1 | package agents.anac.y2010.AgentFSEGA;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.Collections;
|
---|
5 | import java.util.List;
|
---|
6 |
|
---|
7 | import genius.core.Bid;
|
---|
8 | import genius.core.issue.Issue;
|
---|
9 | import genius.core.issue.IssueDiscrete;
|
---|
10 | import genius.core.issue.IssueReal;
|
---|
11 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
12 | import genius.core.utility.EVALFUNCTYPE;
|
---|
13 | import genius.core.utility.EvaluatorDiscrete;
|
---|
14 | import genius.core.utility.EvaluatorReal;
|
---|
15 |
|
---|
16 | public class MyBayesianOpponentModel extends OpponentModel {
|
---|
17 | private AdditiveUtilitySpace uUS;
|
---|
18 | private ArrayList<UtilitySpaceHypothesis> uUSHypothesis;
|
---|
19 | private double previousBidUtility;
|
---|
20 | private double SIGMA = 0.25;
|
---|
21 | private double CONCESSION_STRATEGY = 0.035; // estimated opponent concession
|
---|
22 | // strategy
|
---|
23 |
|
---|
24 | // scalable
|
---|
25 | private boolean bUseMostProb = true;
|
---|
26 | private ArrayList<UtilitySpaceHypothesis> mostProbHyps;
|
---|
27 |
|
---|
28 | public MyBayesianOpponentModel(AdditiveUtilitySpace pUS) {
|
---|
29 | if (pUS == null)
|
---|
30 | throw new NullPointerException(
|
---|
31 | "MyBayesianOpponentModel: utility space = null");
|
---|
32 | uUS = pUS;
|
---|
33 |
|
---|
34 | previousBidUtility = 1;
|
---|
35 | dDomain = pUS.getDomain();
|
---|
36 | // aBiddingHistory = new ArrayList<Bid>();
|
---|
37 |
|
---|
38 | List<Issue> issues = dDomain.getIssues();
|
---|
39 | ArrayList<ArrayList<EvaluatorHypothesis>> aaEvaluatorHypothesis = new ArrayList<ArrayList<EvaluatorHypothesis>>();
|
---|
40 |
|
---|
41 | int numberOfIssues = issues.size();
|
---|
42 |
|
---|
43 | // generate weight hypothesis ==> <count of issues>! hypothesis
|
---|
44 | WeightHypothesis[] weightHypothesis = new WeightHypothesis[factorial(numberOfIssues)];
|
---|
45 |
|
---|
46 | // createFrom all permutations
|
---|
47 | double[] P = new double[numberOfIssues];
|
---|
48 |
|
---|
49 | // normalize weights
|
---|
50 | for (int i = 0; i < numberOfIssues; i++)
|
---|
51 | P[i] = 2.0 * (i + 1)
|
---|
52 | / (double) (numberOfIssues * (numberOfIssues + 1));
|
---|
53 | weightPermutations(0, weightHypothesis, P, numberOfIssues - 1);
|
---|
54 |
|
---|
55 | // add initial probabilities
|
---|
56 | for (int i = 0; i < weightHypothesis.length; i++)
|
---|
57 | weightHypothesis[i].setProbability(1.0 / weightHypothesis.length);
|
---|
58 |
|
---|
59 | // generate evaluator hypotheses
|
---|
60 | for (int i = 0; i < numberOfIssues; i++) {
|
---|
61 | ArrayList<EvaluatorHypothesis> lEvalHyps;
|
---|
62 | switch (uUS.getEvaluator(issues.get(i).getNumber()).getType()) {
|
---|
63 | case DISCRETE:
|
---|
64 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
65 | aaEvaluatorHypothesis.add(lEvalHyps);
|
---|
66 | IssueDiscrete lDiscIssue = (IssueDiscrete) (dDomain.getIssues()
|
---|
67 | .get(i));
|
---|
68 |
|
---|
69 | // uphill
|
---|
70 | EvaluatorDiscrete lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
71 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
72 | lDiscreteEvaluator.addEvaluation(lDiscIssue.getValue(j),
|
---|
73 | 1000 * j + 1);
|
---|
74 | EvaluatorHypothesis lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
75 | lDiscreteEvaluator, "uphill");
|
---|
76 |
|
---|
77 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
78 |
|
---|
79 | // downhill
|
---|
