[1] | 1 | package agents.anac.y2010.Southampton.analysis;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.Collections;
|
---|
| 5 | import java.util.HashMap;
|
---|
| 6 | import java.util.List;
|
---|
| 7 |
|
---|
| 8 | import agents.anac.y2010.Southampton.utils.OpponentModel;
|
---|
| 9 | import agents.anac.y2010.Southampton.utils.Pair;
|
---|
| 10 | import agents.anac.y2010.Southampton.utils.concession.ConcessionUtils;
|
---|
| 11 | import genius.core.Bid;
|
---|
| 12 | import genius.core.Domain;
|
---|
| 13 | import genius.core.issue.ISSUETYPE;
|
---|
| 14 | import genius.core.issue.Issue;
|
---|
| 15 | import genius.core.issue.IssueDiscrete;
|
---|
| 16 | import genius.core.issue.Value;
|
---|
| 17 | import genius.core.issue.ValueDiscrete;
|
---|
| 18 | import genius.core.issue.ValueInteger;
|
---|
| 19 | import genius.core.issue.ValueReal;
|
---|
| 20 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
| 21 | import genius.core.utility.EvaluatorDiscrete;
|
---|
| 22 | import genius.core.utility.EvaluatorInteger;
|
---|
| 23 | import genius.core.utility.EvaluatorReal;
|
---|
| 24 |
|
---|
| 25 | public class BidSpace {
|
---|
| 26 |
|
---|
| 27 | private final boolean TEST_EQUIVALENCE = false;
|
---|
| 28 |
|
---|
| 29 | /**
|
---|
| 30 | * @return the continuousWeights
|
---|
| 31 | */
|
---|
| 32 | public ArrayList<Double> getContinuousWeights() {
|
---|
| 33 | return continuousWeights;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | /**
|
---|
| 37 | * @return the count of discreteCombinations
|
---|
| 38 | */
|
---|
| 39 | public int getDiscreteCombinationsCount() {
|
---|
| 40 | return discreteCombinations.length;
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | /**
|
---|
| 44 | * @return the continuousWeightsZero
|
---|
| 45 | */
|
---|
| 46 | public boolean isContinuousWeightsZero() {
|
---|
| 47 | return continuousWeightsZero;
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | /**
|
---|
| 51 | * @return the discreteWeights
|
---|
| 52 | */
|
---|
| 53 | public ArrayList<Double> getDiscreteWeights() {
|
---|
| 54 | return discreteWeights;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public class EvaluatedDiscreteCombination implements
|
---|
| 58 | Comparable<EvaluatedDiscreteCombination> {
|
---|
| 59 |
|
---|
| 60 | /**
|
---|
| 61 | * @return the discreteCombination
|
---|
| 62 | */
|
---|
| 63 | public ValueDiscrete[] getDiscreteCombination() {
|
---|
| 64 | return discreteCombination;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | private ValueDiscrete[] discreteCombination;
|
---|
| 68 | private double jointUtility;
|
---|
| 69 |
|
---|
| 70 | public EvaluatedDiscreteCombination(
|
---|
| 71 | ValueDiscrete[] discreteCombination, double jointUtility) {
|
---|
| 72 | this.discreteCombination = discreteCombination;
|
---|
| 73 | this.jointUtility = jointUtility;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public int compareTo(EvaluatedDiscreteCombination o) {
|
---|
| 77 | return this.jointUtility < o.jointUtility ? -1
|
---|
| 78 | : (this.jointUtility == o.jointUtility ? 0 : 1);
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | private Domain domain;
|
---|
| 83 |
|
---|
| 84 | ArrayList<Double> continuousWeights;
|
---|
| 85 | double[] continuousPreference;
|
---|
| 86 | double[] range;
|
---|
| 87 | double[] offset;
|
---|
| 88 | ArrayList<ContinuousSection> continuousSections;
|
---|
| 89 | ValueDiscrete[][] discreteCombinations;
|
---|
| 90 | ISSUETYPE[] issueTypes;
|
---|
| 91 | List<Issue> issues;
|
---|
| 92 |
|
---|
| 93 | ArrayList<EvaluatorDiscrete> discreteEvaluators;
|
---|
| 94 | ArrayList<EvaluatorReal> realEvaluators;
|
---|
| 95 | ArrayList<EvaluatorInteger> integerEvaluators;
|
---|
| 96 |
|
---|
| 97 | private boolean continuousWeightsZero;
|
---|
| 98 |
|
---|
| 99 | private ArrayList<HashMap<ValueDiscrete, Double>> discreteEvaluationFunctions;
|
---|
| 100 | private ArrayList<Double> discreteWeights;
|
---|
| 101 |
|
---|
| 102 | private double discountFactor;
|
---|
| 103 |
|
---|
| 104 | /**
|
---|
| 105 | * Build the bid space based on a utility space.
|
---|
| 106 | *
|
---|
| 107 | * @param space
|
---|
| 108 | * the utility space.
