1 | package agents.Jama;
|
---|
2 | import agents.Jama.util.*;
|
---|
3 |
|
---|
4 | /** QR Decomposition.
|
---|
5 | <P>
|
---|
6 | For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
---|
7 | orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
---|
8 | A = Q*R.
|
---|
9 | <P>
|
---|
10 | The QR decompostion always exists, even if the matrix does not have
|
---|
11 | full rank, so the constructor will never fail. The primary use of the
|
---|
12 | QR decomposition is in the least squares solution of nonsquare systems
|
---|
13 | of simultaneous linear equations. This will fail if isFullRank()
|
---|
14 | returns false.
|
---|
15 | */
|
---|
16 |
|
---|
17 | public class QRDecomposition implements java.io.Serializable {
|
---|
18 |
|
---|
19 | /* ------------------------
|
---|
20 | Class variables
|
---|
21 | * ------------------------ */
|
---|
22 |
|
---|
23 | /** Array for internal storage of decomposition.
|
---|
24 | @serial internal array storage.
|
---|
25 | */
|
---|
26 | private double[][] QR;
|
---|
27 |
|
---|
28 | /** Row and column dimensions.
|
---|
29 | @serial column dimension.
|
---|
30 | @serial row dimension.
|
---|
31 | */
|
---|
32 | private int m, n;
|
---|
33 |
|
---|
34 | /** Array for internal storage of diagonal of R.
|
---|
35 | @serial diagonal of R.
|
---|
36 | */
|
---|
37 | private double[] Rdiag;
|
---|
38 |
|
---|
39 | /* ------------------------
|
---|
40 | Constructor
|
---|
41 | * ------------------------ */
|
---|
42 |
|
---|
43 | /** QR Decomposition, computed by Householder reflections.
|
---|
44 | Structure to access R and the Householder vectors and compute Q.
|
---|
45 | @param A Rectangular matrix
|
---|
46 | */
|
---|
47 |
|
---|
48 | public QRDecomposition (Matrix A) {
|
---|
49 | // Initialize.
|
---|
50 | QR = A.getArrayCopy();
|
---|
51 | m = A.getRowDimension();
|
---|
52 | n = A.getColumnDimension();
|
---|
53 | Rdiag = new double[n];
|
---|
54 |
|
---|
55 | // Main loop.
|
---|
56 | for (int k = 0; k < n; k++) {
|
---|
57 | // Compute 2-norm of k-th column without under/overflow.
|
---|
58 | double nrm = 0;
|
---|
59 | for (int i = k; i < m; i++) {
|
---|
60 | nrm = Maths.hypot(nrm,QR[i][k]);
|
---|
61 | }
|
---|
62 |
|
---|
63 | if (nrm != 0.0) {
|
---|
64 | // Form k-th Householder vector.
|
---|
65 | if (QR[k][k] < 0) {
|
---|
66 | nrm = -nrm;
|
---|
67 | }
|
---|
68 | for (int i = k; i < m; i++) {
|
---|
69 | QR[i][k] /= nrm;
|
---|
70 | }
|
---|
71 | QR[k][k] += 1.0;
|
---|
72 |
|
---|
73 | // Apply transformation to remaining columns.
|
---|
74 | for (int j = k+1; j < n; j++) {
|
---|
75 | double s = 0.0;
|
---|
76 | for (int i = k; i < m; i++) {
|
---|
77 | s += QR[i][k]*QR[i][j];
|
---|
78 | }
|
---|
79 | s = -s/QR[k][k];
|
---|
80 | for (int i = k; i < m; i++) {
|
---|
81 | QR[i][j] += s*QR[i][k];
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|
85 | Rdiag[k] = -nrm;
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | /* ------------------------
|
---|
90 | Public Methods
|
---|
91 | * ------------------------ */
|
---|
92 |
|
---|
93 | /** Is the matrix full rank?
|
---|
94 | @return true if R, and hence A, has full rank.