80 | lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
81 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
82 | lDiscreteEvaluator
|
---|
83 | .addEvaluation(
|
---|
84 | lDiscIssue.getValue(j),
|
---|
85 | 1000 * (lDiscIssue.getNumberOfValues() - j - 1) + 1);
|
---|
86 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
87 | lDiscreteEvaluator, "downhill");
|
---|
88 |
|
---|
89 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
90 |
|
---|
91 | // triangular
|
---|
92 | lDiscreteEvaluator = new EvaluatorDiscrete();
|
---|
93 | int halfway = lDiscIssue.getNumberOfValues() / 2;
|
---|
94 | for (int j = 0; j < lDiscIssue.getNumberOfValues(); j++)
|
---|
95 | if (j < halfway)
|
---|
96 | lDiscreteEvaluator.addEvaluation(
|
---|
97 | lDiscIssue.getValue(j), 1000 * j + 1);
|
---|
98 | else
|
---|
99 | lDiscreteEvaluator
|
---|
100 | .addEvaluation(lDiscIssue.getValue(j),
|
---|
101 | 1000 * (lDiscIssue.getNumberOfValues()
|
---|
102 | - j - 1) + 1);
|
---|
103 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
104 | lDiscreteEvaluator, "triangular");
|
---|
105 |
|
---|
106 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
107 | break;
|
---|
108 |
|
---|
109 | // Eval hypothesis for real attributes
|
---|
110 | case REAL:
|
---|
111 | lEvalHyps = new ArrayList<EvaluatorHypothesis>();
|
---|
112 | aaEvaluatorHypothesis.add(lEvalHyps);
|
---|
113 | IssueReal lRealIssue = (IssueReal) (dDomain.getIssues().get(i)); // Laptop
|
---|
114 | // |
|
---|
115 | // Harddisk
|
---|
116 | // |
|
---|
117 | // Monitor
|
---|
118 |
|
---|
119 | // uphill
|
---|
120 | EvaluatorReal lRealEvaluator = new EvaluatorReal();
|
---|
121 | lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
122 | lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
123 | lRealEvaluator.setType(EVALFUNCTYPE.LINEAR);
|
---|
124 | lRealEvaluator.addParam(1, 1.0 / (lRealEvaluator
|
---|
125 | .getUpperBound() - lRealEvaluator.getLowerBound()));
|
---|
126 | lRealEvaluator
|
---|
127 | .addParam(
|
---|
128 | 0,
|
---|
129 | -lRealEvaluator.getLowerBound()
|
---|
130 | / (lRealEvaluator.getUpperBound() - lRealEvaluator
|
---|
131 | .getLowerBound()));
|
---|
132 | lEvaluatorHypothesis = new EvaluatorHypothesis(lRealEvaluator,
|
---|
133 | "uphill");
|
---|
134 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
135 |
|
---|
136 | // downhill
|
---|
137 | lRealEvaluator = new EvaluatorReal();
|
---|
138 | lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
139 | lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
140 | lRealEvaluator.setType(EVALFUNCTYPE.LINEAR);
|
---|
141 | lRealEvaluator
|
---|
142 | .addParam(
|
---|
143 | 1,
|
---|
144 | -1.0
|
---|
145 | / (lRealEvaluator.getUpperBound() - lRealEvaluator
|
---|
146 | .getLowerBound()));
|
---|
147 | lRealEvaluator
|
---|
148 | .addParam(
|
---|
149 | 0,
|
---|
150 | 1.0
|
---|
151 | + lRealEvaluator.getLowerBound()
|
---|
152 | / (lRealEvaluator.getUpperBound() - lRealEvaluator
|
---|
153 | .getLowerBound()));
|
---|
154 | lEvaluatorHypothesis = new EvaluatorHypothesis(lRealEvaluator,
|
---|
155 | "downhill");
|
---|
156 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
157 |
|
---|
158 | // triangular
|
---|
159 | int lTotalTriangularFns = 1;
|
---|
160 | for (int k = 1; k <= lTotalTriangularFns; k++) {
|
---|
161 | lRealEvaluator = new EvaluatorReal();
|
---|
162 | lRealEvaluator.setLowerBound(lRealIssue.getLowerBound());
|
---|
163 | lRealEvaluator.setUpperBound(lRealIssue.getUpperBound());
