1 | package agents.anac.y2010.Southampton.analysis;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.Collections;
|
---|
5 | import java.util.HashMap;
|
---|
6 | import java.util.List;
|
---|
7 |
|
---|
8 | import agents.anac.y2010.Southampton.utils.OpponentModel;
|
---|
9 | import agents.anac.y2010.Southampton.utils.Pair;
|
---|
10 | import agents.anac.y2010.Southampton.utils.concession.ConcessionUtils;
|
---|
11 | import genius.core.Bid;
|
---|
12 | import genius.core.Domain;
|
---|
13 | import genius.core.issue.ISSUETYPE;
|
---|
14 | import genius.core.issue.Issue;
|
---|
15 | import genius.core.issue.IssueDiscrete;
|
---|
16 | import genius.core.issue.Value;
|
---|
17 | import genius.core.issue.ValueDiscrete;
|
---|
18 | import genius.core.issue.ValueInteger;
|
---|
19 | import genius.core.issue.ValueReal;
|
---|
20 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
21 | import genius.core.utility.EvaluatorDiscrete;
|
---|
22 | import genius.core.utility.EvaluatorInteger;
|
---|
23 | import genius.core.utility.EvaluatorReal;
|
---|
24 |
|
---|
25 | public class BidSpace {
|
---|
26 |
|
---|
27 | private final boolean TEST_EQUIVALENCE = false;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * @return the continuousWeights
|
---|
31 | */
|
---|
32 | public ArrayList<Double> getContinuousWeights() {
|
---|
33 | return continuousWeights;
|
---|
34 | }
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * @return the count of discreteCombinations
|
---|
38 | */
|
---|
39 | public int getDiscreteCombinationsCount() {
|
---|
40 | return discreteCombinations.length;
|
---|
41 | }
|
---|
42 |
|
---|
43 | /**
|
---|
44 | * @return the continuousWeightsZero
|
---|
45 | */
|
---|
46 | public boolean isContinuousWeightsZero() {
|
---|
47 | return continuousWeightsZero;
|
---|
48 | }
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * @return the discreteWeights
|
---|
52 | */
|
---|
53 | public ArrayList<Double> getDiscreteWeights() {
|
---|
54 | return discreteWeights;
|
---|
55 | }
|
---|
56 |
|
---|
57 | public class EvaluatedDiscreteCombination implements
|
---|
58 | Comparable<EvaluatedDiscreteCombination> {
|
---|
59 |
|
---|
60 | /**
|
---|
61 | * @return the discreteCombination
|
---|
62 | */
|
---|
63 | public ValueDiscrete[] getDiscreteCombination() {
|
---|
64 | return discreteCombination;
|
---|
65 | }
|
---|
66 |
|
---|
67 | private ValueDiscrete[] discreteCombination;
|
---|
68 | private double jointUtility;
|
---|
69 |
|
---|
70 | public EvaluatedDiscreteCombination(
|
---|
71 | ValueDiscrete[] discreteCombination, double jointUtility) {
|
---|
72 | this.discreteCombination = discreteCombination;
|
---|
73 | this.jointUtility = jointUtility;
|
---|
74 | }
|
---|
75 |
|
---|
76 | public int compareTo(EvaluatedDiscreteCombination o) {
|
---|
77 | return this.jointUtility < o.jointUtility ? -1
|
---|
78 | : (this.jointUtility == o.jointUtility ? 0 : 1);
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | private Domain domain;
|
---|
83 |
|
---|
84 | ArrayList<Double> continuousWeights;
|
---|
85 | double[] continuousPreference;
|
---|
86 | double[] range;
|
---|
87 | double[] offset;
|
---|
88 | ArrayList<ContinuousSection> continuousSections;
|
---|
89 | ValueDiscrete[][] discreteCombinations;
|
---|
90 | ISSUETYPE[] issueTypes;
|
---|
91 | List<Issue> issues;
|
---|
92 |
|
---|
93 | ArrayList<EvaluatorDiscrete> discreteEvaluators;
|
---|
94 | ArrayList<EvaluatorReal> realEvaluators;
|
---|
95 | ArrayList<EvaluatorInteger> integerEvaluators;
|
---|
96 |
|
---|
97 | private boolean continuousWeightsZero;
|
---|
98 |
|
---|
99 | private ArrayList<HashMap<ValueDiscrete, Double>> discreteEvaluationFunctions;
|
---|
100 | private ArrayList<Double> discreteWeights;
|
---|
101 |
|
---|
102 | private double discountFactor;
|
---|
103 |
|
---|
104 | /**
|
---|
105 | * Build the bid space based on a utility space.
|
---|
106 | *
|
---|
107 | * @param space
|
---|
108 | * the utility space.
