1 | package agents.Jama;
|
---|
2 | import agents.Jama.util.*;
|
---|
3 |
|
---|
4 | /** Singular Value Decomposition.
|
---|
5 | <P>
|
---|
6 | For an m-by-n matrix A with m >= n, the singular value decomposition is
|
---|
7 | an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
|
---|
8 | an n-by-n orthogonal matrix V so that A = U*S*V'.
|
---|
9 | <P>
|
---|
10 | The singular values, sigma[k] = S[k][k], are ordered so that
|
---|
11 | sigma[0] >= sigma[1] >= ... >= sigma[n-1].
|
---|
12 | <P>
|
---|
13 | The singular value decompostion always exists, so the constructor will
|
---|
14 | never fail. The matrix condition number and the effective numerical
|
---|
15 | rank can be computed from this decomposition.
|
---|
16 | */
|
---|
17 |
|
---|
18 | public class SingularValueDecomposition implements java.io.Serializable {
|
---|
19 |
|
---|
20 | /* ------------------------
|
---|
21 | Class variables
|
---|
22 | * ------------------------ */
|
---|
23 |
|
---|
24 | /** Arrays for internal storage of U and V.
|
---|
25 | @serial internal storage of U.
|
---|
26 | @serial internal storage of V.
|
---|
27 | */
|
---|
28 | private double[][] U, V;
|
---|
29 |
|
---|
30 | /** Array for internal storage of singular values.
|
---|
31 | @serial internal storage of singular values.
|
---|
32 | */
|
---|
33 | private double[] s;
|
---|
34 |
|
---|
35 | /** Row and column dimensions.
|
---|
36 | @serial row dimension.
|
---|
37 | @serial column dimension.
|
---|
38 | */
|
---|
39 | private int m, n;
|
---|
40 |
|
---|
41 | /* ------------------------
|
---|
42 | Constructor
|
---|
43 | * ------------------------ */
|
---|
44 |
|
---|
45 | /** Construct the singular value decomposition
|
---|
46 | Structure to access U, S and V.
|
---|
47 | @param Arg Rectangular matrix
|
---|
48 | */
|
---|
49 |
|
---|
50 | public SingularValueDecomposition (Matrix Arg) {
|
---|
51 |
|
---|
52 | // Derived from LINPACK code.
|
---|
53 | // Initialize.
|
---|
54 | double[][] A = Arg.getArrayCopy();
|
---|
55 | m = Arg.getRowDimension();
|
---|
56 | n = Arg.getColumnDimension();
|
---|
57 |
|
---|
58 | /* Apparently the failing cases are only a proper subset of (m<n),
|
---|
59 | so let's not throw error. Correct fix to come later?
|
---|
60 | if (m<n) {
|
---|
61 | throw new IllegalArgumentException("Jama SVD only works for m >= n"); }
|
---|
62 | */
|
---|
63 | int nu = Math.min(m,n);
|
---|
64 | s = new double [Math.min(m+1,n)];
|
---|
65 | U = new double [m][nu];
|
---|
66 | V = new double [n][n];
|
---|
67 | double[] e = new double [n];
|
---|
68 | double[] work = new double [m];
|
---|
69 | boolean wantu = true;
|
---|
70 | boolean wantv = true;
|
---|
71 |
|
---|
72 | // Reduce A to bidiagonal form, storing the diagonal elements
|
---|
73 | // in s and the super-diagonal elements in e.
|
---|
74 |
|
---|
75 | int nct = Math.min(m-1,n);
|
---|
76 | int nrt = Math.max(0,Math.min(n-2,m));
|
---|
77 | for (int k = 0; k < Math.max(nct,nrt); k++) {
|
---|
78 | if (k < nct) {
|
---|
79 |
|
---|
80 | // Compute the transformation for the k-th column and
|
---|
81 | // place the k-th diagonal in s[k].
|
---|
82 | // Compute 2-norm of k-th column without under/overflow.