|
---|
| 109 | * @throws Exception
|
---|
| 110 | */
|
---|
| 111 | public BidSpace(AdditiveUtilitySpace space) throws Exception {
|
---|
| 112 |
|
---|
| 113 | domain = space.getDomain();
|
---|
| 114 |
|
---|
| 115 | discountFactor = space.getDiscountFactor();
|
---|
| 116 | if (!space.isDiscounted()) {
|
---|
| 117 | discountFactor = 0.0; // in 2011 no discount had value 0.0 instead
|
---|
| 118 | // of 1.0
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | issues = domain.getIssues();
|
---|
| 122 | double[] weights = new double[issues.size()];
|
---|
| 123 | issueTypes = new ISSUETYPE[issues.size()];
|
---|
| 124 |
|
---|
| 125 | discreteEvaluationFunctions = new ArrayList<HashMap<ValueDiscrete, Double>>();
|
---|
| 126 | discreteWeights = new ArrayList<Double>();
|
---|
| 127 |
|
---|
| 128 | ArrayList<ContinuousEvaluationFunction> continuousEvaluationFunctions = new ArrayList<ContinuousEvaluationFunction>();
|
---|
| 129 | continuousWeights = new ArrayList<Double>();
|
---|
| 130 | continuousWeightsZero = true;
|
---|
| 131 | ArrayList<Double> tmpContinuousPreference = new ArrayList<Double>();
|
---|
| 132 |
|
---|
| 133 | ArrayList<Double> tmpRange = new ArrayList<Double>();
|
---|
| 134 | ArrayList<Double> tmpOffset = new ArrayList<Double>();
|
---|
| 135 |
|
---|
| 136 | realEvaluators = new ArrayList<EvaluatorReal>();
|
---|
| 137 | integerEvaluators = new ArrayList<EvaluatorInteger>();
|
---|
| 138 | discreteEvaluators = new ArrayList<EvaluatorDiscrete>();
|
---|
| 139 |
|
---|
| 140 | int i = 0;
|
---|
| 141 | for (Issue issue : issues) {
|
---|
| 142 | weights[i] = space.getWeight(issue.getNumber());
|
---|
| 143 | issueTypes[i] = issue.getType();
|
---|
| 144 | switch (issueTypes[i]) {
|
---|
| 145 | case DISCRETE:
|
---|
| 146 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
| 147 | List<ValueDiscrete> values = issueDiscrete.getValues();
|
---|
| 148 | HashMap<ValueDiscrete, Double> evaluationFunction = new HashMap<ValueDiscrete, Double>();
|
---|
| 149 | EvaluatorDiscrete evaluatorDiscrete = (EvaluatorDiscrete) space
|
---|
| 150 | .getEvaluator(issue.getNumber());
|
---|
| 151 | discreteEvaluators.add(evaluatorDiscrete);
|
---|
| 152 | for (ValueDiscrete value : values) {
|
---|
| 153 | evaluationFunction.put(value,
|
---|
| 154 | evaluatorDiscrete.getEvaluation(value));
|
---|
| 155 | }
|
---|
| 156 | discreteEvaluationFunctions.add(evaluationFunction);
|
---|
| 157 | discreteWeights.add(space.getWeight(issue.getNumber()));
|
---|
| 158 | break;
|
---|
| 159 | case REAL:
|
---|
| 160 | EvaluatorReal evaluatorReal = (EvaluatorReal) space
|
---|
| 161 | .getEvaluator(issue.getNumber());
|
---|
| 162 | realEvaluators.add(evaluatorReal);
|
---|
| 163 |
|
---|
| 164 | tmpRange.add(evaluatorReal.getUpperBound()
|
---|
| 165 | - evaluatorReal.getLowerBound());
|
---|
| 166 | tmpOffset.add(evaluatorReal.getLowerBound());
|
---|
| 167 |
|
---|
| 168 | ArrayList<RealEvaluationSection> realSections = new ArrayList<RealEvaluationSection>();
|
---|
| 169 | switch (evaluatorReal.getFuncType()) {
|
---|
| 170 | case LINEAR: {
|
---|
| 171 | double lb = normalise(evaluatorReal.getLowerBound(),
|
---|
| 172 | evaluatorReal.getLowerBound(),
|
---|
| 173 | evaluatorReal.getUpperBound());
|
---|
| 174 | double ub = normalise(evaluatorReal.getUpperBound(),
|
---|
| 175 | evaluatorReal.getLowerBound(),
|
---|
| 176 | evaluatorReal.getUpperBound());
|
---|
| 177 | RealEvaluationSection res = new RealEvaluationSection(lb,
|
---|
| 178 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
| 179 | .getLowerBound()), ub,
|
---|
| 180 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
| 181 | .getUpperBound()));
|
---|
| 182 | realSections.add(res);
|
---|
| 183 | tmpContinuousPreference.add(res.getTopPoint());
|
---|
| 184 | break;
|
---|
| 185 | }
|
---|
| 186 | case TRIANGULAR: {
|
---|
| 187 | double lb = normalise(evaluatorReal.getLowerBound(),
|
---|
| 188 | evaluatorReal.getLowerBound(),
|
---|
| 189 | evaluatorReal.getUpperBound());
|
---|
| 190 | double tp = normalise(evaluatorReal.getTopParam(),
|
---|
| 191 | evaluatorReal.getLowerBound(),
|
---|
| 192 | evaluatorReal.getUpperBound());
|
---|
| 193 | double ub = normalise(evaluatorReal.getUpperBound(),
|
---|
| 194 | evaluatorReal.getLowerBound(),
|
---|
| 195 | evaluatorReal.getUpperBound());
|
---|
| 196 | realSections
|
---|
| 197 | .add(new RealEvaluationSection(lb, evaluatorReal
|
---|
| 198 | .getEvaluation(evaluatorReal
|
---|
| 199 | .getLowerBound()), tp,
|
---|
| 200 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
| 201 | .getTopParam())));
|
---|
| 202 | realSections.add(new RealEvaluationSection(tp,
|
---|
| 203 | evaluatorReal.getEvaluation(evaluatorReal
|
---|
| 204 | .getTopParam()), ub, evaluatorReal
|
---|
| 205 | .getEvaluation(evaluatorReal
|
---|
| 206 | .getUpperBound())));
|
---|
| 207 | tmpContinuousPreference.add(tp);
|
---|
| 208 | break;
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 | continuousEvaluationFunctions
|
---|
| 212 | .add(new ContinuousEvaluationFunction(realSections,
|
---|
| 213 | space.getWeight(issue.getNumber())));
|
---|
| 214 | if (space.getWeight(issue.getNumber()) > 0)
|
---|
| 215 | continuousWeightsZero = false;
|
---|
| 216 | continuousWeights.add(space.getWeight(issue.getNumber()));
|
---|
| 217 | break;
|
---|
| 218 | case INTEGER:
|
---|
| 219 | EvaluatorInteger evaluatorInteger = (EvaluatorInteger) space
|
---|
| 220 | .getEvaluator(issue.getNumber());
|
---|
| 221 | integerEvaluators.add(evaluatorInteger);
|
---|
| 222 |
|
---|
| 223 | tmpRange.add((double) evaluatorInteger.getUpperBound()
|
---|
| 224 | - evaluatorInteger.getLowerBound());
|
---|
| 225 | tmpOffset.add((double) evaluatorInteger.getLowerBound());
|
---|
| 226 |
|
---|
| 227 | ArrayList<IntegerEvaluationSection> integerSections = new ArrayList<IntegerEvaluationSection>();
|
---|
| 228 | switch (evaluatorInteger.getFuncType()) {
|
---|
| 229 | case LINEAR: {
|
---|
| 230 | int lb = normalise(evaluatorInteger.getLowerBound(),
|
---|
| 231 | evaluatorInteger.getLowerBound(),
|
---|
| 232 | evaluatorInteger.getUpperBound());
|
---|
| 233 | int ub = normalise(evaluatorInteger.getUpperBound(),
|
---|
| 234 | evaluatorInteger.getLowerBound(),
|
---|
| 235 | evaluatorInteger.getUpperBound());
|
---|
| 236 | IntegerEvaluationSection ies = new IntegerEvaluationSection(
|
---|
| 237 | lb, evaluatorInteger.getEvaluation(evaluatorInteger
|
---|
| 238 | .getLowerBound()), ub,
|
---|
| 239 | evaluatorInteger.getEvaluation(evaluatorInteger
|
---|
| 240 | .getUpperBound()));
|
---|
| 241 | integerSections.add(ies);
|
---|
| 242 | tmpContinuousPreference.add(ies.getTopPoint());
|
---|
| 243 | break;
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 | continuousEvaluationFunctions
|
---|
| 247 | .add(new ContinuousEvaluationFunction(integerSections,
|
---|
| 248 | space.getWeight(issue.getNumber())));
|
---|
| 249 | if (space.getWeight(issue.getNumber()) > 0)
|
---|
| 250 | continuousWeightsZero = false;
|
---|
| 251 | continuousWeights.add(space.getWeight(issue.getNumber()));
|
---|
| 252 | break;
|
---|
| 253 | }
|
---|
| 254 | i++;
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | range = new double[tmpRange.size()];
|
---|
| 258 | for (i = 0; i < range.length; i++) {
|
---|
| 259 | range[i] = tmpRange.get(i);
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | offset = new double[tmpOffset.size()];
|
---|
| 263 | for (i = 0; i < offset.length; i++) {
|
---|
| 264 | offset[i] = tmpOffset.get(i);
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | continuousPreference = new double[tmpContinuousPreference.size()];
|
---|
| 268 | for (i = 0; i < continuousPreference.length; i++) {
|
---|
| 269 | continuousPreference[i] = tmpContinuousPreference.get(i);
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | // Print out the discrete issues.