|
---|
109 | * @throws Exception
|
---|
110 | */
|
---|
111 | public BidSpace(AdditiveUtilitySpace space) throws Exception {
|
---|
112 |
|
---|
113 | domain = space.getDomain();
|
---|
114 |
|
---|
115 | discountFactor = space.getDiscountFactor();
|
---|
116 | if (!space.isDiscounted()) {
|
---|
117 | discountFactor = 0.0; // in 2011 no discount had value 0.0 instead
|
---|
118 | // of 1.0
|
---|
119 | }
|
---|
120 |
|
---|
121 | issues = domain.getIssues();
|
---|
122 | double[] weights = new double[issues.size()];
|
---|
123 | issueTypes = new ISSUETYPE[issues.size()];
|
---|
124 |
|
---|
125 | discreteEvaluationFunctions = new ArrayList<HashMap<ValueDiscrete, Double>>();
|
---|
126 | discreteWeights = new ArrayList<Double>();
|
---|
127 |
|
---|
128 | ArrayList<ContinuousEvaluationFunction> continuousEvaluationFunctions = new ArrayList<ContinuousEvaluationFunction>();
|
---|
129 | continuousWeights = new ArrayList<Double>();
|
---|
130 | continuousWeightsZero = true;
|
---|
131 | ArrayList<Double> tmpContinuousPreference = new ArrayList<Double>();
|
---|
132 |
|
---|
133 | ArrayList<Double> tmpRange = new ArrayList<Double>();
|
---|
134 | ArrayList<Double> tmpOffset = new ArrayList<Double>();
|
---|
135 |
|
---|
136 | realEvaluators = new ArrayList<EvaluatorReal>();
|
---|
137 | integerEvaluators = new ArrayList<EvaluatorInteger>();
|
---|
138 | discreteEvaluators = new ArrayList<EvaluatorDiscrete>();
|
---|
139 |
|
---|
140 | int i = 0;
|
---|
141 | for (Issue issue : issues) {
|
---|
142 | weights[i] = space.getWeight(issue.getNumber());
|
---|
143 | issueTypes[i] = issue.getType();
|
---|
144 | switch (issueTypes[i]) {
|
---|
145 | case DISCRETE:
|
---|
146 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
147 | List<ValueDiscrete> values = issueDiscrete.getValues();
|
---|
148 | HashMap<ValueDiscrete, Double> evaluationFunction = new HashMap<ValueDiscrete, Double>();
|
---|
149 | EvaluatorDiscrete evaluatorDiscrete = (EvaluatorDiscrete) space
|
---|
150 | .getEvaluator(issue.getNumber());
|
---|
151 | discreteEvaluators.add(evaluatorDiscrete);
|
---|
152 | for (ValueDiscrete value : values) {
|
---|
153 | evaluationFunction.put(value,
|
---|
154 | evaluatorDiscrete.getEvaluation(value));
|
---|
155 | }
|
---|
156 | discreteEvaluationFunctions.add(evaluationFunction);
|
---|
157 | discreteWeights.add(space.getWeight(issue.getNumber()));
|
---|
158 | break;
|
---|
159 | case REAL:
|
---|
160 | EvaluatorReal evaluatorReal = (EvaluatorReal) space
|
---|
161 | .getEvaluator(issue.getNumber());
|
---|
162 | realEvaluators.add(evaluatorReal);
|
---|
163 |
|
---|
164 | tmpRange.add(evaluatorReal.getUpperBound()
|
---|
165 | - evaluatorReal.getLowerBound());
|
---|
166 | tmpOffset.add(evaluatorReal.getLowerBound());
|
---|
167 |
|
---|
168 | ArrayList<RealEvaluationSection> realSections = new ArrayList<RealEvaluationSection>();
|
---|
169 | switch (evaluatorReal.getFuncType()) {
|
---|
170 | case LINEAR: {
|
---|
171 | double lb = normalise(evaluatorReal.getLowerBound(),
|
---|
172 | evaluatorReal.getLowerBound(),
|
---|
173 | evaluatorReal.getUpperBound());
|
---|
174 | double ub = normalise(evaluatorReal.getUpperBound(),
|
---|
175 | evaluatorReal.getLowerBound(),
|
---|
176 | evaluatorReal.getUpperBound());
|
---|
177 | RealEvaluationSection res = new RealEvaluationSection(lb,
|
---|
178 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
179 | .getLowerBound()), ub,
|
---|
180 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
181 | .getUpperBound()));
|
---|
182 | realSections.add(res);
|
---|
183 | tmpContinuousPreference.add(res.getTopPoint());
|
---|
184 | break;
|
---|
185 | }
|
---|
186 | case TRIANGULAR: {
|
---|
187 | double lb = normalise(evaluatorReal.getLowerBound(),
|
---|
188 | evaluatorReal.getLowerBound(),
|
---|
189 | evaluatorReal.getUpperBound());
|
---|
190 | double tp = normalise(evaluatorReal.getTopParam(),
|
---|
191 | evaluatorReal.getLowerBound(),
|
---|
192 | evaluatorReal.getUpperBound());
|
---|
193 | double ub = normalise(evaluatorReal.getUpperBound(),
|
---|
194 | evaluatorReal.getLowerBound(),
|
---|
195 | evaluatorReal.getUpperBound());
|
---|
196 | realSections
|
---|
197 | .add(new RealEvaluationSection(lb, evaluatorReal
|
---|
198 | .getEvaluation(evaluatorReal
|
---|
199 | .getLowerBound()), tp,
|
---|
200 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
201 | .getTopParam())));
|
---|
202 | realSections.add(new RealEvaluationSection(tp,
|
---|
203 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
204 | .getTopParam()), ub, evaluatorReal
|
---|
205 | .getEvaluation(evaluatorReal
|
---|
206 | .getUpperBound())));
|
---|
207 | tmpContinuousPreference.add(tp);
|
---|
208 | break;
|
---|
209 | }
|
---|
210 | }
|
---|
211 | continuousEvaluationFunctions
|
---|
212 | .add(new ContinuousEvaluationFunction(realSections,
|
---|
213 | space.getWeight(issue.getNumber())));
|
---|
214 | if (space.getWeight(issue.getNumber()) > 0)
|
---|
215 | continuousWeightsZero = false;
|
---|
216 | continuousWeights.add(space.getWeight(issue.getNumber()));
|
---|
217 | break;
|
---|
218 | case INTEGER:
|
---|
219 | EvaluatorInteger evaluatorInteger = (EvaluatorInteger) space
|
---|
220 | .getEvaluator(issue.getNumber());
|
---|
221 | integerEvaluators.add(evaluatorInteger);
|
---|
222 |
|
---|
223 | tmpRange.add((double) evaluatorInteger.getUpperBound()
|
---|
224 | - evaluatorInteger.getLowerBound());
|
---|
225 | tmpOffset.add((double) evaluatorInteger.getLowerBound());
|
---|
226 |
|
---|
227 | ArrayList<IntegerEvaluationSection> integerSections = new ArrayList<IntegerEvaluationSection>();
|
---|
228 | switch (evaluatorInteger.getFuncType()) {
|
---|
229 | case LINEAR: {
|
---|
230 | int lb = normalise(evaluatorInteger.getLowerBound(),
|
---|
231 | evaluatorInteger.getLowerBound(),
|
---|
232 | evaluatorInteger.getUpperBound());
|
---|
233 | int ub = normalise(evaluatorInteger.getUpperBound(),
|
---|
234 | evaluatorInteger.getLowerBound(),
|
---|
235 | evaluatorInteger.getUpperBound());
|
---|
236 | IntegerEvaluationSection ies = new IntegerEvaluationSection(
|
---|
237 | lb, evaluatorInteger.getEvaluation(evaluatorInteger
|
---|
238 | .getLowerBound()), ub,
|
---|
239 | evaluatorInteger.getEvaluation(evaluatorInteger
|
---|
240 | .getUpperBound()));
|
---|
241 | integerSections.add(ies);
|
---|
242 | tmpContinuousPreference.add(ies.getTopPoint());
|
---|
243 | break;
|
---|
244 | }
|
---|
245 | }
|
---|
246 | continuousEvaluationFunctions
|
---|
247 | .add(new ContinuousEvaluationFunction(integerSections,
|
---|
248 | space.getWeight(issue.getNumber())));
|
---|
249 | if (space.getWeight(issue.getNumber()) > 0)
|
---|
250 | continuousWeightsZero = false;
|
---|
251 | continuousWeights.add(space.getWeight(issue.getNumber()));
|
---|
252 | break;
|
---|
253 | }
|
---|
254 | i++;
|
---|
255 | }
|
---|
256 |
|
---|
257 | range = new double[tmpRange.size()];
|
---|
258 | for (i = 0; i < range.length; i++) {
|
---|
259 | range[i] = tmpRange.get(i);
|
---|
260 | }
|
---|
261 |
|
---|
262 | offset = new double[tmpOffset.size()];
|
---|
263 | for (i = 0; i < offset.length; i++) {
|
---|
264 | offset[i] = tmpOffset.get(i);
|
---|
265 | }
|
---|
266 |
|
---|
267 | continuousPreference = new double[tmpContinuousPreference.size()];
|
---|
268 | for (i = 0; i < continuousPreference.length; i++) {
|
---|
269 | continuousPreference[i] = tmpContinuousPreference.get(i);
|
---|
270 | }
|
---|
271 |
|
---|
272 | // Print out the discrete issues.
