[1] | 1 | package agents.ai2014.group5;
|
---|
| 2 |
|
---|
| 3 | import java.util.ArrayList;
|
---|
| 4 | import java.util.Collections;
|
---|
| 5 | import java.util.HashMap;
|
---|
| 6 | import java.util.List;
|
---|
| 7 | import java.util.Map;
|
---|
| 8 | import java.util.Random;
|
---|
| 9 |
|
---|
| 10 | import genius.core.Bid;
|
---|
| 11 | import genius.core.Domain;
|
---|
| 12 | import genius.core.issue.Value;
|
---|
| 13 | import genius.core.issue.ValueDiscrete;
|
---|
| 14 |
|
---|
| 15 | /**
|
---|
| 16 | * Implementation of the bidding strategy. 1) In the first round the agent will
|
---|
| 17 | * offer a bid with max utility for itself. 2) In the subsequent rounds, until a
|
---|
| 18 | * specific time has elapsed, the agent will bid selfishly and only concede a
|
---|
| 19 | * tiny bit. This is because the opponent models are unreliable in the
|
---|
| 20 | * beginning. 3) Afterwards, it will use a tit-for-tat strategy to hopefully
|
---|
| 21 | * reach a Nash point, while increasingly concede utility in the later rounds.
|
---|
| 22 | * To achieve this it will interact with the opponent models to compare the
|
---|
| 23 | * estimated utilities of the opponents when deciding on bids.
|
---|
| 24 | */
|
---|
| 25 | public class BiddingStrategy {
|
---|
| 26 | // The minimum utility for our agent that we will consider when computing
|
---|
| 27 | // bids
|
---|
| 28 | private static final double MIN_UTIL = 0.3;
|
---|
| 29 |
|
---|
| 30 | private Random randGen;
|
---|
| 31 |
|
---|
| 32 | // Domain of agent, all bids in this domain, and best bids in domain
|
---|
| 33 | private Domain domain;
|
---|
| 34 | private List<Bid> allBids;
|
---|
| 35 | private List<Bid> maxBids;
|
---|
| 36 |
|
---|
| 37 | // The agent and fields from the agent
|
---|
| 38 | private Group5 agent;
|
---|
| 39 | private Map<String, OpponentModel> opponentModels;
|
---|
| 40 | private List<Map<String, Integer>> values;
|
---|
| 41 | private List<Map<Integer, String>> valuesRev;
|
---|
| 42 |
|
---|
| 43 | // Currently calculated Nash point
|
---|
| 44 | private Bid curNash;
|
---|
| 45 |
|
---|
| 46 | // The last bid made by us
|
---|
| 47 | public Bid lastBid;
|
---|
| 48 |
|
---|
| 49 | // The last bid and most recent bid received from an opponent
|
---|
| 50 | public Bid prevOpponentBid, currentOpponentBid;
|
---|
| 51 |
|
---|
| 52 | // The current round
|
---|
| 53 | public int round = 0;
|
---|
| 54 |
|
---|
| 55 | // The deadline (can be null!)
|
---|
| 56 | public Integer deadline;
|
---|
| 57 |
|
---|
| 58 | public BiddingStrategy(Domain domain,
|
---|
| 59 | Map<String, OpponentModel> opponentModels,
|
---|
| 60 | List<Map<String, Integer>> values,
|
---|
| 61 | List<Map<Integer, String>> valuesRev, Group5 agent) {
|
---|
| 62 | this.domain = domain;
|
---|
| 63 | this.opponentModels = opponentModels;
|
---|
| 64 | this.values = values;
|
---|
| 65 | this.valuesRev = valuesRev;
|
---|
| 66 | this.agent = agent;
|
---|
| 67 | this.randGen = new Random();
|
---|
| 68 | this.maxBids = new ArrayList<Bid>();
|
---|
| 69 |
|
---|
| 70 | createAllBids();
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | /**
|
---|
| 74 | * Computes all bids in the domain that have an utility of at least
|
---|
| 75 | * {@link #MIN_UTIL}.