|
---|
| 273 | // BidSpacePrinter.printDiscreteIssues(discreteEvaluationFunctions);
|
---|
| 274 |
|
---|
| 275 | // Print out the continuous issues.
|
---|
| 276 | // BidSpacePrinter.printContinuousIssues(continuousEvaluationFunctions);
|
---|
| 277 |
|
---|
| 278 | // Work out what the combinations of the discrete issues are...
|
---|
| 279 | discreteCombinations = BidSpaceDiscrete.getDiscreteCombinations(
|
---|
| 280 | discreteEvaluationFunctions, discreteWeights);
|
---|
| 281 |
|
---|
| 282 | // Work out what the continuous sections are...
|
---|
| 283 | continuousSections = BidSpaceReal.getContinuousCombinations(
|
---|
| 284 | continuousEvaluationFunctions, continuousWeights);
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | public double getBeta(
|
---|
| 288 | ArrayList<Pair<Double, Double>> bestOpponentBidUtilityHistory,
|
---|
| 289 | double time, double utility0, double utility1) {
|
---|
| 290 | return ConcessionUtils.getBeta(bestOpponentBidUtilityHistory, time,
|
---|
| 291 | discountFactor, utility0, utility1);
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | public double getBeta(
|
---|
| 295 | ArrayList<Pair<Double, Double>> bestOpponentBidUtilityHistory,
|
---|
| 296 | double time, double utility0, double utility1,
|
---|
| 297 | double minDiscounting, double minBeta, double maxBeta,
|
---|
| 298 | double defaultBeta, double ourTime, double opponentTime) {
|
---|
| 299 | return ConcessionUtils.getBeta(bestOpponentBidUtilityHistory, time,
|
---|
| 300 | discountFactor, utility0, utility1, minDiscounting, minBeta,
|
---|
| 301 | maxBeta, defaultBeta, ourTime, opponentTime);
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | private double normalise(double value, double lowerBound, double upperBound) {
|
---|
| 305 | return (value - lowerBound) / (upperBound - lowerBound);
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 | private int normalise(int value, double lowerBound, double upperBound) {
|
---|
| 309 | return (int) normalise((double) value, lowerBound, upperBound);
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | /**
|
---|
| 313 | * Get a point in an iso-utility space.
|
---|
| 314 | *
|
---|
| 315 | * @param utility
|
---|
| 316 | * the utility of the iso-utility space.
|
---|
| 317 | * @param normal
|
---|
| 318 | * the normal to the space.
|
---|
| 319 | * @return a point in an iso-utility space.
|
---|
| 320 | */
|
---|
| 321 | private double[] getPointOnLine(double utility, double[] normal,
|
---|
| 322 | double utilityA, double[] pointA, double utilityB, double[] pointB) {
|
---|
| 323 | if (utilityA == utilityB)
|
---|
| 324 | throw new AssertionError("utilityA must not equal utilityB");
|
---|
| 325 |
|
---|
| 326 | double m = (utility - utilityA) / (utilityB - utilityA);
|
---|
| 327 |
|
---|
| 328 | double[] pointX = new double[normal.length];
|
---|
| 329 |
|
---|
| 330 | for (int i = 0; i < normal.length; i++) {
|
---|
| 331 | pointX[i] = pointA[i] + m * (pointB[i] - pointA[i]);
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | return pointX;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | /**
|
---|
| 338 | * Project a point onto an iso-utility space.
|
---|
| 339 | *
|
---|
| 340 | * @param pointToProject
|
---|
| 341 | * the point to project.
|
---|
| 342 | * @param utility
|
---|
| 343 | * the utility of the iso-utility space.
|
---|
| 344 | * @param opponentModel
|
---|
| 345 | * @param utilitySpace
|
---|
| 346 | * @return an array list of bids that lie closest to the point (for all
|
---|
| 347 | * combinations of discrete values) and have the given utility.
|
---|
| 348 | */
|
---|
| 349 | public ArrayList<Bid> Project(double[] pointToProject, double utility,
|
---|
| 350 | int limit, AdditiveUtilitySpace utilitySpace,
|
---|
| 351 | OpponentModel opponentModel) {
|
---|
| 352 | ArrayList<Bid> bids = new ArrayList<Bid>();
|
---|
| 353 | if (discreteCombinations.length == 0) {
|
---|
| 354 | ArrayList<double[]> tmpPoints = new ArrayList<double[]>();
|
---|
| 355 | for (ContinuousSection continuousSection : continuousSections) {
|
---|
| 356 | Project(tmpPoints, pointToProject, utility, continuousSection,
|
---|
| 357 | null, range);
|
---|
| 358 | }
|
---|
| 359 | for (double[] point : getClosestPoints(tmpPoints, pointToProject)) {
|
---|
| 360 | addUniqueBid(bids, createBid(point, null));
|
---|
| 361 | }
|
---|
| 362 | } else {
|
---|
| 363 | ValueDiscrete[][] bestCombinations = getBestCombinations(
|
---|
| 364 | discreteCombinations, limit, continuousPreference,
|
---|
| 365 | utilitySpace, opponentModel);
|
---|
| 366 |
|
---|
| 367 | for (ValueDiscrete[] discreteCombination : bestCombinations) {
|
---|
| 368 | ArrayList<double[]> tmpPoints = new ArrayList<double[]>();
|
---|
| 369 | if (continuousWeightsZero) {
|
---|
| 370 | if (evaluate(discreteCombination,
|
---|
| 371 | discreteEvaluationFunctions, discreteWeights) >= utility) {
|
---|
| 372 | Project(tmpPoints, pointToProject, 0, null, null, null);
|
---|
| 373 | }
|
---|
| 374 | } else {
|
---|
| 375 | for (ContinuousSection continuousSection : continuousSections) {
|
---|
| 376 | Project(tmpPoints,
|
---|
| 377 | pointToProject,
|
---|
| 378 | utility
|
---|
| 379 | - evaluate(discreteCombination,
|
---|
| 380 | discreteEvaluationFunctions,
|
---|
| 381 | discreteWeights),
|
---|
| 382 | continuousSection, discreteCombination, range);
|
---|
| 383 | }
|
---|
| 384 | }
|
---|
| 385 | for (double[] point : getClosestPoints(tmpPoints,
|
---|
| 386 | pointToProject)) {
|
---|
| 387 | addUniqueBid(bids, createBid(point, discreteCombination));
|
---|
| 388 | }
|
---|
| 389 | }
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | return bids;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | private double evaluate(