|
---|
273 | // BidSpacePrinter.printDiscreteIssues(discreteEvaluationFunctions);
|
---|
274 |
|
---|
275 | // Print out the continuous issues.
|
---|
276 | // BidSpacePrinter.printContinuousIssues(continuousEvaluationFunctions);
|
---|
277 |
|
---|
278 | // Work out what the combinations of the discrete issues are...
|
---|
279 | discreteCombinations = BidSpaceDiscrete.getDiscreteCombinations(
|
---|
280 | discreteEvaluationFunctions, discreteWeights);
|
---|
281 |
|
---|
282 | // Work out what the continuous sections are...
|
---|
283 | continuousSections = BidSpaceReal.getContinuousCombinations(
|
---|
284 | continuousEvaluationFunctions, continuousWeights);
|
---|
285 | }
|
---|
286 |
|
---|
287 | public double getBeta(
|
---|
288 | ArrayList<Pair<Double, Double>> bestOpponentBidUtilityHistory,
|
---|
289 | double time, double utility0, double utility1) {
|
---|
290 | return ConcessionUtils.getBeta(bestOpponentBidUtilityHistory, time,
|
---|
291 | discountFactor, utility0, utility1);
|
---|
292 | }
|
---|
293 |
|
---|
294 | public double getBeta(
|
---|
295 | ArrayList<Pair<Double, Double>> bestOpponentBidUtilityHistory,
|
---|
296 | double time, double utility0, double utility1,
|
---|
297 | double minDiscounting, double minBeta, double maxBeta,
|
---|
298 | double defaultBeta, double ourTime, double opponentTime) {
|
---|
299 | return ConcessionUtils.getBeta(bestOpponentBidUtilityHistory, time,
|
---|
300 | discountFactor, utility0, utility1, minDiscounting, minBeta,
|
---|
301 | maxBeta, defaultBeta, ourTime, opponentTime);
|
---|
302 | }
|
---|
303 |
|
---|
304 | private double normalise(double value, double lowerBound, double upperBound) {
|
---|
305 | return (value - lowerBound) / (upperBound - lowerBound);
|
---|
306 | }
|
---|
307 |
|
---|
308 | private int normalise(int value, double lowerBound, double upperBound) {
|
---|
309 | return (int) normalise((double) value, lowerBound, upperBound);
|
---|
310 | }
|
---|
311 |
|
---|
312 | /**
|
---|
313 | * Get a point in an iso-utility space.
|
---|
314 | *
|
---|
315 | * @param utility
|
---|
316 | * the utility of the iso-utility space.
|
---|
317 | * @param normal
|
---|
318 | * the normal to the space.
|
---|
319 | * @return a point in an iso-utility space.
|
---|
320 | */
|
---|
321 | private double[] getPointOnLine(double utility, double[] normal,
|
---|
322 | double utilityA, double[] pointA, double utilityB, double[] pointB) {
|
---|
323 | if (utilityA == utilityB)
|
---|
324 | throw new AssertionError("utilityA must not equal utilityB");
|
---|
325 |
|
---|
326 | double m = (utility - utilityA) / (utilityB - utilityA);
|
---|
327 |
|
---|
328 | double[] pointX = new double[normal.length];
|
---|
329 |
|
---|
330 | for (int i = 0; i < normal.length; i++) {
|
---|
331 | pointX[i] = pointA[i] + m * (pointB[i] - pointA[i]);
|
---|
332 | }
|
---|
333 |
|
---|
334 | return pointX;
|
---|
335 | }
|
---|
336 |
|
---|
337 | /**
|
---|
338 | * Project a point onto an iso-utility space.
|
---|
339 | *
|
---|
340 | * @param pointToProject
|
---|
341 | * the point to project.
|
---|
342 | * @param utility
|
---|
343 | * the utility of the iso-utility space.
|
---|
344 | * @param opponentModel
|
---|
345 | * @param utilitySpace
|
---|
346 | * @return an array list of bids that lie closest to the point (for all
|
---|
347 | * combinations of discrete values) and have the given utility.