|
---|
83 | s[k] = 0;
|
---|
84 | for (int i = k; i < m; i++) {
|
---|
85 | s[k] = Maths.hypot(s[k],A[i][k]);
|
---|
86 | }
|
---|
87 | if (s[k] != 0.0) {
|
---|
88 | if (A[k][k] < 0.0) {
|
---|
89 | s[k] = -s[k];
|
---|
90 | }
|
---|
91 | for (int i = k; i < m; i++) {
|
---|
92 | A[i][k] /= s[k];
|
---|
93 | }
|
---|
94 | A[k][k] += 1.0;
|
---|
95 | }
|
---|
96 | s[k] = -s[k];
|
---|
97 | }
|
---|
98 | for (int j = k+1; j < n; j++) {
|
---|
99 | if ((k < nct) & (s[k] != 0.0)) {
|
---|
100 |
|
---|
101 | // Apply the transformation.
|
---|
102 |
|
---|
103 | double t = 0;
|
---|
104 | for (int i = k; i < m; i++) {
|
---|
105 | t += A[i][k]*A[i][j];
|
---|
106 | }
|
---|
107 | t = -t/A[k][k];
|
---|
108 | for (int i = k; i < m; i++) {
|
---|
109 | A[i][j] += t*A[i][k];
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | // Place the k-th row of A into e for the
|
---|
114 | // subsequent calculation of the row transformation.
|
---|
115 |
|
---|
116 | e[j] = A[k][j];
|
---|
117 | }
|
---|
118 | if (wantu & (k < nct)) {
|
---|
119 |
|
---|
120 | // Place the transformation in U for subsequent back
|
---|
121 | // multiplication.
|
---|
122 |
|
---|
123 | for (int i = k; i < m; i++) {
|
---|
124 | U[i][k] = A[i][k];
|
---|
125 | }
|
---|
126 | }
|
---|
127 | if (k < nrt) {
|
---|
128 |
|
---|
129 | // Compute the k-th row transformation and place the
|
---|
130 | // k-th super-diagonal in e[k].
|
---|
131 | // Compute 2-norm without under/overflow.
|
---|
132 | e[k] = 0;
|
---|
133 | for (int i = k+1; i < n; i++) {
|
---|
134 | e[k] = Maths.hypot(e[k],e[i]);
|
---|
135 | }
|
---|
136 | if (e[k] != 0.0) {
|
---|
137 | if (e[k+1] < 0.0) {
|
---|
138 | e[k] = -e[k];
|
---|
139 | }
|
---|
140 | for (int i = k+1; i < n; i++) {
|
---|
141 | e[i] /= e[k];
|
---|
142 | }
|
---|
143 | e[k+1] += 1.0;
|
---|
144 | }
|
---|
145 | e[k] = -e[k];
|
---|
146 | if ((k+1 < m) & (e[k] != 0.0)) {
|
---|
147 |
|
---|
148 | // Apply the transformation.
|
---|
149 |
|
---|
150 | for (int i = k+1; i < m; i++) {
|
---|
151 | work[i] = 0.0;
|
---|
152 | }
|
---|
153 | for (int j = k+1; j < n; j++) {
|
---|
154 | for (int i = k+1; i < m; i++) {
|
---|
155 | work[i] += e[j]*A[i][j];
|
---|
156 | }
|
---|
157 | }
|
---|
158 | for (int j = k+1; j < n; j++) {
|
---|
159 | double t = -e[j]/e[k+1];
|
---|
160 | for (int i = k+1; i < m; i++) {
|
---|
161 | A[i][j] += t*work[i];
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|
165 | if (wantv) {
|
---|
166 |
|
---|
167 | // Place the transformation in V for subsequent
|
---|
168 | // back multiplication.
|
---|
169 |
|
---|
170 | for (int i = k+1; i < n; i++) {
|
---|
171 | V[i][k] = e[i];
|
---|
172 | }
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Set up the final bidiagonal matrix or order p.