|
---|
| 396 | ValueDiscrete[] discreteCombination,
|
---|
| 397 | ArrayList<HashMap<ValueDiscrete, Double>> discreteEvaluationFunctions,
|
---|
| 398 | ArrayList<Double> discreteWeights) {
|
---|
| 399 | double value = 0;
|
---|
| 400 | for (int j = 0; j < discreteCombination.length; j++) {
|
---|
| 401 | value += discreteWeights.get(j)
|
---|
| 402 | * discreteEvaluationFunctions.get(j).get(
|
---|
| 403 | discreteCombination[j]);
|
---|
| 404 | }
|
---|
| 405 | return value;
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | private ValueDiscrete[][] getBestCombinations(
|
---|
| 409 | ValueDiscrete[][] discreteCombinations, int limit,
|
---|
| 410 | double[] continuousPreference, AdditiveUtilitySpace utilitySpace,
|
---|
| 411 | OpponentModel opponentModel) {
|
---|
| 412 | if (limit == 0 || limit >= discreteCombinations.length)
|
---|
| 413 | return discreteCombinations;
|
---|
| 414 | List<EvaluatedDiscreteCombination> options = new ArrayList<EvaluatedDiscreteCombination>();
|
---|
| 415 | for (ValueDiscrete[] discreteCombination : discreteCombinations) {
|
---|
| 416 | Bid b = createBid(continuousPreference, discreteCombination);
|
---|
| 417 | double jointUtility = 0;
|
---|
| 418 | try {
|
---|
| 419 | jointUtility = utilitySpace.getUtility(b)
|
---|
| 420 | + opponentModel.getNormalizedUtility(b);
|
---|
| 421 | } catch (Exception e) {
|
---|
| 422 | e.printStackTrace();
|
---|
| 423 | }
|
---|
| 424 | options.add(new EvaluatedDiscreteCombination(discreteCombination,
|
---|
| 425 | jointUtility));
|
---|
| 426 | }
|
---|
| 427 | Collections.sort(options);
|
---|
| 428 | options = options.subList(options.size() - limit, options.size());
|
---|
| 429 | ValueDiscrete[][] bestCombinations = new ValueDiscrete[limit][discreteCombinations[0].length];
|
---|
| 430 | int i = 0;
|
---|
| 431 | for (EvaluatedDiscreteCombination edc : options) {
|
---|
| 432 | bestCombinations[i] = edc.getDiscreteCombination();
|
---|
| 433 | i++;
|
---|
| 434 | }
|
---|
| 435 | return bestCombinations;
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 | /**
|
---|
| 439 | * @param points
|
---|
| 440 | * @param pointToProject
|
---|
| 441 | * @param utility
|
---|
| 442 | * @param continuousSection
|
---|
| 443 | * @param discreteCombination
|
---|
| 444 | */
|
---|
| 445 | private void Project(ArrayList<double[]> points, double[] pointToProject,
|
---|
| 446 | double utility, ContinuousSection continuousSection,
|
---|
| 447 | ValueDiscrete[] discreteCombination, double[] range) {
|
---|
| 448 |
|
---|
| 449 | if (continuousSection == null) {
|
---|
| 450 | addUniquePoint(points, pointToProject);
|
---|
| 451 | return;
|
---|
| 452 | }
|
---|
| 453 |
|
---|
| 454 | double[] pointA = continuousSection.getKnownPoint1();
|
---|
| 455 | double[] pointB = continuousSection.getKnownPoint2();
|
---|
| 456 |
|
---|
| 457 | double utilityA = continuousSection.getEvalKnownPoint1();
|
---|
| 458 | double utilityB = continuousSection.getEvalKnownPoint2();
|
---|
| 459 |
|
---|
| 460 | double[] pointOnLine = getPointOnLine(utility,
|
---|
| 461 | continuousSection.getNormal(), utilityA, pointA, utilityB,
|
---|
| 462 | pointB);
|
---|
| 463 | double[] projectedPoint = Project(pointToProject,
|
---|
| 464 | continuousSection.getNormal(), pointOnLine);
|
---|
| 465 | if (WithinConstraints(projectedPoint, continuousSection.getMinBounds(),
|
---|
| 466 | continuousSection.getMaxBounds())) {
|
---|
| 467 |
|
---|
| 468 | addUniquePoint(points, projectedPoint);
|
---|
| 469 | } else {
|
---|
| 470 | projectedPoint = getEndPoint(continuousSection.getMinBounds(),
|
---|
| 471 | continuousSection.getMaxBounds(),
|
---|
| 472 | continuousSection.getNormal(), utility,
|
---|
| 473 | discreteCombination, pointToProject, utilityA, pointA,
|
---|
| 474 | utilityB, pointB, range);
|
---|
| 475 | if (projectedPoint != null) {
|
---|
| 476 | addUniquePoint(points, projectedPoint);
|
---|
| 477 | }
|
---|
| 478 | }
|
---|
| 479 | }
|
---|
| 480 |
|
---|
| 481 | /**
|
---|
| 482 | * Project a point onto a hyperplane.
|
---|
| 483 | *
|
---|
| 484 | * @param pointToProject
|
---|
| 485 | * the point to project onto the hyperplane.
|
---|
| 486 | * @param normal
|
---|
| 487 | * the normal to the hyperplane.
|
---|
| 488 | * @param pointOnLine
|
---|
| 489 | * a point on the hyperplane.
|
---|
| 490 | * @return the projected point.
|
---|
| 491 | */
|
---|
| 492 | private double[] Project(double[] pointToProject, double[] normal,
|
---|
| 493 | double[] pointOnLine) {
|
---|
| 494 | if (pointToProject.length != normal.length)
|
---|
| 495 | throw new AssertionError(
|
---|
| 496 | "Lengths of pointToProject and normal do not match");
|
---|
| 497 | if (pointOnLine.length != normal.length)
|
---|
| 498 | throw new AssertionError(
|
---|
| 499 | "Lengths of pointOnLine and normal do not match");
|
---|
| 500 |
|
---|
| 501 | int dimensions = pointToProject.length;
|
---|
| 502 |
|
---|
| 503 | double projectedPoint[] = new double[dimensions];
|
---|
| 504 | double suma = 0;
|
---|
| 505 | double sumb = 0;
|
---|
| 506 | double sumc = 0;
|
---|
| 507 | for (int i = 0; i < dimensions; i++) {
|
---|
| 508 | suma += (normal[i] * pointOnLine[i]);
|
---|
| 509 | sumb += (normal[i] * pointToProject[i]);
|
---|
| 510 | sumc += (normal[i] * normal[i]);
|
---|
| 511 | }
|
---|
| 512 | double sum = (suma - sumb) / sumc;
|
---|
| 513 | for (int i = 0; i < dimensions; i++) {
|
---|
| 514 | projectedPoint[i] = pointToProject[i] + (sum * normal[i]);
|
---|
| 515 | }
|
---|
| 516 | return projectedPoint;
|
---|
| 517 | }
|
---|
| 518 |
|
---|
| 519 | /**
|
---|
| 520 | * Add a bid to an array list of bids, but only if the array list does not
|
---|
| 521 | * already contain an identical bid.