|
---|
348 | */
|
---|
349 | public ArrayList<Bid> Project(double[] pointToProject, double utility,
|
---|
350 | int limit, AdditiveUtilitySpace utilitySpace,
|
---|
351 | OpponentModel opponentModel) {
|
---|
352 | ArrayList<Bid> bids = new ArrayList<Bid>();
|
---|
353 | if (discreteCombinations.length == 0) {
|
---|
354 | ArrayList<double[]> tmpPoints = new ArrayList<double[]>();
|
---|
355 | for (ContinuousSection continuousSection : continuousSections) {
|
---|
356 | Project(tmpPoints, pointToProject, utility, continuousSection,
|
---|
357 | null, range);
|
---|
358 | }
|
---|
359 | for (double[] point : getClosestPoints(tmpPoints, pointToProject)) {
|
---|
360 | addUniqueBid(bids, createBid(point, null));
|
---|
361 | }
|
---|
362 | } else {
|
---|
363 | ValueDiscrete[][] bestCombinations = getBestCombinations(
|
---|
364 | discreteCombinations, limit, continuousPreference,
|
---|
365 | utilitySpace, opponentModel);
|
---|
366 |
|
---|
367 | for (ValueDiscrete[] discreteCombination : bestCombinations) {
|
---|
368 | ArrayList<double[]> tmpPoints = new ArrayList<double[]>();
|
---|
369 | if (continuousWeightsZero) {
|
---|
370 | if (evaluate(discreteCombination,
|
---|
371 | discreteEvaluationFunctions, discreteWeights) >= utility) {
|
---|
372 | Project(tmpPoints, pointToProject, 0, null, null, null);
|
---|
373 | }
|
---|
374 | } else {
|
---|
375 | for (ContinuousSection continuousSection : continuousSections) {
|
---|
376 | Project(tmpPoints,
|
---|
377 | pointToProject,
|
---|
378 | utility
|
---|
379 | - evaluate(discreteCombination,
|
---|
380 | discreteEvaluationFunctions,
|
---|
381 | discreteWeights),
|
---|
382 | continuousSection, discreteCombination, range);
|
---|
383 | }
|
---|
384 | }
|
---|
385 | for (double[] point : getClosestPoints(tmpPoints,
|
---|
386 | pointToProject)) {
|
---|
387 | addUniqueBid(bids, createBid(point, discreteCombination));
|
---|
388 | }
|
---|
389 | }
|
---|
390 | }
|
---|
391 |
|
---|
392 | return bids;
|
---|
393 | }
|
---|
394 |
|
---|
395 | private double evaluate(
|
---|
396 | ValueDiscrete[] discreteCombination,
|
---|
397 | ArrayList<HashMap<ValueDiscrete, Double>> discreteEvaluationFunctions,
|
---|
398 | ArrayList<Double> discreteWeights) {
|
---|
399 | double value = 0;
|
---|
400 | for (int j = 0; j < discreteCombination.length; j++) {
|
---|
401 | value += discreteWeights.get(j)
|
---|
402 | * discreteEvaluationFunctions.get(j).get(
|
---|
403 | discreteCombination[j]);
|
---|
404 | }
|
---|
405 | return value;
|
---|
406 | }
|
---|
407 |
|
---|
408 | private ValueDiscrete[][] getBestCombinations(
|
---|
409 | ValueDiscrete[][] discreteCombinations, int limit,
|
---|
410 | double[] continuousPreference, AdditiveUtilitySpace utilitySpace,
|
---|
411 | OpponentModel opponentModel) {
|
---|
412 | if (limit == 0 || limit >= discreteCombinations.length)
|
---|
413 | return discreteCombinations;
|
---|
414 | List<EvaluatedDiscreteCombination> options = new ArrayList<EvaluatedDiscreteCombination>();
|
---|
415 | for (ValueDiscrete[] discreteCombination : discreteCombinations) {
|
---|
416 | Bid b = createBid(continuousPreference, discreteCombination);
|
---|
417 | double jointUtility = 0;
|
---|
418 | try {
|
---|
419 | jointUtility = utilitySpace.getUtility(b)
|
---|
420 | + opponentModel.getNormalizedUtility(b);
|
---|
421 | } catch (Exception e) {
|
---|
422 | e.printStackTrace();
|
---|
423 | }
|
---|
424 | options.add(new EvaluatedDiscreteCombination(discreteCombination,
|
---|
425 | jointUtility));
|
---|
426 | }
|
---|
427 | Collections.sort(options);
|
---|
428 | options = options.subList(options.size() - limit, options.size());
|
---|
429 | ValueDiscrete[][] bestCombinations = new ValueDiscrete[limit][discreteCombinations[0].length];
|
---|
430 | int i = 0;
|
---|
431 | for (EvaluatedDiscreteCombination edc : options) {
|
---|
432 | bestCombinations[i] = edc.getDiscreteCombination();
|
---|
433 | i++;
|
---|
434 | }
|
---|
435 | return bestCombinations;
|
---|
436 | }
|
---|
437 |
|
---|
438 | /**
|
---|
439 | * @param points
|
---|
440 | * @param pointToProject
|
---|
441 | * @param utility
|
---|
442 | * @param continuousSection
|
---|
443 | * @param discreteCombination
|
---|
444 | */
|
---|
445 | private void Project(ArrayList<double[]> points, double[] pointToProject,
|
---|
446 | double utility, ContinuousSection continuousSection,
|
---|
447 | ValueDiscrete[] discreteCombination, double[] range) {
|
---|
448 |
|
---|
449 | if (continuousSection == null) {
|
---|
450 | addUniquePoint(points, pointToProject);
|
---|
451 | return;
|
---|
452 | }
|
---|
453 |
|
---|
454 | double[] pointA = continuousSection.getKnownPoint1();
|
---|
455 | double[] pointB = continuousSection.getKnownPoint2();
|
---|
456 |
|
---|
457 | double utilityA = continuousSection.getEvalKnownPoint1();
|
---|
458 | double utilityB = continuousSection.getEvalKnownPoint2();
|
---|
459 |
|
---|
460 | double[] pointOnLine = getPointOnLine(utility,
|
---|
461 | continuousSection.getNormal(), utilityA, pointA, utilityB,
|
---|
462 | pointB);
|
---|
463 | double[] projectedPoint = Project(pointToProject,
|
---|
464 | continuousSection.getNormal(), pointOnLine);
|
---|
465 | if (WithinConstraints(projectedPoint, continuousSection.getMinBounds(),
|
---|
466 | continuousSection.getMaxBounds())) {
|
---|
467 |
|
---|
468 | addUniquePoint(points, projectedPoint);
|
---|
469 | } else {
|
---|
470 | projectedPoint = getEndPoint(continuousSection.getMinBounds(),
|
---|
471 | continuousSection.getMaxBounds(),
|
---|
472 | continuousSection.getNormal(), utility,
|
---|
473 | discreteCombination, pointToProject, utilityA, pointA,
|
---|
474 | utilityB, pointB, range);
|
---|
475 | if (projectedPoint != null) {
|
---|
476 | addUniquePoint(points, projectedPoint);
|
---|
477 | }
|
---|
478 | }
|
---|
479 | }
|
---|
480 |
|
---|
481 | /**
|
---|
482 | * Project a point onto a hyperplane.
|
---|
483 | *
|
---|
484 | * @param pointToProject
|
---|
485 | * the point to project onto the hyperplane.
|
---|
486 | * @param normal
|
---|
487 | * the normal to the hyperplane.
|
---|
488 | * @param pointOnLine
|
---|
489 | * a point on the hyperplane.
|
---|
490 | * @return the projected point.