|
---|
| 76 | */
|
---|
| 77 | private void createAllBids() {
|
---|
| 78 | // Count bids
|
---|
| 79 | List<Integer> numValuesEach = new ArrayList<Integer>();
|
---|
| 80 | int numBids = 1;
|
---|
| 81 | for (int i = 0; i < values.size(); i++) {
|
---|
| 82 | int x = values.get(i).size();
|
---|
| 83 | numValuesEach.add(x);
|
---|
| 84 | numBids *= x;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | // Compute bids represented as lists of value indices
|
---|
| 88 | List<List<Integer>> bidIndices = new ArrayList<List<Integer>>(
|
---|
| 89 | Collections.nCopies(numBids, (List<Integer>) null));
|
---|
| 90 | for (int i = 0; i < bidIndices.size(); i++) {
|
---|
| 91 | bidIndices.set(i, new ArrayList<Integer>(values.size()));
|
---|
| 92 | }
|
---|
| 93 | int bound = numBids;
|
---|
| 94 | for (int i : numValuesEach) {
|
---|
| 95 | bound /= i;
|
---|
| 96 | int count = 0;
|
---|
| 97 | int j = 0;
|
---|
| 98 | for (List<Integer> k : bidIndices) {
|
---|
| 99 | k.add(j);
|
---|
| 100 | count++;
|
---|
| 101 | if (count == bound) {
|
---|
| 102 | j++;
|
---|
| 103 | count = 0;
|
---|
| 104 | }
|
---|
| 105 | if (j == i) {
|
---|
| 106 | j = 0;
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | // Create actual bids from value indices lists
|
---|
| 112 | allBids = new ArrayList<Bid>();
|
---|
| 113 | for (int i = 0; i < bidIndices.size(); i++) {
|
---|
| 114 | Bid bid = createBid(bidIndices.get(i));
|
---|
| 115 | if (agent.getUtility(bid) >= MIN_UTIL) {
|
---|
| 116 | allBids.add(bid);
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | private Bid createBid(List<Integer> valueIndices) {
|
---|
| 122 | HashMap<Integer, Value> v = new HashMap<Integer, Value>();
|
---|
| 123 | for (int i = 0; i < valuesRev.size(); i++) {
|
---|
| 124 | String vname = valuesRev.get(i).get(valueIndices.get(i));
|
---|
| 125 | v.put(i + 1, new ValueDiscrete(vname));
|
---|
| 126 | }
|
---|
| 127 | try {
|
---|
| 128 | return new Bid(domain, v);
|
---|
| 129 | } catch (Exception e) {
|
---|
| 130 | agent.println("Error: cannot create bid " + v);
|
---|
| 131 | }
|
---|
| 132 | return null;
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | /**
|
---|
| 136 | * Creates a bid according to the bidding strategy See the documentation of
|
---|
| 137 | * this class above for a description of the bidding strategy
|
---|
| 138 | */
|
---|
| 139 | public Bid generateBid() {
|
---|
| 140 | // New round, new Nash point
|
---|
| 141 | round++;
|
---|
| 142 | updateNashProduct();
|
---|
| 143 |
|
---|
| 144 | // 1) Offer the best bid for us in the first round
|
---|
| 145 | if (lastBid == null || currentOpponentBid == null) {
|
---|
| 146 | return generateMaxBid();
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | // 2.1) Allow to concede a bit more each round
|
---|
| 150 | int cutoff = deadline == null ? 10 : Math.max(deadline / 2, 10);
|
---|
| 151 | double maxConcession = 0.01;
|
---|
| 152 | if (deadline != null) {
|
---|
| 153 | // double c = 2.25;
|
---|
| 154 | double c = 3.5;
|
---|
| 155 | maxConcession = Math.exp((round - cutoff) / (deadline / c))
|
---|
| 156 | / (1.5 * Math.exp(c));
|
---|
| 157 | agent.println("Max concession: " + maxConcession);
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | // 2.2) Do not use the opponent models in the beginning as they are
|
---|
| 161 | // unreliable
|
---|