|
---|
| 522 | *
|
---|
| 523 | * @param bids
|
---|
| 524 | * the array list of bids.
|
---|
| 525 | * @param bid
|
---|
| 526 | * the bid to try to add.
|
---|
| 527 | */
|
---|
| 528 | private void addUniquePoint(ArrayList<double[]> points, double[] point) {
|
---|
| 529 | for (double[] p : points) {
|
---|
| 530 | if (p.equals(point)) {
|
---|
| 531 | return;
|
---|
| 532 | }
|
---|
| 533 | }
|
---|
| 534 | points.add(point);
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 | /**
|
---|
| 538 | * Add a bid to an array list of bids, but only if the array list does not
|
---|
| 539 | * already contain an identical bid.
|
---|
| 540 | *
|
---|
| 541 | * @param bids
|
---|
| 542 | * the array list of bids.
|
---|
| 543 | * @param bid
|
---|
| 544 | * the bid to try to add.
|
---|
| 545 | */
|
---|
| 546 | private void addUniqueBid(ArrayList<Bid> bids, Bid bid) {
|
---|
| 547 | for (Bid b : bids) {
|
---|
| 548 | if (b.equals(bid)) {
|
---|
| 549 | return;
|
---|
| 550 | }
|
---|
| 551 | }
|
---|
| 552 | bids.add(bid);
|
---|
| 553 | }
|
---|
| 554 |
|
---|
| 555 | /**
|
---|
| 556 | * Get the endpoints of a bounded hyperplane that are closest to a target
|
---|
| 557 | * point.
|
---|
| 558 | *
|
---|
| 559 | * @param min
|
---|
| 560 | * the minimum bound of the space.
|
---|
| 561 | * @param max
|
---|
| 562 | * the maximum bound of the space.
|
---|
| 563 | * @param normal
|
---|
| 564 | * the normal to the hyperplane.
|
---|
| 565 | * @param utility
|
---|
| 566 | * the utility value of the hyperplane.
|
---|
| 567 | * @param discreteCombination
|
---|
| 568 | * the combination of discrete values to use in the bids.
|
---|
| 569 | * @param target
|
---|
| 570 | * the target point.
|
---|
| 571 | * @return the endpoints of a bounded hyperplane that are closest to a
|
---|
| 572 | * target point.
|
---|
| 573 | */
|
---|
| 574 | private double[] getEndPoint(double[] min, double[] max, double[] normal,
|
---|
| 575 | double utility, ValueDiscrete[] discreteCombination,
|
---|
| 576 | double[] target, double utilityA, double[] pointA, double utilityB,
|
---|
| 577 | double[] pointB, double[] range) {
|
---|
| 578 | if (min.length != normal.length)
|
---|
| 579 | throw new AssertionError("Lengths of min and normal do not match");
|
---|
| 580 | if (max.length != normal.length)
|
---|
| 581 | throw new AssertionError("Lengths of max and normal do not match");
|
---|
| 582 | if (pointA.length != normal.length)
|
---|
| 583 | throw new AssertionError(
|
---|
| 584 | "Lengths of pointA and normal do not match");
|
---|
| 585 | if (pointB.length != normal.length)
|
---|
| 586 | throw new AssertionError(
|
---|
| 587 | "Lengths of pointB and normal do not match");
|
---|
| 588 | if (target.length != normal.length)
|
---|
| 589 | throw new AssertionError(
|
---|
| 590 | "Lengths of target and normal do not match");
|
---|
| 591 |
|
---|
| 592 | int dimension = normal.length;
|
---|
| 593 |
|
---|
| 594 | double[] pointOnLine = getHillClimbStartPoint(min, max, normal,
|
---|
| 595 | utility, discreteCombination, target, utilityA, pointA,
|
---|
| 596 | utilityB, pointB);
|
---|
| 597 |
|
---|
| 598 | if (pointOnLine == null)
|
---|
| 599 | return null;
|
---|
| 600 |
|
---|
| 601 | if (!WithinConstraints(pointOnLine, min, max)) {
|
---|
| 602 | throw new AssertionError("Get Intersection fail");
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | for (int precision = 1; precision < 5; precision++)
|
---|
| 606 | while (true) {
|
---|
| 607 | double step = Math.pow(0.1, precision);
|
---|
| 608 | ArrayList<double[]> nearbyPointsOnLine = new ArrayList<double[]>();
|
---|
| 609 | nearbyPointsOnLine.add(pointOnLine);
|
---|
| 610 | Double[] nearbyPoint = new Double[dimension];
|
---|
| 611 | double[] proposedPoint;
|
---|
| 612 | for (int shiftDimension = 0; shiftDimension < dimension; shiftDimension++) {
|
---|
| 613 | for (int unknownDimension = 0; unknownDimension < dimension; unknownDimension++) {
|
---|
| 614 | if (shiftDimension == unknownDimension)
|
---|
| 615 | continue;
|
---|
| 616 | for (int i = 0; i < dimension; i++) {
|
---|
| 617 | nearbyPoint[i] = pointOnLine[i];
|
---|
| 618 | }
|
---|
| 619 | nearbyPoint[unknownDimension] = null;
|
---|
| 620 |
|
---|
| 621 | nearbyPoint[shiftDimension] += step
|
---|
| 622 | * range[shiftDimension];
|
---|
| 623 | proposedPoint = getIntersection(nearbyPoint, normal,
|
---|
| 624 | pointOnLine);
|
---|
| 625 | if (WithinConstraints(proposedPoint, min, max))
|
---|
| 626 | nearbyPointsOnLine.add(proposedPoint);
|
---|
| 627 |
|
---|
| 628 | nearbyPoint[shiftDimension] -= 2 * step
|
---|
| 629 | * range[shiftDimension];
|
---|
| 630 | proposedPoint = getIntersection(nearbyPoint, normal,
|
---|
| 631 | pointOnLine);
|
---|
| 632 | if (WithinConstraints(proposedPoint, min, max))
|
---|
| 633 | nearbyPointsOnLine.add(proposedPoint);
|
---|
| 634 | }
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | ArrayList<double[]> closestPoints = getClosestPoints(
|
---|
| 638 | nearbyPointsOnLine, target);
|
---|
| 639 | if (closestPoints.size() == 0)
|
---|
| 640 | break;
|
---|
| 641 |
|
---|
| 642 | double[] closestPoint;
|
---|
| 643 | if (TEST_EQUIVALENCE) {
|
---|
| 644 | closestPoint = closestPoints.get(0);
|
---|
| 645 | } else {
|
---|
| 646 | closestPoint = closestPoints.get((int) Math.random()
|
---|
| 647 | * closestPoints.size());
|
---|
| 648 | }
|
---|
| 649 |
|
---|
| 650 | if (getDistance(closestPoint, target) == getDistance(
|
---|
| 651 | pointOnLine, target))
|
---|
| 652 | break;
|
---|
| 653 | else
|
---|
| 654 | pointOnLine = closestPoint;