|
---|
164 | lRealEvaluator.setType(EVALFUNCTYPE.TRIANGULAR);
|
---|
165 | lRealEvaluator.addParam(0, lRealEvaluator.getLowerBound());
|
---|
166 | lRealEvaluator.addParam(1, lRealEvaluator.getUpperBound());
|
---|
167 | lRealEvaluator
|
---|
168 | .addParam(
|
---|
169 | 2,
|
---|
170 | lRealEvaluator.getLowerBound()
|
---|
171 | + (double) k
|
---|
172 | * (lRealEvaluator.getUpperBound() - lRealEvaluator
|
---|
173 | .getLowerBound())
|
---|
174 | / (lTotalTriangularFns + 1));
|
---|
175 | lEvaluatorHypothesis = new EvaluatorHypothesis(
|
---|
176 | lRealEvaluator, "triangular");
|
---|
177 | lEvaluatorHypothesis.setProbability((double) 1 / 3);
|
---|
178 | lEvalHyps.add(lEvaluatorHypothesis);
|
---|
179 | }
|
---|
180 | for (int k = 0; k < lEvalHyps.size(); k++) {
|
---|
181 | lEvalHyps.get(k).setProbability(
|
---|
182 | (double) 1 / lEvalHyps.size());
|
---|
183 | }
|
---|
184 |
|
---|
185 | break;
|
---|
186 |
|
---|
187 | default:
|
---|
188 | throw new NullPointerException(
|
---|
189 | "Evaluator type not implemented: eval type - "
|
---|
190 | + uUS.getEvaluator(issues.get(i).getNumber())
|
---|
191 | .getType());
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 | // build evaluation hypothesis
|
---|
196 | ArrayList<EvaluatorHypothesis[]> evalHypothesis = new ArrayList<EvaluatorHypothesis[]>();
|
---|
197 | EvaluatorHypothesis[] ehTmp = new EvaluatorHypothesis[uUS
|
---|
198 | .getNrOfEvaluators()];
|
---|
199 |
|
---|
200 | buildEvaluationHypothesis(evalHypothesis, ehTmp,
|
---|
201 | uUS.getNrOfEvaluators() - 1, aaEvaluatorHypothesis);
|
---|
202 |
|
---|
203 | // build user space hypothesis
|
---|
204 | buildUtilitySpaceHypothesis(weightHypothesis, evalHypothesis);
|
---|
205 | }
|
---|
206 |
|
---|
207 | private void buildEvaluationHypothesis(
|
---|
208 | ArrayList<EvaluatorHypothesis[]> pHyps,
|
---|
209 | EvaluatorHypothesis[] pEval, int m,
|
---|
210 | ArrayList<ArrayList<EvaluatorHypothesis>> paaEval) {
|
---|
211 | if (m == 0) {
|
---|
212 | ArrayList<EvaluatorHypothesis> lEvalHyps = paaEval.get(uUS
|
---|
213 | .getNrOfEvaluators() - 1);
|
---|
214 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
215 | pEval[uUS.getNrOfEvaluators() - 1] = lEvalHyps.get(i);
|
---|
216 | EvaluatorHypothesis[] lTmp = new EvaluatorHypothesis[uUS
|
---|
217 | .getNrOfEvaluators()];
|
---|
218 | // copy to temporary array
|
---|
219 | for (int j = 0; j < lTmp.length; j++)
|
---|
220 | lTmp[j] = pEval[j];
|
---|
221 | pHyps.add(lTmp);
|
---|
222 | }
|
---|
223 | } else {
|
---|
224 | ArrayList<EvaluatorHypothesis> lEvalHyps = paaEval.get(uUS
|
---|
225 | .getNrOfEvaluators() - m - 1);
|
---|
226 | for (int i = 0; i < lEvalHyps.size(); i++) {
|
---|
227 | pEval[uUS.getNrOfEvaluators() - m - 1] = lEvalHyps.get(i);
|
---|
228 | buildEvaluationHypothesis(pHyps, pEval, m - 1, paaEval);
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | private void buildUtilitySpaceHypothesis(
|
---|
234 | WeightHypothesis[] pWeightHypothesis,
|
---|
235 | ArrayList<EvaluatorHypothesis[]> pEvalHypothesis) {
|
---|
236 | uUSHypothesis = new ArrayList<UtilitySpaceHypothesis>();
|
---|
237 | for (int i = 0; i < pWeightHypothesis.length; i++) {
|
---|
238 | for (int j = 0; j < pEvalHypothesis.size(); j++) {
|
---|
239 | UtilitySpaceHypothesis lUSHyp = new UtilitySpaceHypothesis(
|
---|
240 | dDomain, uUS, pWeightHypothesis[i],
|
---|
241 | pEvalHypothesis.get(j));
|
---|
242 | uUSHypothesis.add(lUSHyp);