| 162 | if (round <= cutoff) {
|
---|
| 163 | Bid b = selfishStep(maxConcession);
|
---|
| 164 | if (b == null) {
|
---|
| 165 | agent.println("Warning: could not make a selfish offer");
|
---|
| 166 | return null;
|
---|
| 167 | }
|
---|
| 168 | agent.println("Made selfish move: " + agent.getUtility(b) + ", "
|
---|
| 169 | + b);
|
---|
| 170 | return b;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | // 3.1) Estimate Nash point
|
---|
| 174 | if (curNash == null) {
|
---|
| 175 | // Huh
|
---|
| 176 | Bid b = selfishStep(maxConcession);
|
---|
| 177 | agent.println("No Nash bid!?");
|
---|
| 178 | return b;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | // 3.2) Find concession towards Nash point
|
---|
| 182 | double nashBidUtil = agent.getUtility(curNash);
|
---|
| 183 | double prevOpponentBidUtil = agent.getUtility(prevOpponentBid);
|
---|
| 184 | double curOpponentBidUtil = agent.getUtility(currentOpponentBid);
|
---|
| 185 | double opponentConcession = (prevOpponentBidUtil - curOpponentBidUtil)
|
---|
| 186 | / Math.abs(nashBidUtil - prevOpponentBidUtil);
|
---|
| 187 |
|
---|
| 188 | // 3.3) Mirror bid in our utility relative to Nash utility
|
---|
| 189 | double lastBidUtil = agent.getUtility(lastBid);
|
---|
| 190 | double concession = opponentConcession
|
---|
| 191 | * Math.abs(nashBidUtil - lastBidUtil);
|
---|
| 192 | concession = Math.min(maxConcession, concession);
|
---|
| 193 | if (Double.isNaN(opponentConcession) || opponentConcession < 0.001) {
|
---|
| 194 | // But if the opponent did not succeed in increasing our utility
|
---|
| 195 | // then do not concede too much of our utility when offering the
|
---|
| 196 | // next bid
|
---|
| 197 | concession = 0.01;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | // 3.4) Make a nice move
|
---|
| 201 | Bid niceMove = niceStepClosestsNash(lastBid, agent.getUtility(lastBid),
|
---|
| 202 | concession);
|
---|
| 203 | if (niceMove == null || niceMove.equals(lastBid)) {
|
---|
| 204 | agent.println("Warning: could not make a new nice move (making selfish move instead): "
|
---|
| 205 | + niceMove);
|
---|
| 206 | return selfishStep(maxConcession);
|
---|
| 207 | }
|
---|
| 208 | agent.println("Made nice move: " + agent.getUtility(niceMove) + ", "
|
---|
| 209 | + niceMove);
|
---|
| 210 | return niceMove;
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | /**
|
---|
| 214 | * Product of the (estimated) utilities of all agents, including us
|
---|
| 215 | */
|
---|
| 216 | public double utilityProduct(Bid bid) {
|
---|
| 217 | double p = agent.getUtility(bid);
|
---|
| 218 | for (OpponentModel m : opponentModels.values()) {
|
---|
| 219 | p *= m.expectedUtilityOf(bid);
|
---|
| 220 | }
|
---|
| 221 | return p;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | /**
|
---|
| 225 | * Finds a bid with the maximal utility product Should be called at every
|
---|
| 226 | * round
|
---|
| 227 | */
|
---|
| 228 | private void updateNashProduct() {
|
---|
| 229 | double max = Double.MIN_VALUE;
|
---|
| 230 | for (Bid bid : allBids) {
|
---|
| 231 | double u = utilityProduct(bid);
|
---|
| 232 | if (u > max) {
|
---|
| 233 | max = u;
|
---|
| 234 | curNash = bid;
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | /**
|
---|
| 240 | * A bid that is the best possible for us
|
---|
| 241 | */
|
---|
| 242 | private Bid generateMaxBid() {
|
---|