|
---|
178 |
|
---|
179 | int p = Math.min(n,m+1);
|
---|
180 | if (nct < n) {
|
---|
181 | s[nct] = A[nct][nct];
|
---|
182 | }
|
---|
183 | if (m < p) {
|
---|
184 | s[p-1] = 0.0;
|
---|
185 | }
|
---|
186 | if (nrt+1 < p) {
|
---|
187 | e[nrt] = A[nrt][p-1];
|
---|
188 | }
|
---|
189 | e[p-1] = 0.0;
|
---|
190 |
|
---|
191 | // If required, generate U.
|
---|
192 |
|
---|
193 | if (wantu) {
|
---|
194 | for (int j = nct; j < nu; j++) {
|
---|
195 | for (int i = 0; i < m; i++) {
|
---|
196 | U[i][j] = 0.0;
|
---|
197 | }
|
---|
198 | U[j][j] = 1.0;
|
---|
199 | }
|
---|
200 | for (int k = nct-1; k >= 0; k--) {
|
---|
201 | if (s[k] != 0.0) {
|
---|
202 | for (int j = k+1; j < nu; j++) {
|
---|
203 | double t = 0;
|
---|
204 | for (int i = k; i < m; i++) {
|
---|
205 | t += U[i][k]*U[i][j];
|
---|
206 | }
|
---|
207 | t = -t/U[k][k];
|
---|
208 | for (int i = k; i < m; i++) {
|
---|
209 | U[i][j] += t*U[i][k];
|
---|
210 | }
|
---|
211 | }
|
---|
212 | for (int i = k; i < m; i++ ) {
|
---|
213 | U[i][k] = -U[i][k];
|
---|
214 | }
|
---|
215 | U[k][k] = 1.0 + U[k][k];
|
---|
216 | for (int i = 0; i < k-1; i++) {
|
---|
217 | U[i][k] = 0.0;
|
---|
218 | }
|
---|
219 | } else {
|
---|
220 | for (int i = 0; i < m; i++) {
|
---|
221 | U[i][k] = 0.0;
|
---|
222 | }
|
---|
223 | U[k][k] = 1.0;
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | // If required, generate V.
|
---|
229 |
|
---|
230 | if (wantv) {
|
---|
231 | for (int k = n-1; k >= 0; k--) {
|
---|
232 | if ((k < nrt) & (e[k] != 0.0)) {
|
---|
233 | for (int j = k+1; j < nu; j++) {
|
---|
234 | double t = 0;
|
---|
235 | for (int i = k+1; i < n; i++) {
|
---|
236 | t += V[i][k]*V[i][j];
|
---|
237 | }
|
---|
238 | t = -t/V[k+1][k];
|
---|
239 | for (int i = k+1; i < n; i++) {
|
---|
240 | V[i][j] += t*V[i][k];
|
---|
241 | }
|
---|
242 | }
|
---|
243 | }
|
---|
244 | for (int i = 0; i < n; i++) {
|
---|
245 | V[i][k] = 0.0;
|
---|
246 | }
|
---|
247 | V[k][k] = 1.0;
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 | // Main iteration loop for the singular values.
|
---|
252 |
|
---|
253 | int pp = p-1;
|
---|
254 | int iter = 0;
|
---|
255 | double eps = Math.pow(2.0,-52.0);
|
---|
256 | double tiny = Math.pow(2.0,-966.0);
|
---|
257 | while (p > 0) {
|
---|
258 | int k,kase;
|
---|
259 |
|
---|
260 | // Here is where a test for too many iterations would go.
|
---|
261 |
|
---|
262 | // This section of the program inspects for
|
---|
263 | // negligible elements in the s and e arrays. On
|
---|
264 | // completion the variables kase and k are set as follows.