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | // set initial probability for all hyps
|
---|
247 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
248 | uUSHypothesis.get(i).setProbability(
|
---|
249 | 1.0 / (double) (uUSHypothesis.size()));
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | private Integer weightPermutations(Integer index, WeightHypothesis[] hyps,
|
---|
254 | double[] P, int m) {
|
---|
255 | if (m == 0) {
|
---|
256 | WeightHypothesis lWH = new WeightHypothesis(dDomain);
|
---|
257 | for (int i = 0; i < P.length; i++)
|
---|
258 | lWH.setWeight(i, P[i]);
|
---|
259 | hyps[index] = lWH;
|
---|
260 | index++;
|
---|
261 | } else {
|
---|
262 | for (int i = 0; i <= m; i++) {
|
---|
263 | index = weightPermutations(index, hyps, P, m - 1);
|
---|
264 | if (i < m) {
|
---|
265 | // swap elements i and m
|
---|
266 | double tmp = P[i];
|
---|
267 | P[i] = P[m];
|
---|
268 | P[m] = tmp;
|
---|
269 | reverse(P, m - 1);
|
---|
270 | } // if
|
---|
271 | }
|
---|
272 | }
|
---|
273 | return index;
|
---|
274 | }
|
---|
275 |
|
---|
276 | private void reverse(double[] array, int size) {
|
---|
277 | int i = 0, j = size;
|
---|
278 | while (i < j) {
|
---|
279 | // swap i <-> j
|
---|
280 | double tmp = array[i];
|
---|
281 | array[i] = array[j];
|
---|
282 | array[j] = tmp;
|
---|
283 | i++;
|
---|
284 | j--;
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | private int factorial(int n) {
|
---|
289 | int result = 1;
|
---|
290 | for (; n > 1; n--) {
|
---|
291 | result *= n;
|
---|
292 | }
|
---|
293 | return result;
|
---|
294 | }
|
---|
295 |
|
---|
296 | public void updateBeliefs(Bid pBid) throws Exception {
|
---|
297 | // calculate probability for the given bid
|
---|
298 | double lProbSum = 0;
|
---|
299 | double lMaxProb = 0;
|
---|
300 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
301 | UtilitySpaceHypothesis hyp = uUSHypothesis.get(i);
|
---|
302 | double condDistrib = hyp.getProbability()
|
---|
303 | * conditionalDistribution(
|
---|
304 | uUSHypothesis.get(i).getUtility(pBid),
|
---|
305 | previousBidUtility);
|
---|
306 | lProbSum += condDistrib;
|
---|
307 | if (condDistrib > lMaxProb)
|
---|
308 | lMaxProb = condDistrib;
|
---|
309 | hyp.setProbability(condDistrib);
|
---|
310 | }
|
---|
311 |
|
---|
312 | if (bUseMostProb)
|
---|
313 | mostProbHyps = new ArrayList<UtilitySpaceHypothesis>();
|
---|
314 |
|
---|
315 | double mostProbHypSum = 0;
|
---|
316 |
|
---|
317 | // receiveMessage the weights hyps and evaluators hyps
|
---|
318 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
319 | UtilitySpaceHypothesis hyp = uUSHypothesis.get(i);
|
---|
320 | double normalizedProbability = hyp.getProbability() / lProbSum;
|
---|
321 |
|
---|
322 | if (bUseMostProb)
|
---|
323 | if (normalizedProbability > lMaxProb * 0.95 / lProbSum) {
|
---|
324 | mostProbHyps.add(hyp);
|
---|
325 | mostProbHypSum += normalizedProbability;
|
---|
326 | }
|
---|
327 |
|
---|
328 | // exclude if probability is 0
|
---|
329 | if (normalizedProbability > 0)
|
---|
330 | hyp.setProbability(normalizedProbability);
|
---|
331 | else {
|
---|
332 | uUSHypothesis.remove(i);
|
---|
333 | }
|
---|
334 | // --- end exclude hyps with prob. around 0
|
---|
335 | }
|
---|
336 |
|
---|
337 | // normalize most probable hypothesis
|
---|
338 | if (bUseMostProb) {
|
---|
339 | for (int i = 0; i < mostProbHyps.size(); i++) {
|
---|
340 | UtilitySpaceHypothesis tmpHyp = mostProbHyps.get(i);
|
---|
341 | double normalizedProbability = tmpHyp.getProbability()