|
---|
491 | */
|
---|
492 | private double[] Project(double[] pointToProject, double[] normal,
|
---|
493 | double[] pointOnLine) {
|
---|
494 | if (pointToProject.length != normal.length)
|
---|
495 | throw new AssertionError(
|
---|
496 | "Lengths of pointToProject and normal do not match");
|
---|
497 | if (pointOnLine.length != normal.length)
|
---|
498 | throw new AssertionError(
|
---|
499 | "Lengths of pointOnLine and normal do not match");
|
---|
500 |
|
---|
501 | int dimensions = pointToProject.length;
|
---|
502 |
|
---|
503 | double projectedPoint[] = new double[dimensions];
|
---|
504 | double suma = 0;
|
---|
505 | double sumb = 0;
|
---|
506 | double sumc = 0;
|
---|
507 | for (int i = 0; i < dimensions; i++) {
|
---|
508 | suma += (normal[i] * pointOnLine[i]);
|
---|
509 | sumb += (normal[i] * pointToProject[i]);
|
---|
510 | sumc += (normal[i] * normal[i]);
|
---|
511 | }
|
---|
512 | double sum = (suma - sumb) / sumc;
|
---|
513 | for (int i = 0; i < dimensions; i++) {
|
---|
514 | projectedPoint[i] = pointToProject[i] + (sum * normal[i]);
|
---|
515 | }
|
---|
516 | return projectedPoint;
|
---|
517 | }
|
---|
518 |
|
---|
519 | /**
|
---|
520 | * Add a bid to an array list of bids, but only if the array list does not
|
---|
521 | * already contain an identical bid.
|
---|
522 | *
|
---|
523 | * @param bids
|
---|
524 | * the array list of bids.
|
---|
525 | * @param bid
|
---|
526 | * the bid to try to add.
|
---|
527 | */
|
---|
528 | private void addUniquePoint(ArrayList<double[]> points, double[] point) {
|
---|
529 | for (double[] p : points) {
|
---|
530 | if (p.equals(point)) {
|
---|
531 | return;
|
---|
532 | }
|
---|
533 | }
|
---|
534 | points.add(point);
|
---|
535 | }
|
---|
536 |
|
---|
537 | /**
|
---|
538 | * Add a bid to an array list of bids, but only if the array list does not
|
---|
539 | * already contain an identical bid.
|
---|
540 | *
|
---|
541 | * @param bids
|
---|
542 | * the array list of bids.
|
---|
543 | * @param bid
|
---|
544 | * the bid to try to add.
|
---|
545 | */
|
---|
546 | private void addUniqueBid(ArrayList<Bid> bids, Bid bid) {
|
---|
547 | for (Bid b : bids) {
|
---|
548 | if (b.equals(bid)) {
|
---|
549 | return;
|
---|
550 | }
|
---|
551 | }
|
---|
552 | bids.add(bid);
|
---|
553 | }
|
---|
554 |
|
---|
555 | /**
|
---|
556 | * Get the endpoints of a bounded hyperplane that are closest to a target
|
---|
557 | * point.
|
---|
558 | *
|
---|
559 | * @param min
|
---|
560 | * the minimum bound of the space.
|
---|
561 | * @param max
|
---|
562 | * the maximum bound of the space.
|
---|
563 | * @param normal
|
---|
564 | * the normal to the hyperplane.
|
---|
565 | * @param utility
|
---|
566 | * the utility value of the hyperplane.
|
---|
567 | * @param discreteCombination
|
---|
568 | * the combination of discrete values to use in the bids.
|
---|
569 | * @param target
|
---|
570 | * the target point.
|
---|
571 | * @return the endpoints of a bounded hyperplane that are closest to a
|
---|
572 | * target point.
|
---|
573 | */
|
---|
574 | private double[] getEndPoint(double[] min, double[] max, double[] normal,
|
---|
575 | double utility, ValueDiscrete[] discreteCombination,
|
---|
576 | double[] target, double utilityA, double[] pointA, double utilityB,
|
---|
577 | double[] pointB, double[] range) {
|
---|
578 | if (min.length != normal.length)
|
---|
579 | throw new AssertionError("Lengths of min and normal do not match");
|
---|
580 | if (max.length != normal.length)
|
---|
581 | throw new AssertionError("Lengths of max and normal do not match");
|
---|
582 | if (pointA.length != normal.length)
|
---|
583 | throw new AssertionError(
|
---|
584 | "Lengths of pointA and normal do not match");
|
---|
585 | if (pointB.length != normal.length)
|
---|
586 | throw new AssertionError(
|
---|
587 | "Lengths of pointB and normal do not match");
|
---|
588 | if (target.length != normal.length)
|
---|
589 | throw new AssertionError(
|
---|
590 | "Lengths of target and normal do not match");
|
---|
591 |
|
---|
592 | int dimension = normal.length;
|
---|
593 |
|
---|
594 | double[] pointOnLine = getHillClimbStartPoint(min, max, normal,
|
---|
595 | utility, discreteCombination, target, utilityA, pointA,
|
---|
596 | utilityB, pointB);
|
---|
597 |
|
---|
598 | if (pointOnLine == null)
|
---|
599 | return null;
|
---|
600 |
|
---|
601 | if (!WithinConstraints(pointOnLine, min, max)) {
|
---|
602 | throw new AssertionError("Get Intersection fail");
|
---|
603 | }
|
---|
604 |
|
---|
605 | for (int precision = 1; precision < 5; precision++)
|
---|
606 | while (true) {
|
---|
607 | double step = Math.pow(0.1, precision);
|
---|
608 | ArrayList<double[]> nearbyPointsOnLine = new ArrayList<double[]>();
|
---|
609 | nearbyPointsOnLine.add(pointOnLine);
|
---|
610 | Double[] nearbyPoint = new Double[dimension];
|
---|
611 | double[] proposedPoint;
|
---|
612 | for (int shiftDimension = 0; shiftDimension < dimension; shiftDimension++) {
|
---|
613 | for (int unknownDimension = 0; unknownDimension < dimension; unknownDimension++) {
|
---|
614 | if (shiftDimension == unknownDimension)
|
---|
615 | continue;
|
---|
616 | for (int i = 0; i < dimension; i++) {
|
---|
617 | nearbyPoint[i] = pointOnLine[i];
|
---|
618 | }
|
---|