|
---|
| 655 | }
|
---|
| 656 | return pointOnLine;
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | private double[] getHillClimbStartPoint(double[] min, double[] max,
|
---|
| 660 | double[] normal, double utility,
|
---|
| 661 | ValueDiscrete[] discreteCombination, double[] target,
|
---|
| 662 | double utilityA, double[] pointA, double utilityB, double[] pointB) {
|
---|
| 663 | if (min.length != normal.length)
|
---|
| 664 | throw new AssertionError("Lengths of min and normal do not match");
|
---|
| 665 | if (max.length != normal.length)
|
---|
| 666 | throw new AssertionError("Lengths of max and normal do not match");
|
---|
| 667 | if (pointA.length != normal.length)
|
---|
| 668 | throw new AssertionError(
|
---|
| 669 | "Lengths of pointA and normal do not match");
|
---|
| 670 | if (pointB.length != normal.length)
|
---|
| 671 | throw new AssertionError(
|
---|
| 672 | "Lengths of pointB and normal do not match");
|
---|
| 673 | if (target.length != normal.length)
|
---|
| 674 | throw new AssertionError(
|
---|
| 675 | "Lengths of target and normal do not match");
|
---|
| 676 |
|
---|
| 677 | ArrayList<Double[]> bounds = getBounds(min, max);
|
---|
| 678 |
|
---|
| 679 | ArrayList<double[]> endPoints = new ArrayList<double[]>();
|
---|
| 680 |
|
---|
| 681 | double[] pointOnLine = getPointOnLine(utility, normal, utilityA,
|
---|
| 682 | pointA, utilityB, pointB);
|
---|
| 683 |
|
---|
| 684 | for (Double[] bound : bounds) {
|
---|
| 685 | double[] endPoint = getIntersection(bound, normal, pointOnLine);
|
---|
| 686 | if (WithinConstraints(endPoint, min, max)) {
|
---|
| 687 | endPoints.add(endPoint);
|
---|
| 688 | }
|
---|
| 689 | }
|
---|
| 690 |
|
---|
| 691 | ArrayList<double[]> closestPoints = getClosestPoints(endPoints, target);
|
---|
| 692 | if (closestPoints.size() == 0)
|
---|
| 693 | return null;
|
---|
| 694 | return closestPoints.get((int) Math.random() * closestPoints.size());
|
---|
| 695 | }
|
---|
| 696 |
|
---|
| 697 | private ArrayList<double[]> getClosestPoints(ArrayList<double[]> endPoints,
|
---|
| 698 | double[] target) {
|
---|
| 699 | double closestDistance = Double.MAX_VALUE;
|
---|
| 700 |
|
---|
| 701 | for (double[] endPoint : endPoints) {
|
---|
| 702 | double distance = getDistance(endPoint, target);
|
---|
| 703 | closestDistance = Math.min(closestDistance, distance);
|
---|
| 704 | }
|
---|
| 705 |
|
---|
| 706 | ArrayList<double[]> closestEndPoints = new ArrayList<double[]>();
|
---|
| 707 |
|
---|
| 708 | for (double[] endPoint : endPoints) {
|
---|
| 709 | if (getDistance(endPoint, target) == closestDistance) {
|
---|
| 710 | closestEndPoints.add(endPoint);
|
---|
| 711 | }
|
---|
| 712 | }
|
---|
| 713 |
|
---|
| 714 | return closestEndPoints;
|
---|
| 715 | }
|
---|
| 716 |
|
---|
| 717 | /**
|
---|
| 718 | * Get the distance between two points in multi-dimensional space.
|
---|
| 719 | *
|
---|
| 720 | * @param pointA
|
---|
| 721 | * the first point.
|
---|
| 722 | * @param pointB
|
---|
| 723 | * the second point.
|
---|
| 724 | * @return the distance between two points in multi-dimensional space.
|
---|
| 725 | */
|
---|
| 726 | private double getDistance(double[] pointA, double[] pointB) {
|
---|
| 727 | if (pointA.length != pointB.length)
|
---|
| 728 | throw new AssertionError(
|
---|
| 729 | "Lengths of pointA and pointB do not match");
|
---|
| 730 | if (pointA.length != range.length)
|
---|
| 731 | throw new AssertionError("Lengths of pointA and range do not match");
|
---|
| 732 |
|
---|
| 733 | double distance = 0;
|
---|
| 734 | for (int i = 0; i < pointB.length; i++) {
|
---|
| 735 | distance += Math.pow((pointA[i] - pointB[i]), 2);
|
---|
| 736 | }
|
---|
| 737 | return Math.sqrt(distance);
|
---|
| 738 | }
|
---|
| 739 |
|
---|
| 740 | /**
|
---|
| 741 | * Create a bid.
|
---|
| 742 | *
|
---|
| 743 | * @param point
|
---|
| 744 | * the point in the multi-dimensional space that represents the
|
---|
| 745 | * continuous issues of the domain.
|
---|
| 746 | * @param discreteCombination
|
---|
| 747 | * the combination of discrete values.
|
---|
| 748 | * @return a bid.
|
---|
| 749 | */
|
---|
| 750 | private Bid createBid(double[] point, ValueDiscrete[] discreteCombination) {
|
---|
| 751 | HashMap<Integer, Value> bidInternals = new HashMap<Integer, Value>();
|
---|
| 752 | int continuousPos = 0;
|
---|
| 753 | int discretePos = 0;
|
---|
| 754 | for (int i = 0; i < issueTypes.length; i++) {
|
---|
| 755 | if (issueTypes[i] == ISSUETYPE.REAL) {
|
---|
| 756 | bidInternals.put(issues.get(i).getNumber(), new ValueReal(
|
---|
| 757 | (point[continuousPos] * range[continuousPos])
|
---|
| 758 | + offset[continuousPos]));
|
---|
| 759 | continuousPos++;
|
---|
| 760 | } else if (issueTypes[i] == ISSUETYPE.INTEGER) {
|
---|
| 761 | bidInternals
|
---|
| 762 | .put(issues.get(i).getNumber(),
|
---|
| 763 | new ValueInteger(
|
---|
| 764 | (int) Math
|
---|
| 765 | .round((point[continuousPos] * range[continuousPos])
|
---|
| 766 | + offset[continuousPos])));
|
---|
| 767 | continuousPos++;
|
---|
| 768 | } else if (issueTypes[i] == ISSUETYPE.DISCRETE) {
|
---|
| 769 | bidInternals.put(issues.get(i).getNumber(),
|
---|
| 770 | discreteCombination[discretePos]);
|
---|
| 771 | discretePos++;
|
---|
| 772 | }
|
---|
| 773 | }
|
---|
| 774 | try {
|
---|
| 775 | return new Bid(domain, bidInternals);
|
---|
| 776 | } catch (Exception e) {
|
---|
| 777 | return null;
|
---|
| 778 | }
|
---|
| 779 | }
|
---|
| 780 |
|
---|
| 781 | /**
|
---|
| 782 | * Get the intersection between a bound and a hyperplane.