| 243 | if (maxBids.size() == 0) {
|
---|
| 244 | double max = Double.MIN_VALUE;
|
---|
| 245 | for (Bid bid : allBids) {
|
---|
| 246 | max = Math.max(agent.getUtility(bid), max);
|
---|
| 247 | }
|
---|
| 248 | for (Bid bid : allBids) {
|
---|
| 249 | if (Math.abs(agent.getUtility(bid) - max) < 0.001) {
|
---|
| 250 | maxBids.add(bid);
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | agent.println("Found " + maxBids.size() + " max bids");
|
---|
| 254 | }
|
---|
| 255 | if (maxBids.size() > 0) {
|
---|
| 256 | int randomIndex = randGen.nextInt(maxBids.size());
|
---|
| 257 | return maxBids.get(randomIndex);
|
---|
| 258 | }
|
---|
| 259 | return null;
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | /**
|
---|
| 263 | * Distance to Nash product projected to our utility
|
---|
| 264 | */
|
---|
| 265 | private double distanceToNash(Bid bid) {
|
---|
| 266 | return Math.abs(utilityProduct(curNash) - utilityProduct(bid));
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 | /**
|
---|
| 270 | * Finds the bid closest to the estimated Nash product with an utility
|
---|
| 271 | * approximately equal to <code>curUtil</code> but with a difference of up
|
---|
| 272 | * to <code>concession</code>.
|
---|
| 273 | */
|
---|
| 274 | private Bid niceStepClosestsNash(Bid lastBid, double curUtil,
|
---|
| 275 | double concession) {
|
---|
| 276 | if (Double.isNaN(concession)) {
|
---|
| 277 | agent.println("Warning: concession is NaN");
|
---|
| 278 | concession = 0.001;
|
---|
| 279 | }
|
---|
| 280 | double minDist = Double.MAX_VALUE;
|
---|
| 281 | Bid niceBid = null;
|
---|
| 282 | for (Bid bid : allBids) {
|
---|
| 283 | if (lastBid != null && lastBid.equals(bid)) {
|
---|
| 284 | continue;
|
---|
| 285 | }
|
---|
| 286 | double util = agent.getUtility(bid);
|
---|
| 287 | if (Math.abs(curUtil - util) <= concession) {
|
---|
| 288 | double dist = distanceToNash(bid);
|
---|
| 289 | if (dist < minDist) {
|
---|
| 290 | minDist = dist;
|
---|
| 291 | niceBid = bid;
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 | return niceBid;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | /**
|
---|
| 299 | * Finds a good bid that does not consider the opponent's preferences
|
---|
| 300 | */
|
---|
| 301 | private Bid selfishStep(double concession) {
|
---|
| 302 | if (Double.isNaN(concession)) {
|
---|
| 303 | agent.println("Warning: concession is NaN");
|
---|
| 304 | concession = 0.05;
|
---|
| 305 | }
|
---|
| 306 | List<Bid> bids = new ArrayList<Bid>();
|
---|
| 307 | for (Bid bid : allBids) {
|
---|
| 308 | double util = agent.getUtility(bid);
|
---|
| 309 | if (Math.abs(1.0 - util) <= concession) {
|
---|
| 310 | bids.add(bid);
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 | if (bids.size() == 0) {
|
---|
| 314 | return null;
|
---|
| 315 | }
|
---|
| 316 | int randomIndex = randGen.nextInt(bids.size());
|
---|
| 317 | return bids.get(randomIndex);
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | public void updateOffer(Bid bid) {
|
---|
| 321 | prevOpponentBid = currentOpponentBid;
|
---|
| 322 | currentOpponentBid = bid;
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 | public void setDeadline(Integer newDeadline) {
|
---|
| 326 | if (newDeadline != null && newDeadline != deadline) {
|
---|
| 327 | deadline = newDeadline;
|
---|
| 328 | }
|
---|
| 329 | }
|
---|
| 330 | }
|
---|