|
---|
95 | */
|
---|
96 |
|
---|
97 | public boolean isFullRank () {
|
---|
98 | for (int j = 0; j < n; j++) {
|
---|
99 | if (Rdiag[j] == 0)
|
---|
100 | return false;
|
---|
101 | }
|
---|
102 | return true;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /** Return the Householder vectors
|
---|
106 | @return Lower trapezoidal matrix whose columns define the reflections
|
---|
107 | */
|
---|
108 |
|
---|
109 | public Matrix getH () {
|
---|
110 | Matrix X = new Matrix(m,n);
|
---|
111 | double[][] H = X.getArray();
|
---|
112 | for (int i = 0; i < m; i++) {
|
---|
113 | for (int j = 0; j < n; j++) {
|
---|
114 | if (i >= j) {
|
---|
115 | H[i][j] = QR[i][j];
|
---|
116 | } else {
|
---|
117 | H[i][j] = 0.0;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 | return X;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /** Return the upper triangular factor
|
---|
125 | @return R
|
---|
126 | */
|
---|
127 |
|
---|
128 | public Matrix getR () {
|
---|
129 | Matrix X = new Matrix(n,n);
|
---|
130 | double[][] R = X.getArray();
|
---|
131 | for (int i = 0; i < n; i++) {
|
---|
132 | for (int j = 0; j < n; j++) {
|
---|
133 | if (i < j) {
|
---|
134 | R[i][j] = QR[i][j];
|
---|
135 | } else if (i == j) {
|
---|
136 | R[i][j] = Rdiag[i];
|
---|
137 | } else {
|
---|
138 | R[i][j] = 0.0;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|
142 | return X;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /** Generate and return the (economy-sized) orthogonal factor
|
---|
146 | @return Q
|
---|
147 | */
|
---|
148 |
|
---|
149 | public Matrix getQ () {
|
---|
150 | Matrix X = new Matrix(m,n);
|
---|
151 | double[][] Q = X.getArray();
|
---|
152 | for (int k = n-1; k >= 0; k--) {
|
---|
153 | for (int i = 0; i < m; i++) {
|
---|
154 | Q[i][k] = 0.0;
|
---|
155 | }
|
---|
156 | Q[k][k] = 1.0;
|
---|
157 | for (int j = k; j < n; j++) {
|
---|
158 | if (QR[k][k] != 0) {
|
---|
159 | double s = 0.0;
|
---|
160 | for (int i = k; i < m; i++) {
|
---|
161 | s += QR[i][k]*Q[i][j];
|
---|
162 | }
|
---|
163 | s = -s/QR[k][k];
|
---|
164 | for (int i = k; i < m; i++) {
|
---|
165 | Q[i][j] += s*QR[i][k];
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | return X;
|
---|
171 | }
|
---|
172 |
|
---|
173 | /** Least squares solution of A*X = B
|
---|
174 | @param B A Matrix with as many rows as A and any number of columns.
|
---|
175 | @return X that minimizes the two norm of Q*R*X-B.
|
---|
176 | @exception IllegalArgumentException Matrix row dimensions must agree.
|
---|
177 | @exception RuntimeException Matrix is rank deficient.
|
---|
178 | */
|
---|
179 |
|
---|
180 | public Matrix solve (Matrix B) {
|
---|
181 | if (B.getRowDimension() != m) {
|
---|
182 | throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
---|
183 | }
|
---|
184 | if (!this.isFullRank()) {
|
---|
185 | throw new RuntimeException("Matrix is rank deficient.");
|
---|
186 | }
|
---|
187 |
|
---|
188 | // Copy right hand side
|
---|
189 | int nx = B.getColumnDimension();
|
---|
190 | double[][] X = B.getArrayCopy();
|
---|
191 |
|
---|
192 | // Compute Y = transpose(Q)*B
|
---|
193 | for (int k = 0; k < n; k++) {
|
---|
194 | for (int j = 0; j < nx; j++) {
|
---|
195 | double s = 0.0;
|
---|
196 | for (int i = k; i < m; i++) {
|
---|
197 | s += QR[i][k]*X[i][j];
|
---|
198 | }
|
---|
199 | s = -s/QR[k][k];
|
---|
200 | for (int i = k; i < m; i++) {
|
---|
201 | X[i][j] += s*QR[i][k];
|
---|
202 | }
|
---|
203 | }
|
---|
204 | }
|
---|
205 | // Solve R*X = Y;
|
---|
206 | for (int k = n-1; k >= 0; k--) {
|
---|
207 | for (int j = 0; j < nx; j++) {
|
---|
208 | X[k][j] /= Rdiag[k];
|
---|
209 | }
|
---|
210 | for (int i = 0; i < k; i++) {
|
---|
211 | for (int j = 0; j < nx; j++) {
|
---|
212 | X[i][j] -= X[k][j]*QR[i][k];
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|
216 | return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));
|
---|
217 | }
|
---|
218 | private static final long serialVersionUID = 1;
|
---|
219 | }
|
---|