[1] | 1 | package agents.ai2014.group5;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.Collections;
|
---|
| 5 | import java.util.List;
|
---|
| 6 | import java.util.Map;
|
---|
| 7 |
|
---|
| 8 | import genius.core.Bid;
|
---|
| 9 |
|
---|
| 10 | /**
|
---|
| 11 | * An opponent model constructs a model of an opponent's negotiation profile so
|
---|
| 12 | * that the opponent's utilities of bids can be estimated. These models make use
|
---|
| 13 | * of a reinforcement learning method to learn the opponents' profiles from the
|
---|
| 14 | * bids made by the opponents. This method is described in the paper for the
|
---|
| 15 | * agent HardHeaded from the ANAC 2011 competition.
|
---|
| 16 | */
|
---|
| 17 | class OpponentModel {
|
---|
| 18 | // Weight increment during learning
|
---|
| 19 | private static final double EPSILON = 0.1;
|
---|
| 20 |
|
---|
| 21 | // The last bid offered by the opponent
|
---|
| 22 | private Bid lastBid;
|
---|
| 23 |
|
---|
| 24 | // Issue weights
|
---|
| 25 | private List<Double> weights;
|
---|
| 26 |
|
---|
| 27 | // Issue values
|
---|
| 28 | private List<List<Integer>> values;
|
---|
| 29 |
|
---|
| 30 | // Map of issue value names to indexes for each issue
|
---|
| 31 | private List<Map<String, Integer>> valueNames;
|
---|
| 32 |
|
---|
| 33 | // Issue indexes-1 and their names
|
---|
| 34 | private List<String> issueNames;
|
---|
| 35 |
|
---|
| 36 | private Group5 agent;
|
---|
| 37 |
|
---|
| 38 | @SuppressWarnings("unchecked")
|
---|
| 39 | public OpponentModel(List<String> issueNames,
|
---|
| 40 | List<Map<String, Integer>> valueNames, Group5 agent) {
|
---|
| 41 | lastBid = null;
|
---|
| 42 | this.valueNames = valueNames;
|
---|
| 43 | this.issueNames = issueNames;
|
---|
| 44 | this.agent = agent;
|
---|
| 45 |
|
---|
| 46 | // Uniformly distribute the weights
|
---|
| 47 | weights = new ArrayList<Double>(Collections.nCopies(issueNames.size(),
|
---|
| 48 | 1.0 / issueNames.size()));
|
---|
| 49 |
|
---|
| 50 | // Initialize issue values
|
---|
| 51 | values = new ArrayList<List<Integer>>();
|
---|
| 52 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
| 53 | ArrayList<Integer> tmp = new ArrayList<Integer>(
|
---|
| 54 | Collections.nCopies(valueNames.get(i).size(), 1));
|
---|
| 55 | values.add((List<Integer>) tmp.clone());
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | /**
|
---|
| 60 | * Updates the model given the new bid received from the opponent. If an
|
---|
| 61 | * issue value has changed since the last bid then the weight for the
|
---|
| 62 | * corresponding issue and the issue value will be changed.
|
---|
| 63 | */
|
---|
| 64 | public void updateModel(Bid bid) {
|
---|
| 65 | if (bid == null) {
|
---|
| 66 | // The bid does not exists, the action was therefore not an offer
|
---|
| 67 | return;
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | if (lastBid != null) {
|
---|
| 71 | // This is not the first bid, so update the model
|
---|
| 72 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
| 73 | String prevV = null, newV = null;
|
---|
| 74 | try {
|
---|
| 75 | prevV = lastBid.getValue(i + 1).toString();
|
---|
| 76 | newV = bid.getValue(i + 1).toString();
|
---|
| 77 | } catch (Exception e) {
|
---|
| 78 | agent.println("Error in \"updateModel\": getValue(" + i + 1
|
---|
| 79 | + ") fails for bid " + bid + " or bid " + lastBid);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | if (prevV != null && newV != null && prevV.equals(newV)) {
|
---|
| 83 | // Update weight and issue value for this issue
|
---|
| 84 | int vi = valueNames.get(i).get(newV);
|
---|
| 85 | weights.set(i, weights.get(i) + EPSILON);
|
---|
| 86 | values.get(i).set(vi, values.get(i).get(vi) + 1);
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | // Normalize weights
|
---|
| 91 | double norm = 0.0;
|
---|
| 92 | for (double w : weights) {
|
---|
| 93 | norm += w;
|
---|
| 94 | }
|
---|
| 95 | for (int i = 0; i < weights.size(); i++) {
|
---|
| 96 | weights.set(i, weights.get(i) / norm);
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | lastBid = bid;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | /**
|
---|
| 104 | * Calculates the expected utility of a bid.
|
---|
| 105 | *
|
---|
| 106 | * @param Bid
|
---|
| 107 | * to calculate utility of
|
---|
| 108 | * @return Utility of bid for the opponent of this model
|
---|
| 109 | */
|
---|
| 110 | public double expectedUtilityOf(Bid bid) {
|
---|
| 111 | double u = 0.0;
|
---|
| 112 | for (int i = 0; i < issueNames.size(); i++) {
|
---|
| 113 | String tmp = null;
|
---|
| 114 | try {
|
---|
| 115 | // Get the name of the issue value used in the bid
|
---|
| 116 | tmp = bid.getValue(i + 1).toString();
|
---|
| 117 | } catch (Exception e) {
|
---|
| 118 | agent.println("Error in \"expectedUtiliyOf\": getValue(" + i
|
---|
| 119 | + 1 + ") fails for bid " + bid);
|
---|
| 120 | }
|
---|
| 121 | if (tmp != null) {
|
---|
| 122 | // Calculate and normalize estimated chosen issue value
|
---|
| 123 | int eIndex = valueNames.get(i).get(tmp);
|
---|
| 124 | int eNorm = 0;
|
---|
| 125 | for (int v = 0; v < values.get(i).size(); v++) {
|
---|
| 126 | eNorm += values.get(i).get(v);
|
---|
| 127 | }
|
---|
| 128 | double e = ((double) values.get(i).get(eIndex)) / eNorm;
|
---|
| 129 |
|
---|
| 130 | // Increment utility for this issue
|
---|
| 131 | u += weights.get(i) * e;
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | return u;
|
---|
| 135 | }
|
---|
| 136 | } |
---|