1 | package agents;
|
---|
2 |
|
---|
3 | import java.util.List;
|
---|
4 |
|
---|
5 | import genius.core.Bid;
|
---|
6 | import genius.core.actions.Accept;
|
---|
7 | import genius.core.actions.Action;
|
---|
8 | import genius.core.actions.Offer;
|
---|
9 | import genius.core.issue.IssueDiscrete;
|
---|
10 | import genius.core.issue.ValueDiscrete;
|
---|
11 | import genius.core.parties.AbstractNegotiationParty;
|
---|
12 | import genius.core.uncertainty.AdditiveUtilitySpaceFactory;
|
---|
13 | import genius.core.utility.AbstractUtilitySpace;
|
---|
14 |
|
---|
15 | @SuppressWarnings("serial")
|
---|
16 | public class UncertaintyAgentExample extends AbstractNegotiationParty
|
---|
17 | {
|
---|
18 |
|
---|
19 | @Override
|
---|
20 | public Action chooseAction(List<Class<? extends Action>> possibleActions)
|
---|
21 | {
|
---|
22 |
|
---|
23 | // Sample code that accepts offers that appear in the top 10% of offers in the user model
|
---|
24 | if (getLastReceivedAction() instanceof Offer && hasPreferenceUncertainty())
|
---|
25 | {
|
---|
26 | Bid receivedBid = ((Offer) getLastReceivedAction()).getBid();
|
---|
27 | List<Bid> bidOrder = userModel.getBidRanking().getBidOrder();
|
---|
28 |
|
---|
29 | System.out.println("Bid order: " + bidOrder);
|
---|
30 | System.out.println("Low: " + userModel.getBidRanking().getLowUtility());
|
---|
31 | System.out.println("High: " + userModel.getBidRanking().getHighUtility());
|
---|
32 |
|
---|
33 | System.out.println("Received bid (which I will elicit against cost " + user.getElicitationCost() + "): " + receivedBid);
|
---|
34 | user.elicitRank(receivedBid, userModel);
|
---|
35 | System.out.println("Bother is now: " + user.getTotalBother());
|
---|
36 |
|
---|
37 | System.out.println("Updated bid order: " + bidOrder);
|
---|
38 | System.out.println("Updated low: " + userModel.getBidRanking().getLowUtility());
|
---|
39 | System.out.println("Updated high: " + userModel.getBidRanking().getHighUtility());
|
---|
40 |
|
---|
41 | // If the rank of the received bid is known
|
---|
42 | if (bidOrder.contains(receivedBid))
|
---|
43 | {
|
---|
44 | double percentile = (bidOrder.size() - bidOrder.indexOf(receivedBid)) / (double) bidOrder.size();
|
---|
45 | if (percentile < 0.1)
|
---|
46 | return new Accept(getPartyId(), receivedBid);
|
---|
47 | }
|
---|
48 | // If it is not, then elicit the new user model augmented with the received bid
|
---|
49 | // provided the Total user bother doesn't exceed 0.1
|
---|
50 | else if(user.getTotalBother()<0.1)
|
---|
51 | {
|
---|
52 | userModel = user.elicitRank(receivedBid,userModel);
|
---|
53 | double percentile = (bidOrder.size() - bidOrder.indexOf(receivedBid)) / (double) bidOrder.size();
|
---|
54 | if (percentile < 0.1)
|
---|
55 | return new Accept(getPartyId(), receivedBid);
|
---|
56 | }
|
---|
57 | }
|
---|
58 | // Otherwise just offer a Random bid
|
---|
59 | return new Offer(getPartyId(), generateRandomBid());
|
---|
60 | }
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * Specific functionality, such as the estimate of the utility space in the
|
---|
64 | * face of preference uncertainty, can be specified by overriding the
|
---|
65 | * default behavior.
|
---|
66 | *
|
---|
67 | * This example estimator sets all weights uniformly
|
---|
68 | */
|
---|
69 | @Override
|
---|
70 | public AbstractUtilitySpace estimateUtilitySpace()
|
---|
71 | {
|
---|
72 | AdditiveUtilitySpaceFactory additiveUtilitySpaceFactory = new AdditiveUtilitySpaceFactory(getDomain());
|
---|
73 | List<IssueDiscrete> issues = additiveUtilitySpaceFactory.getIssues();
|
---|
74 | for (IssueDiscrete i : issues)
|
---|
75 | {
|
---|
76 | additiveUtilitySpaceFactory.setWeight(i, 1.0 / issues.size());
|
---|
77 | for (ValueDiscrete v : i.getValues())
|
---|
78 | {
|
---|
79 | int valueScore = 0;
|
---|
80 | for (Bid b : userModel.getBidRanking().getBidOrder())
|
---|
81 | if (b.containsValue(i, v))
|
---|
82 | valueScore ++;
|
---|
83 | additiveUtilitySpaceFactory.setUtility(i, v, valueScore);
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | // Normalize the attribute functions, since we gave them integer scores
|
---|
88 | additiveUtilitySpaceFactory.scaleAllValuesFrom0To1();
|
---|
89 |
|
---|
90 | // Normalizing the weights might be needed if the above code is changed; uncomment when needed.
|
---|
91 | // additiveUtilitySpaceFactory.normalizeWeights();
|
---|
92 |
|
---|
93 | // The factory is done with setting all parameters, now return the estimated utility space
|
---|
94 | return additiveUtilitySpaceFactory.getUtilitySpace();
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | @Override
|
---|
99 | public String getDescription()
|
---|
100 | {
|
---|
101 | return "Example agent that can deal with uncertain preferences";
|
---|
102 | }
|
---|
103 |
|
---|
104 | public String getName(){
|
---|
105 | return "Uncertain.Agent";
|
---|
106 | }
|
---|
107 |
|
---|
108 | }
|
---|