|
---|
265 |
|
---|
266 | // kase = 1 if s(p) and e[k-1] are negligible and k<p
|
---|
267 | // kase = 2 if s(k) is negligible and k<p
|
---|
268 | // kase = 3 if e[k-1] is negligible, k<p, and
|
---|
269 | // s(k), ..., s(p) are not negligible (qr step).
|
---|
270 | // kase = 4 if e(p-1) is negligible (convergence).
|
---|
271 |
|
---|
272 | for (k = p-2; k >= -1; k--) {
|
---|
273 | if (k == -1) {
|
---|
274 | break;
|
---|
275 | }
|
---|
276 | if (Math.abs(e[k]) <=
|
---|
277 | tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
|
---|
278 | e[k] = 0.0;
|
---|
279 | break;
|
---|
280 | }
|
---|
281 | }
|
---|
282 | if (k == p-2) {
|
---|
283 | kase = 4;
|
---|
284 | } else {
|
---|
285 | int ks;
|
---|
286 | for (ks = p-1; ks >= k; ks--) {
|
---|
287 | if (ks == k) {
|
---|
288 | break;
|
---|
289 | }
|
---|
290 | double t = (ks != p ? Math.abs(e[ks]) : 0.) +
|
---|
291 | (ks != k+1 ? Math.abs(e[ks-1]) : 0.);
|
---|
292 | if (Math.abs(s[ks]) <= tiny + eps*t) {
|
---|
293 | s[ks] = 0.0;
|
---|
294 | break;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | if (ks == k) {
|
---|
298 | kase = 3;
|
---|
299 | } else if (ks == p-1) {
|
---|
300 | kase = 1;
|
---|
301 | } else {
|
---|
302 | kase = 2;
|
---|
303 | k = ks;
|
---|
304 | }
|
---|
305 | }
|
---|
306 | k++;
|
---|
307 |
|
---|
308 | // Perform the task indicated by kase.
|
---|
309 |
|
---|
310 | switch (kase) {
|
---|
311 |
|
---|
312 | // Deflate negligible s(p).
|
---|
313 |
|
---|
314 | case 1: {
|
---|
315 | double f = e[p-2];
|
---|
316 | e[p-2] = 0.0;
|
---|
317 | for (int j = p-2; j >= k; j--) {
|
---|
318 | double t = Maths.hypot(s[j],f);
|
---|
319 | double cs = s[j]/t;
|
---|
320 | double sn = f/t;
|
---|
321 | s[j] = t;
|
---|
322 | if (j != k) {
|
---|
323 | f = -sn*e[j-1];
|
---|
324 | e[j-1] = cs*e[j-1];
|
---|
325 | }
|
---|
326 | if (wantv) {
|
---|
327 | for (int i = 0; i < n; i++) {
|
---|
328 | t = cs*V[i][j] + sn*V[i][p-1];
|
---|
329 | V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
|
---|
330 | V[i][j] = t;
|
---|
331 | }
|
---|
332 | }
|
---|
333 | }
|
---|
334 | }
|
---|
335 | break;
|
---|
336 |
|
---|
337 | // Split at negligible s(k).
|
---|
338 |
|
---|
339 | case 2: {
|
---|
340 | double f = e[k-1];
|
---|
341 | e[k-1] = 0.0;
|
---|
342 | for (int j = k; j < p; j++) {
|
---|
343 | double t = Maths.hypot(s[j],f);
|
---|
344 | double cs = s[j]/t;
|
---|
345 | double sn = f/t;
|
---|
346 | s[j] = t;
|
---|
347 | f = -sn*e[j];
|
---|
348 | e[j] = cs*e[j];
|
---|
349 | if (wantu) {
|
---|
350 | for (int i = 0; i < m; i++) {
|
---|
351 | t = cs*U[i][j] + sn*U[i][k-1];
|
---|
352 | U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
|
---|
353 | U[i][j] = t;
|
---|
354 | }
|
---|
355 | }
|
---|
356 | }
|
---|
357 | }
|
---|
358 | break;
|
---|
359 |
|
---|
360 | // Perform one qr step.
