1 | package agents.ai2014.group5;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.Collections;
|
---|
5 | import java.util.List;
|
---|
6 | import java.util.Map;
|
---|
7 |
|
---|
8 | import genius.core.Bid;
|
---|
9 |
|
---|
10 | /**
|
---|
11 | * An opponent model constructs a model of an opponent's negotiation profile so
|
---|
12 | * that the opponent's utilities of bids can be estimated. These models make use
|
---|
13 | * of a reinforcement learning method to learn the opponents' profiles from the
|
---|
14 | * bids made by the opponents. This method is described in the paper for the
|
---|
15 | * agent HardHeaded from the ANAC 2011 competition.
|
---|
16 | */
|
---|
17 | class OpponentModel {
|
---|
18 | // Weight increment during learning
|
---|
19 | private static final double EPSILON = 0.1;
|
---|
20 |
|
---|
21 | // The last bid offered by the opponent
|
---|
22 | private Bid lastBid;
|
---|
23 |
|
---|
24 | // Issue weights
|
---|
25 | private List<Double> weights;
|
---|
26 |
|
---|
27 | // Issue values
|
---|
28 | private List<List<Integer>> values;
|
---|
29 |
|
---|
30 | // Map of issue value names to indexes for each issue
|
---|
31 | private List<Map<String, Integer>> valueNames;
|
---|
32 |
|
---|
33 | // Issue indexes-1 and their names
|
---|
34 | private List<String> issueNames;
|
---|
35 |
|
---|
36 | private Group5 agent;
|
---|
37 |
|
---|
38 | @SuppressWarnings("unchecked")
|
---|
39 | public OpponentModel(List<String> issueNames,
|
---|
40 | List<Map<String, Integer>> valueNames, Group5 agent) {
|
---|
41 | lastBid = null;
|
---|
42 | this.valueNames = valueNames;
|
---|
43 | this.issueNames = issueNames;
|
---|
44 | this.agent = agent;
|
---|
45 |
|
---|
46 | // Uniformly distribute the weights
|
---|
47 | weights = new ArrayList<Double>(Collections.nCopies(issueNames.size(),
|
---|
48 | 1.0 / issueNames.size()));
|
---|
49 |
|
---|
50 | // Initialize issue values
|
---|
51 | values = new ArrayList<List<Integer>>();
|
---|
52 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
53 | ArrayList<Integer> tmp = new ArrayList<Integer>(
|
---|
54 | Collections.nCopies(valueNames.get(i).size(), 1));
|
---|
55 | values.add((List<Integer>) tmp.clone());
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Updates the model given the new bid received from the opponent. If an
|
---|
61 | * issue value has changed since the last bid then the weight for the
|
---|
62 | * corresponding issue and the issue value will be changed.
|
---|
63 | */
|
---|
64 | public void updateModel(Bid bid) {
|
---|
65 | if (bid == null) {
|
---|
66 | // The bid does not exists, the action was therefore not an offer
|
---|
67 | return;
|
---|
68 | }
|
---|
69 |
|
---|
70 | if (lastBid != null) {
|
---|
71 | // This is not the first bid, so update the model
|
---|
72 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
73 | String prevV = null, newV = null;
|
---|
74 | try {
|
---|
75 | prevV = lastBid.getValue(i + 1).toString();
|
---|
76 | newV = bid.getValue(i + 1).toString();
|
---|
77 | } catch (Exception e) {
|
---|
78 | agent.println("Error in \"updateModel\": getValue(" + i + 1
|
---|
79 | + ") fails for bid " + bid + " or bid " + lastBid);
|
---|
80 | }
|
---|
81 |
|
---|
82 | if (prevV != null && newV != null && prevV.equals(newV)) {
|
---|
83 | // Update weight and issue value for this issue
|
---|
84 | int vi = valueNames.get(i).get(newV);
|
---|
85 | weights.set(i, weights.get(i) + EPSILON);
|
---|
86 | values.get(i).set(vi, values.get(i).get(vi) + 1);
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | // Normalize weights
|
---|
91 | double norm = 0.0;
|
---|
92 | for (double w : weights) {
|
---|
93 | norm += w;
|
---|
94 | }
|
---|
95 | for (int i = 0; i < weights.size(); i++) {
|
---|
96 | weights.set(i, weights.get(i) / norm);
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | lastBid = bid;
|
---|
101 | }
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Calculates the expected utility of a bid.
|
---|
105 | *
|
---|
106 | * @param Bid
|
---|
107 | * to calculate utility of
|
---|
108 | * @return Utility of bid for the opponent of this model
|
---|
109 | */
|
---|
110 | public double expectedUtilityOf(Bid bid) {
|
---|
111 | double u = 0.0;
|
---|
112 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
113 | String tmp = null;
|
---|
114 | try {
|
---|
115 | // Get the name of the issue value used in the bid
|
---|
116 | tmp = bid.getValue(i + 1).toString();
|
---|
117 | } catch (Exception e) {
|
---|
118 | agent.println("Error in \"expectedUtiliyOf\": getValue(" + i
|
---|
119 | + 1 + ") fails for bid " + bid);
|
---|
120 | }
|
---|
121 | if (tmp != null) {
|
---|
122 | // Calculate and normalize estimated chosen issue value
|
---|
123 | int eIndex = valueNames.get(i).get(tmp);
|
---|
124 | int eNorm = 0;
|
---|
125 | for (int v = 0; v < values.get(i).size(); v++) {
|
---|
126 | eNorm += values.get(i).get(v);
|
---|
127 | }
|
---|
128 | double e = ((double) values.get(i).get(eIndex)) / eNorm;
|
---|
129 |
|
---|
130 | // Increment utility for this issue
|
---|
131 | u += weights.get(i) * e;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | return u;
|
---|
135 | }
|
---|
136 | } |
---|