypothesis;
|
---|
598 | }
|
---|
599 |
|
---|
600 | /**
|
---|
601 | * Get the first bid.
|
---|
602 | * @return the first bid.
|
---|
603 | */
|
---|
604 | public Bid getFirstBid() {
|
---|
605 | return biddingHistory.get(0);
|
---|
606 | }
|
---|
607 |
|
---|
608 | public Hypothesis getHypothesis(int index) {
|
---|
609 | return this.evaluatorHypotheses.get(index).get(index);
|
---|
610 | }
|
---|
611 | }
|
---|