|
---|
361 |
|
---|
362 | case 3: {
|
---|
363 |
|
---|
364 | // Calculate the shift.
|
---|
365 |
|
---|
366 | double scale = Math.max(Math.max(Math.max(Math.max(
|
---|
367 | Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
|
---|
368 | Math.abs(s[k])),Math.abs(e[k]));
|
---|
369 | double sp = s[p-1]/scale;
|
---|
370 | double spm1 = s[p-2]/scale;
|
---|
371 | double epm1 = e[p-2]/scale;
|
---|
372 | double sk = s[k]/scale;
|
---|
373 | double ek = e[k]/scale;
|
---|
374 | double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
|
---|
375 | double c = (sp*epm1)*(sp*epm1);
|
---|
376 | double shift = 0.0;
|
---|
377 | if ((b != 0.0) | (c != 0.0)) {
|
---|
378 | shift = Math.sqrt(b*b + c);
|
---|
379 | if (b < 0.0) {
|
---|
380 | shift = -shift;
|
---|
381 | }
|
---|
382 | shift = c/(b + shift);
|
---|
383 | }
|
---|
384 | double f = (sk + sp)*(sk - sp) + shift;
|
---|
385 | double g = sk*ek;
|
---|
386 |
|
---|
387 | // Chase zeros.
|
---|
388 |
|
---|
389 | for (int j = k; j < p-1; j++) {
|
---|
390 | double t = Maths.hypot(f,g);
|
---|
391 | double cs = f/t;
|
---|
392 | double sn = g/t;
|
---|
393 | if (j != k) {
|
---|
394 | e[j-1] = t;
|
---|
395 | }
|
---|
396 | f = cs*s[j] + sn*e[j];
|
---|
397 | e[j] = cs*e[j] - sn*s[j];
|
---|
398 | g = sn*s[j+1];
|
---|
399 | s[j+1] = cs*s[j+1];
|
---|
400 | if (wantv) {
|
---|
401 | for (int i = 0; i < n; i++) {
|
---|
402 | t = cs*V[i][j] + sn*V[i][j+1];
|
---|
403 | V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
|
---|
404 | V[i][j] = t;
|
---|
405 | }
|
---|
406 | }
|
---|
407 | t = Maths.hypot(f,g);
|
---|
408 | cs = f/t;
|
---|
409 | sn = g/t;
|
---|
410 | s[j] = t;
|
---|
411 | f = cs*e[j] + sn*s[j+1];
|
---|
412 | s[j+1] = -sn*e[j] + cs*s[j+1];
|
---|
413 | g = sn*e[j+1];
|
---|
414 | e[j+1] = cs*e[j+1];
|
---|
415 | if (wantu && (j < m-1)) {
|
---|
416 | for (int i = 0; i < m; i++) {
|
---|
417 | t = cs*U[i][j] + sn*U[i][j+1];
|
---|
418 | U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
|
---|
419 | U[i][j] = t;
|
---|
420 | }
|
---|
421 | }
|
---|
422 | }
|
---|
423 | e[p-2] = f;
|
---|
424 | iter = iter + 1;
|
---|
425 | }
|
---|
426 | break;
|
---|
427 |
|
---|
428 | // Convergence.
|
---|
429 |
|
---|
430 | case 4: {
|
---|
431 |
|
---|
432 | // Make the singular values positive.
|
---|
433 |
|
---|
434 | if (s[k] <= 0.0) {
|
---|
435 | s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
|
---|
436 | if (wantv) {
|
---|
437 | for (int i = 0; i <= pp; i++) {
|
---|
438 | V[i][k] = -V[i][k];
|
---|
439 | }
|
---|
440 | }
|
---|
441 | }
|
---|
442 |
|
---|
443 | // Order the singular values.
