1 | package agents.ai2014.group12;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 | import java.util.Set;
|
---|
5 |
|
---|
6 | import genius.core.issue.ValueDiscrete;
|
---|
7 | import genius.core.utility.EvaluatorDiscrete;
|
---|
8 |
|
---|
9 | /**
|
---|
10 | * PreferenceBlock is our representation of the Issue
|
---|
11 | *
|
---|
12 | */
|
---|
13 | public class PreferenceBlock {
|
---|
14 | ArrayList<Node> nodeList = new ArrayList<Node>();
|
---|
15 | String issue;
|
---|
16 | Double weight;
|
---|
17 |
|
---|
18 | /**
|
---|
19 | * Constructor for the PreferenceBlock
|
---|
20 | * @param block, string to parse to get the values of the issue out.
|
---|
21 | * @param issueName
|
---|
22 | * @param weight
|
---|
23 | */
|
---|
24 | public PreferenceBlock(EvaluatorDiscrete evaluator, String issueName, Double weight){
|
---|
25 | this.issue = issueName;
|
---|
26 | this.weight = weight;
|
---|
27 | Set<ValueDiscrete> evalSet = evaluator.getValues();
|
---|
28 | Object[] evalArray = evalSet.toArray();
|
---|
29 | for(Object i : evalArray) {
|
---|
30 | ValueDiscrete description = (ValueDiscrete) i;
|
---|
31 | Double val = evaluator.getDoubleValue(description);
|
---|
32 | Node node = new Node(description.getValue(), val, false);
|
---|
33 | nodeList.add(node);
|
---|
34 | }
|
---|
35 | orderNodesLowToHigh();
|
---|
36 | }
|
---|
37 |
|
---|
38 | public void normalizeNodeValues() {
|
---|
39 | Double sum = sumNodeValues();
|
---|
40 | if(sum > 0) {
|
---|
41 | for(int i = 0;i<nodeList.size();i++) {
|
---|
42 | nodeList.get(i).setValue(nodeList.get(i).getValue()/sum);
|
---|
43 | }
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public Double sumNodeValues() {
|
---|
48 | Double sum = 0.0;
|
---|
49 | for(int i = 0; i<nodeList.size();i++) {
|
---|
50 | sum += nodeList.get(i).getValue();
|
---|
51 | }
|
---|
52 | return sum;
|
---|
53 | }
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Returns the node that is currently the highest for this issue
|
---|
57 | * @return
|
---|
58 | */
|
---|
59 | public Node getHighestPreference() {
|
---|
60 | double max = 0;
|
---|
61 | Node rtn = new Node("", 0, false);
|
---|
62 | for(Node n : nodeList) {
|
---|
63 | if(n.getValue() >= max) {
|
---|
64 | rtn = n;
|
---|
65 | max = n.getValue();
|
---|
66 | }
|
---|
67 | }
|
---|
68 | return rtn;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Searches the nodeList of this issue for the value name of a node
|
---|
73 | * @param s
|
---|
74 | * @return index of the found node
|
---|
75 | */
|
---|
76 | public int indexOf(String s) {
|
---|
77 | int index = 0;
|
---|
78 | for(int i = 0; i < nodeList.size(); i++) {
|
---|
79 | if(nodeList.get(i).getName().equals(s)) {
|
---|
80 | index = i;
|
---|
81 | }
|
---|
82 | }
|
---|
83 | return index;
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Method to order the issue's nodes from low to high
|
---|
88 | */
|
---|
89 | public void orderNodesLowToHigh() {
|
---|
90 | nodeList = quicksort(nodeList);
|
---|
91 | }
|
---|
92 |
|
---|
93 | /**
|
---|
94 | * Basic quicksort algorithm
|
---|
95 | * @param input
|
---|
96 | * @return sorted arraylist of nodes
|
---|
97 | */
|
---|
98 | public ArrayList<Node> quicksort(ArrayList<Node> input) {
|
---|
99 | if(input.size() <= 1){
|
---|
100 | return input;
|
---|
101 | }
|
---|
102 |
|
---|
103 | int middle = (int) Math.ceil((double)input.size() / 2);
|
---|
104 | Node pivot = input.get(middle);
|
---|
105 |
|
---|
106 | ArrayList<Node> less = new ArrayList<Node>();
|
---|
107 | ArrayList<Node> greater = new ArrayList<Node>();
|
---|
108 |
|
---|
109 | for (int i = 0; i < input.size(); i++) {
|
---|
110 | if(input.get(i).getValue() <= pivot.getValue()){
|
---|
111 | if(i == middle){
|
---|
112 | continue;
|
---|
113 | }
|
---|
114 | less.add(input.get(i));
|
---|
115 | }
|
---|
116 | else{
|
---|
117 | greater.add(input.get(i));
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | return concatenate(quicksort(less), pivot, quicksort(greater));
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Helper method for the quicksort algorithm, is used to concatenate the two arraylists to eachother
|
---|
126 | * @param less
|
---|
127 | * @param pivot
|
---|
128 | * @param greater
|
---|
129 | * @return concatenated arraylist
|
---|
130 | */
|
---|
131 | private ArrayList<Node> concatenate(ArrayList<Node> less, Node pivot, ArrayList<Node> greater){
|
---|
132 |
|
---|
133 | ArrayList<Node> list = new ArrayList<Node>();
|
---|
134 |
|
---|
135 | for (int i = 0; i < less.size(); i++) {
|
---|
136 | list.add(less.get(i));
|
---|
137 | }
|
---|
138 |
|
---|
139 | list.add(pivot);
|
---|
140 |
|
---|
141 | for (int i = 0; i < greater.size(); i++) {
|
---|
142 | list.add(greater.get(i));
|
---|
143 | }
|
---|
144 |
|
---|
145 | return list;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /**
|
---|
149 | * Nodelist getter
|
---|
150 | * @return
|
---|
151 | */
|
---|
152 | public ArrayList<Node> getList(){
|
---|
153 | return nodeList;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Method to retrieve all the nodes that have not yet been flagged
|
---|
158 | * @return
|
---|
159 | */
|
---|
160 | public ArrayList<Node> getValuesWithoutFlag() {
|
---|
161 | ArrayList<Node> rtn = new ArrayList<Node>();
|
---|
162 | for(int i = 0; i<nodeList.size(); i++) {
|
---|
163 | if(!nodeList.get(i).getFlag()) {
|
---|
164 | rtn.add(nodeList.get(i));
|
---|
165 | }
|
---|
166 | }
|
---|
167 | return rtn;
|
---|
168 | }
|
---|
169 |
|
---|
170 | /**
|
---|
171 | * Method to retrieve the index of the highest ordered value that is not yet flagged.
|
---|
172 | * @return
|
---|
173 | */
|
---|
174 | public int getHighestIndexWithoutFlag() {
|
---|
175 | int rtnIndex = -1;
|
---|
176 | for(int i = 0; i<nodeList.size(); i++) {
|
---|
177 | if(nodeList.get(i).getFlag()) {
|
---|
178 | return i-1;
|
---|
179 | }
|
---|
180 | }
|
---|
181 | return rtnIndex;
|
---|
182 | }
|
---|
183 |
|
---|
184 | }
|
---|