|
---|
| 783 | *
|
---|
| 784 | * @param bound
|
---|
| 785 | * the bound.
|
---|
| 786 | * @param normal
|
---|
| 787 | * the normal to the hyperplane.
|
---|
| 788 | * @param utility
|
---|
| 789 | * the utility of the hyperplane.
|
---|
| 790 | * @return the intersection between a bound and a hyperplane.
|
---|
| 791 | */
|
---|
| 792 | private double[] getIntersection(Double[] bound, double[] normal,
|
---|
| 793 | double[] pointOnLine) {
|
---|
| 794 | if (bound.length != normal.length)
|
---|
| 795 | throw new AssertionError("Lengths of bound and normal do not match");
|
---|
| 796 | int dimensions = normal.length;
|
---|
| 797 |
|
---|
| 798 | double c = 0;
|
---|
| 799 | for (int i = 0; i < dimensions; i++) {
|
---|
| 800 | c += normal[i] * pointOnLine[i];
|
---|
| 801 | }
|
---|
| 802 |
|
---|
| 803 | int unknown = -1;
|
---|
| 804 | double sum = 0;
|
---|
| 805 | double[] intersection = new double[dimensions];
|
---|
| 806 | for (int i = 0; i < dimensions; i++) {
|
---|
| 807 | if (bound[i] == null) {
|
---|
| 808 | unknown = i;
|
---|
| 809 | } else {
|
---|
| 810 | sum += bound[i] * normal[i];
|
---|
| 811 | intersection[i] = bound[i];
|
---|
| 812 | }
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 | if (unknown < 0)
|
---|
| 816 | throw new AssertionError("bound has no unknown");
|
---|
| 817 |
|
---|
| 818 | intersection[unknown] = (c - sum) / normal[unknown];
|
---|
| 819 |
|
---|
| 820 | return intersection;
|
---|
| 821 | }
|
---|
| 822 |
|
---|
| 823 | /**
|
---|
| 824 | * Get all bounds of a space.
|
---|
| 825 | *
|
---|
| 826 | * @param min
|
---|
| 827 | * the minimum bound of the space.
|
---|
| 828 | * @param max
|
---|
| 829 | * the maximum bound of the space.
|
---|
| 830 | * @return all bounds of a space.
|
---|
| 831 | */
|
---|
| 832 | private ArrayList<Double[]> getBounds(double[] min, double[] max) {
|
---|
| 833 | if (min.length != max.length)
|
---|
| 834 | throw new AssertionError("Lengths of min and max do not match");
|
---|
| 835 |
|
---|
| 836 | int dimensions = min.length;
|
---|
| 837 |
|
---|
| 838 | ArrayList<Double[]> bounds = new ArrayList<Double[]>();
|
---|
| 839 |
|
---|
| 840 | int boundCount = dimensions * (int) Math.pow(2, dimensions - 1);
|
---|
| 841 | for (int i = 0; i < boundCount; i++) {
|
---|
| 842 | int dimension = (int) Math.floor(i / (boundCount / dimensions));
|
---|
| 843 | Double[] bound = new Double[dimensions];
|
---|
| 844 | for (int j = 0; j < dimensions; j++) {
|
---|
| 845 | if (j == dimension)
|
---|
| 846 | continue;
|
---|
| 847 | if (j < dimension)
|
---|
| 848 | bound[j] = (i & (1 << j)) == 0 ? min[j] : max[j];
|
---|
| 849 | else
|
---|
| 850 | bound[j] = (i & (1 << (j - 1))) == 0 ? min[j] : max[j];
|
---|
| 851 | }
|
---|
| 852 | bounds.add(bound);
|
---|
| 853 | }
|
---|
| 854 |
|
---|
| 855 | return bounds;
|
---|
| 856 | }
|
---|
| 857 |
|
---|
| 858 | /**
|
---|
| 859 | * Check whether a point lies within a set of bounds.
|
---|
| 860 | *
|
---|
| 861 | * @param point
|
---|
| 862 | * the point to check.
|
---|
| 863 | * @param min
|
---|
| 864 | * the minimum bounds.
|
---|
| 865 | * @param max
|
---|
| 866 | * the maximum bounds.
|
---|
| 867 | * @return true if the point lies within the bounds, false otherwise.
|
---|
| 868 | */
|
---|
| 869 | private boolean WithinConstraints(double[] point, double[] min, double[] max) {
|
---|
| 870 | if (min.length != point.length)
|
---|
| 871 | throw new AssertionError("Lengths of min and point do not match");
|
---|
| 872 | if (max.length != point.length)
|
---|
| 873 | throw new AssertionError("Lengths of max and point do not match");
|
---|
| 874 |
|
---|
| 875 | for (int i = 0; i < point.length; i++) {
|
---|
| 876 | if (point[i] < min[i] || point[i] > max[i]) {
|
---|
| 877 | return false;
|
---|
| 878 | }
|
---|
| 879 | }
|
---|
| 880 | return true;
|
---|
| 881 | }
|
---|
| 882 |
|
---|
| 883 | /**
|
---|
| 884 | * Get all combinations of integers in a space.
|
---|
| 885 | *
|
---|
| 886 | * @param space
|
---|
| 887 | * the size of the space.
|
---|
| 888 | * @return all combinations of integers in a space.
|
---|
| 889 | */
|
---|
| 890 | public static ArrayList<int[]> getCombinationValues(int[] space) {
|
---|
| 891 | ArrayList<int[]> combinationValues = new ArrayList<int[]>();
|
---|
| 892 | if (space.length == 1) {
|
---|
| 893 | return combinationValues;
|
---|
| 894 | }
|
---|
| 895 | for (int i = 0; i < space[space.length - 1]; i++) {
|
---|
| 896 | int[] combination = new int[space.length - 1];
|
---|
| 897 | for (int j = 0; j < combination.length; j++) {
|
---|
| 898 | combination[j] = (int) Math.floor((i / space[j])
|
---|
| 899 | % (space[j + 1] / space[j]));
|
---|
| 900 | }
|
---|
| 901 |
|
---|
| 902 | combinationValues.add(combination);
|
---|
| 903 | }
|
---|
| 904 | return combinationValues;
|
---|
| 905 | }
|
---|
| 906 |
|
---|
| 907 | /**
|
---|
| 908 | * Get the point in multi-dimensional space that represents a bid.