619 | nearbyPoint[unknownDimension] = null;
|
---|
620 |
|
---|
621 | nearbyPoint[shiftDimension] += step
|
---|
622 | * range[shiftDimension];
|
---|
623 | proposedPoint = getIntersection(nearbyPoint, normal,
|
---|
624 | pointOnLine);
|
---|
625 | if (WithinConstraints(proposedPoint, min, max))
|
---|
626 | nearbyPointsOnLine.add(proposedPoint);
|
---|
627 |
|
---|
628 | nearbyPoint[shiftDimension] -= 2 * step
|
---|
629 | * range[shiftDimension];
|
---|
630 | proposedPoint = getIntersection(nearbyPoint, normal,
|
---|
631 | pointOnLine);
|
---|
632 | if (WithinConstraints(proposedPoint, min, max))
|
---|
633 | nearbyPointsOnLine.add(proposedPoint);
|
---|
634 | }
|
---|
635 | }
|
---|
636 |
|
---|
637 | ArrayList<double[]> closestPoints = getClosestPoints(
|
---|
638 | nearbyPointsOnLine, target);
|
---|
639 | if (closestPoints.size() == 0)
|
---|
640 | break;
|
---|
641 |
|
---|
642 | double[] closestPoint;
|
---|
643 | if (TEST_EQUIVALENCE) {
|
---|
644 | closestPoint = closestPoints.get(0);
|
---|
645 | } else {
|
---|
646 | closestPoint = closestPoints.get((int) Math.random()
|
---|
647 | * closestPoints.size());
|
---|
648 | }
|
---|
649 |
|
---|
650 | if (getDistance(closestPoint, target) == getDistance(
|
---|
651 | pointOnLine, target))
|
---|
652 | break;
|
---|
653 | else
|
---|
654 | pointOnLine = closestPoint;
|
---|
655 | }
|
---|
656 | return pointOnLine;
|
---|
657 | }
|
---|
658 |
|
---|
659 | private double[] getHillClimbStartPoint(double[] min, double[] max,
|
---|
660 | double[] normal, double utility,
|
---|
661 | ValueDiscrete[] discreteCombination, double[] target,
|
---|
662 | double utilityA, double[] pointA, double utilityB, double[] pointB) {
|
---|
663 | if (min.length != normal.length)
|
---|
664 | throw new AssertionError("Lengths of min and normal do not match");
|
---|
665 | if (max.length != normal.length)
|
---|
666 | throw new AssertionError("Lengths of max and normal do not match");
|
---|
667 | if (pointA.length != normal.length)
|
---|
668 | throw new AssertionError(
|
---|
669 | "Lengths of pointA and normal do not match");
|
---|
670 | if (pointB.length != normal.length)
|
---|
671 | throw new AssertionError(
|
---|
672 | "Lengths of pointB and normal do not match");
|
---|
673 | if (target.length != normal.length)
|
---|
674 | throw new AssertionError(
|
---|
675 | "Lengths of target and normal do not match");
|
---|
676 |
|
---|
677 | ArrayList<Double[]> bounds = getBounds(min, max);
|
---|
678 |
|
---|
679 | ArrayList<double[]> endPoints = new ArrayList<double[]>();
|
---|
680 |
|
---|
681 | double[] pointOnLine = getPointOnLine(utility, normal, utilityA,
|
---|
682 | pointA, utilityB, pointB);
|
---|
683 |
|
---|
684 | for (Double[] bound : bounds) {
|
---|
685 | double[] endPoint = getIntersection(bound, normal, pointOnLine);
|
---|
686 | if (WithinConstraints(endPoint, min, max)) {
|
---|
687 | endPoints.add(endPoint);
|
---|
688 | }
|
---|
689 | }
|
---|
690 |
|
---|
691 | ArrayList<double[]> closestPoints = getClosestPoints(endPoints, target);
|
---|
692 | if (closestPoints.size() == 0)
|
---|
693 | return null;
|
---|
694 | return closestPoints.get((int) Math.random() * closestPoints.size());
|
---|
695 | }
|
---|
696 |
|
---|
697 | private ArrayList<double[]> getClosestPoints(ArrayList<double[]> endPoints,
|
---|
698 | double[] target) {
|
---|
699 | double closestDistance = Double.MAX_VALUE;
|
---|
700 |
|
---|
701 | for (double[] endPoint : endPoints) {
|
---|
702 | double distance = getDistance(endPoint, target);
|
---|
703 | closestDistance = Math.min(closestDistance, distance);
|
---|
704 | }
|
---|
705 |
|
---|
706 | ArrayList<double[]> closestEndPoints = new ArrayList<double[]>();
|
---|
707 |
|
---|
708 | for (double[] endPoint : endPoints) {
|
---|
709 | if (getDistance(endPoint, target) == closestDistance) {
|
---|
710 | closestEndPoints.add(endPoint);
|
---|
711 | }
|
---|
712 | }
|
---|
713 |
|
---|
714 | return closestEndPoints;
|
---|
715 | }
|
---|
716 |
|
---|
717 | /**
|
---|
718 | * Get the distance between two points in multi-dimensional space.
|
---|
719 | *
|
---|
720 | * @param pointA
|
---|
721 | * the first point.
|
---|
722 | * @param pointB
|
---|
723 | * the second point.
|
---|
724 | * @return the distance between two points in multi-dimensional space.
|
---|
725 | */
|
---|
726 | private double getDistance(double[] pointA, double[] pointB) {
|
---|
727 | if (pointA.length != pointB.length)
|
---|
728 | throw new AssertionError(
|
---|
729 | "Lengths of pointA and pointB do not match");
|
---|
730 | if (pointA.length != range.length)
|
---|
731 | throw new AssertionError("Lengths of pointA and range do not match");
|
---|
732 |
|
---|
733 | double distance = 0;
|
---|
734 | for (int i = 0; i < pointB.length; i++) {
|
---|
735 | distance += Math.pow((pointA[i] - pointB[i]), 2);
|
---|
736 | }
|
---|
737 | return Math.sqrt(distance);
|
---|
738 | }
|
---|
739 |
|
---|
740 | /**
|
---|
741 | * Create a bid.
|
---|
742 | *
|
---|
743 | * @param point
|
---|
744 | * the point in the multi-dimensional space that represents the
|
---|
745 | * continuous issues of the domain.
|
---|
746 | * @param discreteCombination
|
---|
747 | * the combination of discrete values.
|
---|
748 | * @return a bid.