|
---|
444 |
|
---|
445 | while (k < pp) {
|
---|
446 | if (s[k] >= s[k+1]) {
|
---|
447 | break;
|
---|
448 | }
|
---|
449 | double t = s[k];
|
---|
450 | s[k] = s[k+1];
|
---|
451 | s[k+1] = t;
|
---|
452 | if (wantv && (k < n-1)) {
|
---|
453 | for (int i = 0; i < n; i++) {
|
---|
454 | t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
|
---|
455 | }
|
---|
456 | }
|
---|
457 | if (wantu && (k < m-1)) {
|
---|
458 | for (int i = 0; i < m; i++) {
|
---|
459 | t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
|
---|
460 | }
|
---|
461 | }
|
---|
462 | k++;
|
---|
463 | }
|
---|
464 | iter = 0;
|
---|
465 | p--;
|
---|
466 | }
|
---|
467 | break;
|
---|
468 | }
|
---|
469 | }
|
---|
470 | }
|
---|
471 |
|
---|
472 | /* ------------------------
|
---|
473 | Public Methods
|
---|
474 | * ------------------------ */
|
---|
475 |
|
---|
476 | /** Return the left singular vectors
|
---|
477 | @return U
|
---|
478 | */
|
---|
479 |
|
---|
480 | public Matrix getU () {
|
---|
481 | return new Matrix(U,m,Math.min(m+1,n));
|
---|
482 | }
|
---|
483 |
|
---|
484 | /** Return the right singular vectors
|
---|
485 | @return V
|
---|
486 | */
|
---|
487 |
|
---|
488 | public Matrix getV () {
|
---|
489 | return new Matrix(V,n,n);
|
---|
490 | }
|
---|
491 |
|
---|
492 | /** Return the one-dimensional array of singular values
|
---|
493 | @return diagonal of S.
|
---|
494 | */
|
---|
495 |
|
---|
496 | public double[] getSingularValues () {
|
---|
497 | return s;
|
---|
498 | }
|
---|
499 |
|
---|
500 | /** Return the diagonal matrix of singular values
|
---|
501 | @return S
|
---|
502 | */
|
---|
503 |
|
---|
504 | public Matrix getS () {
|
---|
505 | Matrix X = new Matrix(n,n);
|
---|
506 | double[][] S = X.getArray();
|
---|
507 | for (int i = 0; i < n; i++) {
|
---|
508 | for (int j = 0; j < n; j++) {
|
---|
509 | S[i][j] = 0.0;
|
---|
510 | }
|
---|
511 | S[i][i] = this.s[i];
|
---|
512 | }
|
---|
513 | return X;
|
---|
514 | }
|
---|
515 |
|
---|
516 | /** Two norm
|
---|
517 | @return max(S)
|
---|
518 | */
|
---|
519 |
|
---|
520 | public double norm2 () {
|
---|
521 | return s[0];
|
---|
522 | }
|
---|
523 |
|
---|
524 | /** Two norm condition number
|
---|
525 | @return max(S)/min(S)
|
---|
526 | */
|
---|
527 |
|
---|
528 | public double cond () {
|
---|
529 | return s[0]/s[Math.min(m,n)-1];
|
---|
530 | }
|
---|
531 |
|
---|
532 | /** Effective numerical matrix rank
|
---|
533 | @return Number of nonnegligible singular values.
|
---|
534 | */
|
---|
535 |
|
---|
536 | public int rank () {
|
---|
537 | double eps = Math.pow(2.0,-52.0);
|
---|
538 | double tol = Math.max(m,n)*s[0]*eps;
|
---|
539 | int r = 0;
|
---|
540 | for (int i = 0; i < s.length; i++) {
|
---|
541 | if (s[i] > tol) {
|
---|
542 | r++;
|
---|
543 | }
|
---|
544 | }
|
---|
545 | return r;
|
---|
546 | }
|
---|
547 | private static final long serialVersionUID = 1;
|
---|
548 | }
|
---|