|
---|
342 | / mostProbHypSum;
|
---|
343 | tmpHyp.setProbability(normalizedProbability);
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | // calculate utility of the next partner's bid according to the
|
---|
348 | // concession functions
|
---|
349 | previousBidUtility = previousBidUtility - CONCESSION_STRATEGY;
|
---|
350 |
|
---|
351 | // sort hypotesis by probability
|
---|
352 | Collections.sort(uUSHypothesis);
|
---|
353 |
|
---|
354 | // exclude bids with sum under 0.95
|
---|
355 | int cutPoint = Integer.MAX_VALUE;
|
---|
356 |
|
---|
357 | double cummulativeSum = 0;
|
---|
358 |
|
---|
359 | // get cutPoint
|
---|
360 | // and cumulative sum for normalization
|
---|
361 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
362 | cummulativeSum += uUSHypothesis.get(i).getProbability();
|
---|
363 | if (cummulativeSum > 0.95) {
|
---|
364 | cutPoint = i;
|
---|
365 | break;
|
---|
366 | }
|
---|
367 | }
|
---|
368 | // eliminate from cutPoint to last item
|
---|
369 | if (cutPoint != Integer.MAX_VALUE) {
|
---|
370 | for (int i = uUSHypothesis.size() - 1; i >= cutPoint; i--) {
|
---|
371 | uUSHypothesis.remove(i);
|
---|
372 | }
|
---|
373 | }
|
---|
374 |
|
---|
375 | // normalize remained hypothesis probability
|
---|
376 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
377 | UtilitySpaceHypothesis currentHyp = uUSHypothesis.get(i);
|
---|
378 | double newProbability = currentHyp.getProbability()
|
---|
379 | / cummulativeSum;
|
---|
380 | currentHyp.setProbability(newProbability);
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 | private double conditionalDistribution(double pUtility,
|
---|
385 | double pPreviousBidUtility) {
|
---|
386 | if (pPreviousBidUtility < pUtility)
|
---|
387 | return 0;
|
---|
388 | else {
|
---|
389 | double x = (pPreviousBidUtility - pUtility) / pPreviousBidUtility;
|
---|
390 | double distribution = (1 / (SIGMA * Math.sqrt(2 * Math.PI)) * Math
|
---|
391 | .exp(-(x * x) / (2 * SIGMA * SIGMA)));
|
---|
392 | return distribution;
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | public double getExpectedUtility(Bid pBid) throws Exception {
|
---|
397 | double lExpectedUtility = 0;
|
---|
398 |
|
---|
399 | if (bUseMostProb && (mostProbHyps != null)) {
|
---|
400 |
|
---|
401 | for (int i = 0; i < mostProbHyps.size(); i++) {
|
---|
402 | UtilitySpaceHypothesis tmpUSHypothesis = mostProbHyps.get(i);
|
---|
403 | double p = tmpUSHypothesis.getProbability();
|
---|
404 | double u = tmpUSHypothesis.getUtility(pBid);
|
---|
405 | lExpectedUtility += p * u;
|
---|
406 | }
|
---|
407 | } else {
|
---|
408 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
409 | UtilitySpaceHypothesis tmpUSHypothesis = uUSHypothesis.get(i);
|
---|
410 | double p = tmpUSHypothesis.getProbability();
|
---|
411 | double u = tmpUSHypothesis.getUtility(pBid);
|
---|
412 | lExpectedUtility += p * u;
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | return lExpectedUtility;
|
---|
417 | }
|
---|
418 |
|
---|
419 | public double getExpectedWeight(int pIssueNumber) {
|
---|
420 | double lExpectedWeight = 0;
|
---|
421 | for (int i = 0; i < uUSHypothesis.size(); i++) {
|
---|
422 | UtilitySpaceHypothesis lUSHyp = uUSHypothesis.get(i);
|
---|
423 | double p = lUSHyp.getProbability();
|
---|
424 | double u = lUSHyp.getHeightHyp().getWeight(pIssueNumber);
|
---|
425 | lExpectedWeight += p * u;
|
---|
426 | }
|
---|
427 | return lExpectedWeight;
|
---|
428 | }
|
---|
429 | }
|
---|