|
---|
| 909 | *
|
---|
| 910 | * @param bid
|
---|
| 911 | * the bid.
|
---|
| 912 | * @return the point in multi-dimensional space that represents a bid.
|
---|
| 913 | */
|
---|
| 914 | public double[] getPoint(Bid bid) {
|
---|
| 915 | double[] point = new double[continuousWeights.size()];
|
---|
| 916 | int i = 0;
|
---|
| 917 | int j = 0;
|
---|
| 918 | for (ISSUETYPE issueType : issueTypes) {
|
---|
| 919 | if (issueType == ISSUETYPE.REAL) {
|
---|
| 920 | ValueReal valueReal;
|
---|
| 921 | try {
|
---|
| 922 | valueReal = (ValueReal) bid.getValue(issues.get(j)
|
---|
| 923 | .getNumber());
|
---|
| 924 | point[i] = (valueReal.getValue() - offset[i]) / range[i];
|
---|
| 925 | } catch (Exception e) {
|
---|
| 926 | e.printStackTrace();
|
---|
| 927 | }
|
---|
| 928 | i++;
|
---|
| 929 | }
|
---|
| 930 | if (issueType == ISSUETYPE.INTEGER) {
|
---|
| 931 | ValueInteger valueInteger;
|
---|
| 932 | try {
|
---|
| 933 | valueInteger = (ValueInteger) bid.getValue(issues.get(j)
|
---|
| 934 | .getNumber());
|
---|
| 935 | point[i] = (valueInteger.getValue() - offset[i]) / range[i];
|
---|
| 936 | } catch (Exception e) {
|
---|
| 937 | e.printStackTrace();
|
---|
| 938 | }
|
---|
| 939 | i++;
|
---|
| 940 | }
|
---|
| 941 | j++;
|
---|
| 942 | }
|
---|
| 943 | return point;
|
---|
| 944 | }
|
---|
| 945 |
|
---|
| 946 | public Bid getMaxUtilityBid() {
|
---|
| 947 |
|
---|
| 948 | int discreteIssues = 0;
|
---|
| 949 | int continuousIssues = 0;
|
---|
| 950 |
|
---|
| 951 | for (int i = 0; i < issueTypes.length; i++) {
|
---|
| 952 | switch (issueTypes[i]) {
|
---|
| 953 | case DISCRETE:
|
---|
| 954 | discreteIssues++;
|
---|
| 955 | break;
|
---|
| 956 | case REAL:
|
---|
| 957 | case INTEGER:
|
---|
| 958 | continuousIssues++;
|
---|
| 959 | break;
|
---|
| 960 | }
|
---|
| 961 | }
|
---|
| 962 |
|
---|
| 963 | int discreteCount = 0;
|
---|
| 964 | int realCount = 0;
|
---|
| 965 | int integerCount = 0;
|
---|
| 966 |
|
---|
| 967 | ValueDiscrete[] discreteCombination = new ValueDiscrete[discreteIssues];
|
---|
| 968 | double[] continuousValues = new double[continuousIssues];
|
---|
| 969 |
|
---|
| 970 | for (Issue issue : issues) {
|
---|
| 971 | switch (issue.getType()) {
|
---|
| 972 | case DISCRETE:
|
---|
| 973 | IssueDiscrete issueDiscrete = (IssueDiscrete) issue;
|
---|
| 974 | List<ValueDiscrete> values = issueDiscrete.getValues();
|
---|
| 975 | double maxEval = 0;
|
---|
| 976 | ValueDiscrete maxValue = null;
|
---|
| 977 | for (ValueDiscrete value : values) {
|
---|
| 978 | double tmpEval;
|
---|
| 979 | try {
|
---|
| 980 | tmpEval = discreteEvaluators.get(discreteCount)
|
---|
| 981 | .getEvaluation(value);
|
---|
| 982 | if (tmpEval > maxEval) {
|
---|
| 983 | maxEval = tmpEval;
|
---|
| 984 | maxValue = value;
|
---|
| 985 | }
|
---|
| 986 | } catch (Exception e) {
|
---|
| 987 | e.printStackTrace();
|
---|
| 988 | }
|
---|
| 989 | }
|
---|
| 990 | discreteCombination[discreteCount] = maxValue;
|
---|
| 991 | discreteCount++;
|
---|
| 992 | break;
|
---|
| 993 | case REAL:
|
---|
| 994 | EvaluatorReal realEvaluator = realEvaluators.get(realCount);
|
---|
| 995 | switch (realEvaluator.getFuncType()) {
|
---|
| 996 | case LINEAR:
|
---|
| 997 | if (realEvaluator.getEvaluation(realEvaluator
|
---|
| 998 | .getLowerBound()) < realEvaluator
|
---|
| 999 | .getEvaluation(realEvaluator.getUpperBound()))
|
---|
| 1000 | continuousValues[realCount + integerCount] = 1;
|
---|
| 1001 | else
|
---|
| 1002 | continuousValues[realCount + integerCount] = 0;
|
---|
| 1003 | break;
|
---|
| 1004 | case TRIANGULAR:
|
---|
| 1005 | continuousValues[realCount + integerCount] = normalise(
|
---|
| 1006 | realEvaluator.getTopParam(),
|
---|
| 1007 | realEvaluator.getLowerBound(),
|
---|
| 1008 | realEvaluator.getUpperBound());
|
---|
| 1009 | break;
|
---|
| 1010 | }
|
---|
| 1011 | realCount++;
|
---|
| 1012 | break;
|
---|
| 1013 | case INTEGER:
|
---|
| 1014 | EvaluatorInteger integerEvaluator = integerEvaluators
|
---|
| 1015 | .get(integerCount);
|
---|
| 1016 | switch (integerEvaluator.getFuncType()) {
|
---|
| 1017 | case LINEAR:
|
---|
| 1018 | if (integerEvaluator.getEvaluation(integerEvaluator
|
---|
| 1019 | .getLowerBound()) < integerEvaluator
|
---|
| 1020 | .getEvaluation(integerEvaluator.getUpperBound()))
|
---|
| 1021 | continuousValues[realCount + integerCount] = 1;
|
---|
| 1022 | else
|
---|
| 1023 | continuousValues[realCount + integerCount] = 0;
|
---|
| 1024 | break;
|
---|
| 1025 | /*
|
---|
| 1026 | * case TRIANGULAR: realValues[integerCount] =
|
---|
| 1027 | * integerEvaluator.getTopParam(); break;
|
---|
| 1028 | */
|
---|
| 1029 | }
|
---|
| 1030 | integerCount++;
|
---|
| 1031 | break;
|
---|
| 1032 | }
|
---|
| 1033 | }
|
---|
| 1034 |
|
---|
| 1035 | return createBid(continuousValues, discreteCombination);
|
---|
| 1036 | }
|
---|
| 1037 | }
|
---|