|
---|
749 | */
|
---|
750 | private Bid createBid(double[] point, ValueDiscrete[] discreteCombination) {
|
---|
751 | HashMap<Integer, Value> bidInternals = new HashMap<Integer, Value>();
|
---|
752 | int continuousPos = 0;
|
---|
753 | int discretePos = 0;
|
---|
754 | for (int i = 0; i < issueTypes.length; i++) {
|
---|
755 | if (issueTypes[i] == ISSUETYPE.REAL) {
|
---|
756 | bidInternals.put(issues.get(i).getNumber(), new ValueReal(
|
---|
757 | (point[continuousPos] * range[continuousPos])
|
---|
758 | + offset[continuousPos]));
|
---|
759 | continuousPos++;
|
---|
760 | } else if (issueTypes[i] == ISSUETYPE.INTEGER) {
|
---|
761 | bidInternals
|
---|
762 | .put(issues.get(i).getNumber(),
|
---|
763 | new ValueInteger(
|
---|
764 | (int) Math
|
---|
765 | .round((point[continuousPos] * range[continuousPos])
|
---|
766 | + offset[continuousPos])));
|
---|
767 | continuousPos++;
|
---|
768 | } else if (issueTypes[i] == ISSUETYPE.DISCRETE) {
|
---|
769 | bidInternals.put(issues.get(i).getNumber(),
|
---|
770 | discreteCombination[discretePos]);
|
---|
771 | discretePos++;
|
---|
772 | }
|
---|
773 | }
|
---|
774 | try {
|
---|
775 | return new Bid(domain, bidInternals);
|
---|
776 | } catch (Exception e) {
|
---|
777 | return null;
|
---|
778 | }
|
---|
779 | }
|
---|
780 |
|
---|
781 | /**
|
---|
782 | * Get the intersection between a bound and a hyperplane.
|
---|
783 | *
|
---|
784 | * @param bound
|
---|
785 | * the bound.
|
---|
786 | * @param normal
|
---|
787 | * the normal to the hyperplane.
|
---|
788 | * @param utility
|
---|
789 | * the utility of the hyperplane.
|
---|
790 | * @return the intersection between a bound and a hyperplane.
|
---|
791 | */
|
---|
792 | private double[] getIntersection(Double[] bound, double[] normal,
|
---|
793 | double[] pointOnLine) {
|
---|
794 | if (bound.length != normal.length)
|
---|
795 | throw new AssertionError("Lengths of bound and normal do not match");
|
---|
796 | int dimensions = normal.length;
|
---|
797 |
|
---|
798 | double c = 0;
|
---|
799 | for (int i = 0; i < dimensions; i++) {
|
---|
800 | c += normal[i] * pointOnLine[i];
|
---|
801 | }
|
---|
802 |
|
---|
803 | int unknown = -1;
|
---|
804 | double sum = 0;
|
---|
805 | double[] intersection = new double[dimensions];
|
---|
806 | for (int i = 0; i < dimensions; i++) {
|
---|
807 | if (bound[i] == null) {
|
---|
808 | unknown = i;
|
---|
809 | } else {
|
---|
810 | sum += bound[i] * normal[i];
|
---|
811 | intersection[i] = bound[i];
|
---|
812 | }
|
---|
813 | }
|
---|
814 |
|
---|
815 | if (unknown < 0)
|
---|
816 | throw new AssertionError("bound has no unknown");
|
---|
817 |
|
---|
818 | intersection[unknown] = (c - sum) / normal[unknown];
|
---|
819 |
|
---|
820 | return intersection;
|
---|
821 | }
|
---|
822 |
|
---|
823 | /**
|
---|
824 | * Get all bounds of a space.
|
---|
825 | *
|
---|
826 | * @param min
|
---|
827 | * the minimum bound of the space.
|
---|
828 | * @param max
|
---|
829 | * the maximum bound of the space.
|
---|
830 | * @return all bounds of a space.
|
---|
831 | */
|
---|
832 | private ArrayList<Double[]> getBounds(double[] min, double[] max) {
|
---|
833 | if (min.length != max.length)
|
---|
834 | throw new AssertionError("Lengths of min and max do not match");
|
---|
835 |
|
---|
836 | int dimensions = min.length;
|
---|
837 |
|
---|
838 | ArrayList<Double[]> bounds = new ArrayList<Double[]>();
|
---|
839 |
|
---|
840 | int boundCount = dimensions * (int) Math.pow(2, dimensions - 1);
|
---|
841 | for (int i = 0; i < boundCount; i++) {
|
---|
842 | int dimension = (int) Math.floor(i / (boundCount / dimensions));
|
---|
843 | Double[] bound = new Double[dimensions];
|
---|
844 | for (int j = 0; j < dimensions; j++) {
|
---|
845 | if (j == dimension)
|
---|
846 | continue;
|
---|
847 | if (j < dimension)
|
---|
848 | bound[j] = (i & (1 << j)) == 0 ? min[j] : max[j];
|
---|
849 | else
|
---|
850 | bound[j] = (i & (1 << (j - 1))) == 0 ? min[j] : max[j];
|
---|
851 | }
|
---|
852 | bounds.add(bound);
|
---|
853 | }
|
---|
854 |
|
---|
855 | return bounds;
|
---|
856 | }
|
---|
857 |
|
---|
858 | /**
|
---|
859 | * Check whether a point lies within a set of bounds.
|
---|
860 | *
|
---|
861 | * @param point
|
---|
862 | * the point to check.
|
---|
863 | * @param min
|
---|
864 | * the minimum bounds.
|
---|
865 | * @param max
|
---|
866 | * the maximum bounds.
|
---|
867 | * @return true if the point lies within the bounds, false otherwise.
|
---|
868 | */
|
---|
869 | private boolean WithinConstraints(double[] point, double[] min, double[] max) {
|
---|
870 | if (min.length != point.length)
|
---|
871 | throw new AssertionError("Lengths of min and point do not match");
|
---|
872 | if (max.length != point.length)
|
---|
873 | throw new AssertionError("Lengths of max and point do not match");
|
---|
874 |
|
---|
875 | for (int i = 0; i < point.length; i++) {
|
---|
876 | if (point[i] < min[i] || point[i] > max[i]) {
|
---|
877 | return false;
|
---|
878 | }
|
---|
879 | }
|
---|
880 | return true;
|
---|
881 | }
|
---|
882 |
|
---|
883 | /**
|
---|
884 | * Get all combinations of integers in a space.
|
---|
885 | *
|
---|
886 | * @param space
|
---|
887 | * the size of the space.
|
---|
888 | * @return all combinations of integers in a space.
|
---|
889 | */
|
---|
890 | public static ArrayList<int[]> getCombinationValues(int[] space) {
|
---|
891 | ArrayList<int[]> combinationValues = new ArrayList<int[]>();
|
---|
892 | if (space.length == 1) {
|
---|
893 | return combinationValues;
|
---|
894 | }
|
---|
895 | for (int i = 0; i < space[space.length - 1]; i++) {
|
---|
896 | int[] combination = new int[space.length - 1];
|
---|
897 | for (int j = 0; j < combination.length; j++) {
|
---|
898 | combination[j] = (int) Math.floor((i / space[j])
|
---|
899 | % (space[j + 1] / space[j]));
|
---|
900 | }
|
---|
901 |
|
---|
902 | combinationValues.add(combination);
|
---|
903 | }
|
---|
904 | return combinationValues;
|
---|
905 | }
|
---|
906 |
|
---|
907 | /**
|
---|
908 | * Get the point in multi-dimensional space that represents a bid.
|
---|
909 | *
|
---|
910 | * @param bid
|
---|
911 | * the bid.
|
---|
912 | * @return the point in multi-dimensional space that represents a bid.
|
---|
913 | */
|
---|
914 | public double[] getPoint(Bid bid) {
|
---|
915 | double[] point = new double[continuousWeights.size()];
|
---|
916 | int i = 0;
|
---|
917 | int j = 0;
|
---|
918 | for (ISSUETYPE issueType : issueTypes) {
|
---|
919 | if (issueType == ISSUETYPE.REAL) {
|
---|
920 | ValueReal valueReal;
|
---|
921 | try {
|
---|
922 | valueReal = (ValueReal) bid.getValue(issues.get(j)
|
---|
923 | .getNumber());
|
---|
924 | point[i] = (valueReal.getValue() - offset[i]) / range[i];
|
---|
925 | } catch (Exception e) {
|
---|
926 | e.printStackTrace();
|
---|
927 | }
|
---|
928 | i++;
|
---|
929 | }
|
---|
930 | if (issueType == ISSUETYPE.INTEGER) {
|
---|
931 | ValueInteger valueInteger;
|
---|
932 | try {
|
---|
933 | valueInteger = (ValueInteger) bid.getValue(issues.get(j)
|
---|
934 | .getNumber());
|
---|
935 | point[i] = (valueInteger.getValue() - offset[i]) / range[i];
|
---|
936 | } catch (Exception e) {
|
---|
937 | e.printStackTrace();
|
---|
938 | }
|
---|
939 | i++;
|
---|
940 | }
|
---|
941 | j++;
|
---|
942 | }
|
---|
943 | return point;
|
---|
944 | }
|
---|
945 |
|
---|
946 | public Bid getMaxUtilityBid() {
|
---|
947 |
|
---|
948 | int discreteIssues = 0;
|
---|
949 | int continuousIssues = 0;
|
---|
950 |
|
---|
951 | for (int i = 0; i < issueTypes.length; i++) {
|
---|
952 | switch (issueTypes[i]) {
|
---|
953 | case DISCRETE:
|
---|
954 | discreteIssues++;
|
---|
955 | break;
|
---|
956 | case REAL:
|
---|
957 | case INTEGER:
|
---|
958 | continuousIssues++;
|
---|
959 | break;
|
---|
960 | }
|
---|
961 | }
|
---|
962 |
|
---|
963 | int discreteCount = 0;
|
---|
964 | int realCount = 0;
|
---|
965 | int integerCount = 0;
|
---|
966 |
|
---|
967 | ValueDiscrete[] discreteCombination = new ValueDiscrete[discreteIssues];
|
---|
968 | double[] continuousValues = new double[continuousIssues];
|
---|
969 |
|
---|
970 | for (Issue issue : issues) {
|
---|
971 | switch (issue.getType()) {
|
---|
972 | case DISCRETE:
|
---|
973 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
974 | List<ValueDiscrete> values = issueDiscrete.getValues();
|
---|
975 | double maxEval = 0;
|
---|
976 | ValueDiscrete maxValue = null;
|
---|
977 | for (ValueDiscrete value : values) {
|
---|
978 | double tmpEval;
|
---|
979 | try {
|
---|
980 | tmpEval = discreteEvaluators.get(discreteCount)
|
---|
981 | .getEvaluation(value);
|
---|
982 | if (tmpEval > maxEval) {
|
---|
983 | maxEval = tmpEval;
|
---|
984 | maxValue = value;
|
---|
985 | }
|
---|
986 | } catch (Exception e) {
|
---|
987 | e.printStackTrace();
|
---|
988 | }
|
---|
989 | }
|
---|
990 | discreteCombination[discreteCount] = maxValue;
|
---|
991 | discreteCount++;
|
---|
992 | break;
|
---|
993 | case REAL:
|
---|
994 | EvaluatorReal realEvaluator = realEvaluators.get(realCount);
|
---|
995 | switch (realEvaluator.getFuncType()) {
|
---|
996 | case LINEAR:
|
---|
997 | if (realEvaluator.getEvaluation(realEvaluator
|
---|
998 | .getLowerBound()) < realEvaluator
|
---|
999 | .getEvaluation(realEvaluator.getUpperBound()))
|
---|
1000 | continuousValues[realCount + integerCount] = 1;
|
---|
1001 | else
|
---|
1002 | continuousValues[realCount + integerCount] = 0;
|
---|
1003 | break;
|
---|
1004 | case TRIANGULAR:
|
---|
1005 | continuousValues[realCount + integerCount] = normalise(
|
---|
1006 | realEvaluator.getTopParam(),
|
---|
1007 | realEvaluator.getLowerBound(),
|
---|
1008 | realEvaluator.getUpperBound());
|
---|
1009 | break;
|
---|
1010 | }
|
---|
1011 | realCount++;
|
---|
1012 | break;
|
---|
1013 | case INTEGER:
|
---|
1014 | EvaluatorInteger integerEvaluator = integerEvaluators
|
---|
1015 | .get(integerCount);
|
---|
1016 | switch (integerEvaluator.getFuncType()) {
|
---|
1017 | case LINEAR:
|
---|
1018 | if (integerEvaluator.getEvaluation(integerEvaluator
|
---|
1019 | .getLowerBound()) < integerEvaluator
|
---|
1020 | .getEvaluation(integerEvaluator.getUpperBound()))
|
---|
1021 | continuousValues[realCount + integerCount] = 1;
|
---|
1022 | else
|
---|
1023 | continuousValues[realCount + integerCount] = 0;
|
---|
1024 | break;
|
---|
1025 | /*
|
---|
1026 | * case TRIANGULAR: realValues[integerCount] =
|
---|
1027 | * integerEvaluator.getTopParam(); break;
|
---|
1028 | */
|
---|
1029 | }
|
---|
1030 | integerCount++;
|
---|
1031 | break;
|
---|
1032 | }
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | return createBid(continuousValues, discreteCombination);
|
---|
1036 | }
|
---|
1037 | }
|
---|